Fiscal rules and the sovereign default premium

Juan Carlos Hatchondo Leonardo Martinez Francisco Roch
Indiana University IMF IMF
February 14, 2015

Abstract

We present a sovereign default model that can mimic salient features in a typical small open economy. We then use the model to study the effects of introducing limits to the decision-making ability of governments—fiscal rules. We show that optimal limits to the debt level vary greatly across parameterizations of the model. In contrast, optimal limits to the sovereign premium the government can pay while increasing its debt are very similar across parameterizations. Given the uncertainty about model parameter values and political constraints that may force common fiscal rule targets across economies, these findings indicate that sovereign-premium limits may be preferable over debt limits. We also show that rules should not necessarily promote a countercyclical fiscal policy. Benefits from imposing a rule arise even if governments are not shortsighted.

JEL classification: F34, F41.

Keywords: Fiscal Rules, Debt Limit, Spread Limit, Fiscal Consolidation, Default, Sovereign Default Premium, Countercyclical Policy, Endogenous Borrowing Constraints, Long-term Debt, Debt Dilution.

*For comments and suggestions, we thank Satyajit Chatterjee, Gaston Gelos, Lars Hansen, Eric Leeper, Xavier Mateos-Planas, Enrique Mendoza, Benjamin Moll, Demian Pouzo, Jorge Roldos, Harald Uhlig, and seminar participants at the 2012 Sovereign Debt Workshop at the Federal Reserve Bank of Richmond, the 2011 European Economic Association and Econometric Society Meeting, Getulio Vargas, the University of Chicago, Banco de Mexico, Universidad del CEMa, Universidad Catolica de Chile, the 2014 North American Winter Meeting of the Econometric Society, the 2014 Barcelona GSE Summer Forum, the University of Toronto, and the IMF Institute and Strategy, Policy, and Review departments. Remaining mistakes are our own. The views expressed herein are those of the authors and should not be attributed to the IMF, its Executive Board, or its management. E-mails: hatchondo@gmail.com; leo14627@gmail.com; franroch@gmail.com.
1 Introduction

This paper studies fiscal rules using a baseline sovereign default framework à la Eaton and Gersovitz (1981). Fiscal rules are restrictions imposed (often in laws or in the constitution) to the future governments’ ability to conduct fiscal policy. We study an infinite-horizon model in which aggregate output is determined by an aggregate productivity shock and labor-leisure decisions made by domestic households. The government produces a public good consumed by domestic households and finances the provision of this good levying labor taxes and issuing long-term debt. If the government defaults on its debt, it is excluded from credit markets for a stochastic number of periods during which aggregate productivity is reduced. We impose discipline on our quantitative exercises by calibrating the model to match data from a European economy facing default risk (Spain), and we study the effects of fiscal rule for a range of variations of this baseline calibration that produce plausible implications.

We discuss the optimal value of fiscal rules’ targets and quantify the effects of introducing fiscal rules. While there is consensus among policymakers about the desirability of fiscal rules targeting lower sovereign debt levels, significant uncertainty remains about the optimal value of fiscal rules’ targets. More generally, while optimal sovereign debt levels are often at the center of policy debates, these debates are rarely guided by economic theory. For example, the IMF chief economist asked: “what levels of public debt should countries aim for? Are old rules of thumb, such as trying to keep the debt to GDP ratio below 60 percent in advanced countries,

1 This framework is commonly used for quantitative studies of sovereign debt and has been shown to generate plausible implication. See, for instance, Aguiar and Gopinath (2006), Arellano (2008), Benjamin and Wright (2008), Boz (2011), Lizarazo (2005, 2006), Roch and Uhlig (2014), and Yue (2010). This model shares blueprints with the ones used in studies of household default—see, for example, Athreya et al. (2007), Chatterjee et al. (2007), Li and Sarte (2006), Livshits et al. (2008), and Sanchez (2010). For models of non-strategic defaults see Bi (2011) and Bi and Leeper (2012).

2 In a previous version of this paper we found similar results for variations of a baseline calibration targeting Argentine data, and thus presenting lower debt levels and higher sovereign premium levels than European economies (more typical of emerging economies).

3 For instance, in an IMF Staff Position Note, Blanchard et al. (2010) argue that “A key lesson from the crisis is the desirability of fiscal space to run larger fiscal deficits when needed.” They also note that “Medium-term fiscal frameworks, credible commitments to reducing debt-to-GDP ratios, and fiscal rules (with escape clauses for recessions) can all help in this regard.” Discussions about the overhaul of the fiscal rules in the Eurozone provide other examples of this view.
still reliable?” (Blanchard, 2011).

We first show that introducing fiscal rules generate welfare gains. This happens because rules mitigate excessive levels of sovereign risk implied by debt dilution (when governments issue long-term debt).

We next show that the optimal debt limit vary greatly across parameterizations of the model: the limit that is optimal for our baseline calibration may fail to produce welfare gains for other plausible parameterizations that result in different debt levels. These findings is relevant because of the well known sovereign debt intolerance problem (Reinhart et al., 2003): the relationship between sovereign debt levels and sovereign risk varies greatly across countries. Our findings suggest that optimal debt levels to which countries would want to commit to (those that imply low sovereign risk) may vary greatly across countries.

The findings above present two important challenges. One challenge come from political constraints that may force common fiscal rule targets across economies. Perhaps the best known example are the common sovereign debt limits imposed by the Maastricht Treaty. Our results indicate that, in light of the debt intolerance problem, optimal sovereign debt limits may vary greatly across countries. Another challenge is that time-invariant debt-limit rules may be counterproductive in the presence of time-varying levels of debt tolerance.

Our third finding is that fiscal rules limiting the sovereign premium the government can pay while increasing its debt level would be more immune to the above challenges. The optimal premium limit for our benchmark calibration consistently produces welfare gains for other parameterizations. Furthermore, optimal sovereign-premium limits are very similar across parameterizations.

The greater robustness of sovereign-premium limits over debt limits is intuitive. We show that gains from imposing fiscal rules arise because rules achieve a reduction in sovereign risk. Debt limits are too blunt of an instrument for that goal. A debt limit that is too loose may

\footnote{Similarly, the IMF flagship fiscal publication has recently stated that “the optimal-debt concept has remained at a fairly abstract level, whereas the safe-debt concept has focused largely on empirical applications” (IMF, 2013a).}

\footnote{Common sovereign debt thresholds are also used across countries by the IMF, for instance, as one of the criteria to decide the level of scrutiny in surveillance (IMF, 2013b; IMF, 2013c).}
fail to achieve the desired risk reduction. And a debt limit that is too tight may unnecessarily prevent a government from borrowing, reducing the scope for welfare gains from fiscal rules, even producing welfare losses. In contrast, limits to the sovereign premium attack directly the problem of excessive sovereign risk. Maybe we should ask what levels of sovereign premium should countries target, instead of asking what levels of public debt should they aim for.⁶

1.1 Related Literature

In spite of the great interest among policymakers, theoretical studies on fiscal rules are relatively scarce. Some theoretical studies focus on the desirability of a balanced-budget rule for the U.S. federal government (see Azzimonti et al., 2010 and the references therein). García et al. (2011) compare a balanced budget rule with a structural surplus rule. Beetsma and Uhlig (1999) show how by imposing lower debt levels, the Stability and Growth Pact may help control inflation in the European Monetary Union. Beetsma and Debrun (2007) discuss how additional flexibility in the Stability and Growth Pact may improve welfare. Pappa and Vassilatos (2007) and Poplawski Ribeiro et al. (2008) find that debt limits may be preferable over constraints on the government’s deficit. Medina and Soto (2007) use a model of the Chilean economy to show that a structural balanced fiscal rule mitigates the macroeconomic effects of copper-price shocks.

The studies listed in the previous paragraph do not discuss the robustness of debt limits, nor sovereign-premium limits, which are the main focus of our analysis. Furthermore, these studies abstract from the effects of the expectation about future indebtedness on the sovereign premium, which we show is key for the gains of imposing fiscal rules in our environment. In these studies, rules may be beneficial because of a conflict of interest between the government and private agents (for instance, because the government is myopic or because of political polarization),

⁶While sovereign debt levels dominate policy debates, the role of sovereign premiums in these debates is growing. For instance, Claessens et al. (2012) argue that “the challenge is to complement fiscal rules affecting quantities most productively with market-based mechanisms using price signals.” In addition, recent revisions of the IMF fiscal sustainability framework incorporate sovereign spreads as an additional criteria to guide the level of scrutiny in surveillance (IMF, 2013b). We complement the sustainability analysis (Adler and Sosa, 2013; Ghosh et al., 2011; Tanner and Samaké, 2006) commonly used in policy circles (see, for instance, IMF, 2013c; and IMF Article IV country reports) by presenting endogenous sovereign spreads (that, for example, capture the effects of expectation of future fiscal adjustments), endogenous borrowing policies (that react to fiscal rules), and a welfare measure to discuss optimal policy.
or because of a conflict of interest among governments of different countries (for instance, in a monetary union). In contrast, we study a model with benevolent governments but in which there is a conflict between current and future governments. We show that benefits from imposing a rule arise even if governments are not shortsighted. We also show how assuming shortsighted government would imply greater gains from implementing fiscal rules and stricter fiscal rule limits.

As we do, Calvo (1988) discuses gains from introducing interest-rate limits for sovereign debt. However, there are important differences between the two analyses. In Calvo’s (1988) model, an interest-rate limit is used to eliminate bad equilibria in a multiple-equilibria framework. Calvo (1988) and more recently Lorenzoni and Werning (2014) assume that the government first chooses the proceeds from debt issuances it needs, and the lenders later choose the interest rate they ask to finance the government’s needs. Since higher debt levels imply higher default and thus higher interest rates, a the government’s needs can be financed in either a good low-debt low-rate equilibrium or a bad high-debt high-rate equilibrium. An interest-rate limit eliminates the possibility of a bad equilibrium. In contrast, we assume the government chooses the level of debt it wants to issue (instead of the proceeds from debt issuances) eliminating the possibility of a bad equilibrium à la Calvo-Lorenzoni-Werning. We show that fiscal rules are beneficial even after abstracting for the possibility of multiple equilibria. In our framework, gains from the fiscal rule appear because of debt dilution, a time-inconsistency problem that arises when the government is allowed to issue long-term debt.

An extensive literature discusses the importance of sovereign debt dilution (see Hatchondo et al., 2014a, and the references therein). Within this literature, Chatterjee and Eyigungor (2013) and Hatchondo et al. (2014a) present the studies that are closer to this paper. As we do, they study the quantitative effects of remedies to the dilution problem. While we focus on fiscal rules, the tools countries are using to deal with sovereign debt problems (Budina et al., 2012; IMF, 2009; Schaechter et al., 2012), Chatterjee and Eyigungor (2013) and Hatchondo et al. (2014a) discuss the effects of modifying sovereign debt contracts. Chatterjee and Eyigungor (2013) study the effects of introducing a seniority structure. Hatchondo et al. (2014a) study the effects of introducing debt covenants that penalize future borrowing.
The paper also contributes to the discussion of the optimal cyclical nature of fiscal policy. Cuadra et al. (2010) show that in a sovereign default model with one-period debt and without a fiscal rule, it is optimal for the government to borrow less when income is low. Thus, the optimal fiscal policy is procyclical.\footnote{This is consistent with the observed fiscal policy in emerging economies, as documented by Gavin and Perotti (1997), Ilzetzki et al. (2012), Kaminsky et al. (2004), Talvi and Végh (2009), and Végh and Vuletin (2011).} We show that the same is true in our benchmark no-rule model with long-term debt. Furthermore, we show that in the presence of sovereign risk, if the government can limit future policy choices with a fiscal rule, it may still not want to use the rule to promote countercyclical policies.

The rest of the article proceeds as follows. Section 2 presents a three-period model that allows us to illustrate how a benevolent government may benefit from a fiscal rule that constrains its behavior. Section 3 introduces the quantitative model. Section 4 discusses the calibration. Section 5 presents the results. Section 6 concludes.

2 A three-period model

We first present a simple environment that illustrates how the introduction of fiscal rules may produce welfare gains. The next section builds on this simple environment and expands it in several dimensions.

2.1 Environment

The economy lasts for three periods, \(t = 1, 2, 3 \). The government receives a sequence of endowments given by \(y_1 = 0, y_2 = 0, \) and \(y_3 > 0 \). The only uncertainty in the model is about the value of \(y_3 \). The government is benevolent and makes its decisions on a sequential basis. The government acting in period \(j \in \{1, 2, 3\} \) maximizes \(\mathbb{E} \left[\sum_{t=j}^{3} u(c_t) \right] \), where \(\mathbb{E} \) denotes the expectation operator, \(c_t \) represents period-\(t \) consumption in the economy, and the utility function \(u \) is increasing and concave.

The government can borrow to finance consumption in periods 1 and 2. A bond issued in period 1 promises to pay one unit of the good in period 2 and \((1 - \delta)\) units in period 3. Thus,
if \(\delta = 1 \), the government issues one-period bonds in period 1. If \(\delta < 1 \), the government issues long-term bonds in period 1. A bond issued in period 2 promises to pay one unit of the good in period 3.

The government may choose to default in period 3.\(^8\) If the government defaults, it does not pay its debt but loses a fraction \(\phi \) of the period-3 endowment \(y_3 \). Bonds are priced by competitive risk-neutral investors who discount future payments at a rate of 1.

Let \(b_t \) denote the number of bonds issued by the government and \(q_t \) denote the price at which the government sells bonds in period \(t \). The budget constraints are:

\[
\begin{align*}
 c_1 &= b_1 q_1(b_1, b_2), \\
 c_2 &= b_2 q_2(b_1, b_2) - b_1, \\
 c_3 &= y_3(1 - d\phi) - (1 - d)[b_1(1 - \delta) + b_2],
\end{align*}
\]

where \(d \) denotes the government’s default decision and is equal to 1 if the government defaults and is equal to 0 otherwise.

2.2 Results

In this setup, it is optimal to borrow because borrowing enables the government to smooth out consumption over time. However, borrowing decisions are restricted by the limited commitment problem faced by the government.

The equilibrium default decision is given by

\[
\hat{d}(b_1, b_2, y_3) = \begin{cases}
1 & \text{if } y_3 < \frac{b_1(1-\delta)+b_2}{\phi}, \\
0 & \text{otherwise.}
\end{cases}
\]

Given the above defaulting rule, the price of a bond issued in period 1 is given by

\[
q_1(b_1, b_2) = 1 + (1 - \delta)P \left[y_3 > \frac{b_1(1 - \delta) + b_2}{\phi} \right],
\]

where \(P \) denote the probability function. The price of a bond issued in period 2 is given by

\(^8\)In period 2, since no new information is revealed, there cannot be a meaningful default decision.
\[q_2(b_1, b_2) = P \left[y_3 > \frac{b_1(1 - \delta) + b_2}{\phi} \right]. \]

Since the government does not borrow in period 3, there is no role for rules that limit the government behavior in that period. It is easy to verify that there is also no role for rules in period 1. Proposition 1 shows that when the government can only issue one-period debt, there is no role for fiscal rules in period 2.

Proposition 1 Suppose \(\delta = 1 \), i.e., bonds issued in period 1 pay off in period 2 alone. Then, the government’s period-1 expected utility cannot be improved with a fiscal rule that limits debt choices in period-2.

Proof: The government’s period-1 expected utility is maximized by \(b_1^* \) and \(b_2^* \) such that

\[
q_2(b_1, b_2) = P \left[y_3 > \frac{b_1(1 - \delta) + b_2}{\phi} \right].
\]

Therefore, if the government chooses \(b_1^* \) in period 1, it expects that the government acting in period 2 will choose \(b_2^* \). Thus, the government’s period-1 expected utility cannot be improved with a period-2 fiscal rule.

Proposition 2 shows that a role for fiscal rules arises when the government issues long-term debt (in period 1).
Proposition 2 Suppose $\delta < 1$, i.e., the government issues long-term debt in period 1. Then, a period-2 fiscal rule is necessary to maximize the government’s period-1 expected utility.

Proof: The government’s period-1 expected utility is maximized by b^*_1 and b^*_2 such that

$$u'(c^*_1) \left[q_1(b^*_1, b^*_2) + b^*_1 \frac{\partial q_1(b^*_1, b^*_2)}{\partial b_1} \right] = u'(c^*_2) \left[1 - b^*_2 \frac{\partial q_2(b^*_1, b^*_2)}{\partial b_1} \right] + (1-\delta)E \left[u'(c^*_3) \left(1 - \hat{d}(b^*_1, b^*_2, y_3) \right) \right],$$

$$u'(c^*_2) \left[q_2(b^*_1, b^*_2) + b^*_2 \frac{\partial q_2(b^*_1, b^*_2)}{\partial b_2} \right] = E \left[u'(c^*_3) \left(1 - \hat{d}(b^*_1, b^*_2, y_3) \right) \right] - u'(c^*_1) b^*_1 \frac{\partial q_1(b^*_1, b^*_2)}{\partial b_2}. \quad (3)$$

The government’s period-2 optimal choice satisfies

$$u'(c^*_2) \left[q_2(b_1, b_2) + b_2 \frac{\partial q_2(b_1, b_2)}{\partial b_2} \right] = E \left[u'(c^*_3) \left(1 - \hat{d}(b_1, b_2, y_3) \right) \right]. \quad (4)$$

Since equation (4) is different from (3), the allocation that maximizes the government’s period-1 expected utility cannot be attained without a fiscal rule (if the period-1 government chooses b^*_1, the period-2 government will not choose b^*_2).

In contrast, the allocation that maximizes the government’s period-1 expected utility can trivially be attained with a fiscal rule that forces the period-2 government to choose b^*_2 (with the period-1 government choosing b^*_1).

The role for a fiscal rule arises because the rule eliminates the debt dilution problem. With long-term debt, period-2 debt issuances dilute the price of period-1 debt ($q_1(b_1, b_2)$ is decreasing with respect to b_2 in equation 2). The allocation that maximizes the government’s period-1 expected utility recognizes that the price of the debt issued in period 1 is negatively affected by debt issuances in period 2 (last term of the right-hand side of equation 3). But this is not a cost for the government acting in period-2 (equation 4). Consequently, in the absence of a fiscal rule, the period-2 government overbears exposing the period-1 government to excessive default risk.

9Note that the allocation that maximizes the government’s period-1 expected utility could be attained with a debt limit $b_2 \leq b^*_2$ or a limit to the price at which the government can sell debt $q_2(b^*_1, b^*_2)$ as both these limits will make the period-2 government choose b^*_2.9
(the optimal default rule in equation 1 implies that the default probability is increasing with respect to b_2).

Summing up, this section illustrated how while there is no role for fiscal rules with one-period debt (proposition 1), a fiscal rule is necessary to implement the optimal allocation with long-term debt (the empirically relevant case given the debt duration observed in the data). We next study a richer model that allows us to draw lessons for the design of fiscal rules and quantify gains from introducing fiscal rules. In particular, we show that rules limiting the sovereign default premium are more robust than rules limiting debt levels.

3 The quantitative model

We first present the benchmark model without fiscal rules and we later discuss how we model fiscal rules.

3.1 The no-rule benchmark

The domestic economy lives for an infinite number of periods and is populated by a continuum of firms and a continuum of households. Aggregate output $y = e^z l$ is determined by an aggregate productivity shock z and labor hours l. The logarithm of domestic productivity follows an AR(1) process:

$$z_t = (1 - \rho) \mu_z + \rho z_{t-1} + \varepsilon_t,$$
with $\varepsilon_t \sim N(0, \sigma^2_\varepsilon)$.

Each period, the representative household makes labor-leisure decisions by solving

$$\max_{l} u(c, g, 1 - l)$$
subject to
$$c = e^z (1 - \tau) l,$$
where u denotes the household’s utility function, c denotes private consumption, g denotes the public good provided by the government, and l denotes labor hours, τ denotes the labor tax rate, and thus $e^{\tau} (1 - \tau)$ denotes the after tax wage. The government finances g with the distortionary labor tax τ and with debt issuances.

The government’s objective is to maximize the present expected discounted value of future utility flows of the representative agent in the economy, namely

$$
E_t \sum_{j = t}^{\infty} \beta^{j-t} u(c_j, g_j, 1 - l_j),
$$

where E denotes the expectation operator, and β denotes the subjective discount factor.

As in Hatchondo and Martinez (2009), we assume that a bond issued in period t promises an infinite stream of coupons, with coupon payments decreasing at a constant rate δ. In particular, a bond issued in period t promises to pay one unit of the good in period $t + 1$ and $(1 - \delta)^{s-1}$ units in period $t + s$, with $s \geq 2$. The value of δ is calibrated to match the observed duration of sovereign debt in the data. In order to avoid increasing the computation cost, we do not allow the government to choose the maturity of sovereign debt. Studies with endogenous maturity find that in spite of the debt dilution problem, the government chooses to issue long-term debt to mitigate rollover risk (Arellano and Ramanarayanan, 2010; Hatchondo and Martinez, 2013; Hatchondo et al., 2014a). Furthermore, mitigating the dilution problem would allow the government to increase the average duration of sovereign debt in order to lessen rollover risk (Hatchondo et al., 2014a). This would be an additional benefit from introducing fiscal rules that we do not study.

Each period, the government makes two decisions. First, it decides whether to default. Second, it chooses the number of bonds that it purchases or issues in the current period.

As previous studies of sovereign default we assume that the cost of defaulting is not a function of the size of the default. Thus, as in Arellano and Ramanarayanan (2010), Chatterjee and Eyigungor (2012) and Hatchondo and Martinez (2009), when the government defaults, it does so on all current and future debt obligations. This is consistent with the behavior of defaulting governments in reality. Sovereign debt contracts often contain an acceleration clause and a cross-default clause. The first clause allows creditors to call the debt they hold in case
the government defaults on a payment. The cross-default clause states that a default on any
government obligation also constitutes a default on the contracts containing that clause. These
classes imply that after a default event, future debt obligations become current.

There are two costs of defaulting in the model. First, a defaulting sovereign is excluded from
capital markets. Second, if a country has defaulted on its debt, it faces a productivity loss of
$\phi(z)$ in every period in which it is excluded from capital markets.

Following Hatchondo et al. (2014a), we capture in a simple fashion the positive recovery rate
of debt in default observed in the data (see Cruces and Trebesch, 2013, and Benjamin and Wright,
2008). Starting from the first period after the government defaults, the government is presented
with the opportunity to end the default with time-invariant probability ξ. In order to end the
default, the government needs to exchange the bonds in default with bonds that promise to pay
$\alpha < 1$ times the payments promised by the exchanged bonds. The government may choose to
not restructure the debt and continue in default, in which case its debt level will still be α times
the debt level before the restructuring opportunity (thus, the government can obtain a lower
recovery rate at the expense of a longer default period). During default, government’s payment
obligations grow at the interest rate r.

In a model with long-term debt, a positive recovery rate may give the government incen-
tives to issue large amounts of debt before defaulting, which would allow for a large increase in
consumption (Hatchondo et al., 2014b). Following Hatchondo et al. (2014a), in order to avoid
this problem, we assume that the government cannot issue bonds at a price lower than q (the
secondary market price of government debt can still be lower than q). We choose a value of q
that eliminates consumption booms before defaults. The chosen value is never binding in the
simulations.

Bonds are priced in a competitive market inhabited by a large number of foreign investors. Thus, bond prices are pinned down by the foreign investors’ zero-expected-profit condition. For-
eign investors are risk-neutral and discount future payoffs at the rate r.

We focus on Markov Perfect Equilibrium. That is, we assume that in each period, the
government’s equilibrium default and borrowing strategies depend only on payoff-relevant state
variables. We solve for the equilibrium of the finite-horizon version of our economy, and we
increase the number of periods of the finite-horizon economy until value functions and bond prices for the first and second periods of this economy are sufficiently close. We then use the first-period equilibrium functions as an approximation of the infinite-horizon-economy equilibrium functions.

3.2 Recursive formulation of the no-rule benchmark

Let \(b \) denote the number of outstanding coupon claims at the beginning of the current period. Let \(V \) denote the value function of a government that is not currently in default. This function satisfies the following functional equations:

\[
V(b, z) = \max \left\{ V^R(b, z), V^D(b, z) \right\},
\]

where \(V^R \) denotes the continuation value when the government repays its debt obligations, and \(V^D \) denotes the continuation value when the government declares a default.

If the government repays its current debt obligations, it has to decide how many bonds to issue in the current period, the tax rate (\(\tau \)), and the level of government expenditures (\(g \)). The value function under repayment satisfies the following functional equation:

\[
V^R(b, z) = \max_{b' \geq 0, c \geq 0, g \geq 0, \tau \geq 0} \left\{ u(c, g, 1 - l) + \beta \mathbb{E}_{z'} V(b', z') \right\},
\]

subject to

\[
g = \tau e^z l - b + q(b', z) [b' - (1 - \delta)b],
\]

\[
c = (1 - \tau)e^z l,
\]

\[
l = \hat{l}(z, \tau, c, g)
\]

\[
q(b', z) \geq q \text{ if } b' > b,
\]

where \(b' - (1 - \delta)b \) denotes current debt issuances, \(q \) denotes the price of a bond at the end of a period, and \(\hat{l} \) denotes the equilibrium labor hours supplied by households (which solves problem 6).

The government cannot issue debt while it remains in default but continues to decide the tax rate and the level of government expenditures. The value function when the government is in
default satisfies the following functional equation:

\[V^D(b, z) = \max_{c \geq 0, g \geq 0, \tau \geq 0} u(c, g, 1-l) + \beta \mathbb{E}_{z'|z} \left[(1-\xi)V^D(b(1+r), z') + \xi V(ab(1+r), z') \right], \quad (10) \]

subject to

\[
\begin{align*}
g &= \tau [e^\gamma - \phi(z)] l, \\
c &= (1-\tau) [e^\gamma - \phi(z)] l, \\
l &= \hat{l} (e^\gamma - \phi(z), \tau, c, g).
\end{align*}
\]

The assumption that bond holders price bonds in competitive markets implies that

\[q(b', z)(1+r) = \mathbb{E}_{z'|z} \left[\hat{d}' (b', \hat{z}') q^D(b', z') + \left[1 - \hat{d}' (b', \hat{z}') \right] \left[1 + (1-\delta) q(b(b', z'), z') \right] \right], \quad (11) \]

where \(\hat{d} \) denotes the government’s default strategy and takes a value of 1 when the government defaults and a value of 0 when the government pays, \(q^D \) denotes the price of a bond in default, and \(\hat{b} \) denotes the debt policy rule. The price of a bond in default is given by

\[q^D(b', z)(1+r) = \mathbb{E}_{z'|z} \left[(1-\xi)(1+r)q^D(b'(1+r), z') + \xi\alpha \left[d' q^D(ab', z') + (1-d') \left[1 + (1-\delta) q(b'', z') \right] \right] \right], \]

where \(d' = \hat{d} (ab', z') \), and \(b'' = \hat{b}(ab', z') \).

3.3 Equilibrium definition for the no-rule benchmark

A Markov Perfect Equilibrium is characterized by

1. a set of value functions \(V, V^R, \) and \(V^D \),
2. rules for default \(\hat{d} \), borrowing \(\hat{b} \), government expenditure \(\{\hat{g}^R, \hat{g}^D\} \), taxes \(\{\hat{\tau}^R, \hat{\tau}^D\} \), and consumption \(\{\hat{c}^R, \hat{c}^D\} \), and
3. a bond price function \(q \),

such that:
(a) given a bond price function q; the policy functions $\hat{d}, \hat{b}, \hat{g}^R, \hat{g}^D, \hat{r}^R, \hat{r}^D, \hat{c}^R$, and the value functions V, V^R, V^D solve the Bellman equations (7), (8), and (10).

(b) given \hat{d} and \hat{b}, the bond price function q satisfies equation (11).

3.4 Fiscal rules

We model fiscal rules as limits to either the debt level or the maximum sovereign premium the government can pay when it increases its debt level. An economy with a debt limit rule features an additional constraint $\theta' \leq \theta$ imposed to functional equation (8).

Since imposing a maximum sovereign premium is equivalent to imposing a minimum sovereign bond price, the sovereign premium limit simply implies increasing the minimum price at which the government can sell bonds while increasing its debt level ($\frac{q}{b}$) in equation (9).10 Note that q only limits the price at which the government can sell bonds while increasing its debt level. That is, the government can still sell at a price lower than q bonds promising to pay up to $(1 - \delta)b$ next period in order to rollover debt payments that are due this period. Furthermore, even when the government does not issue debt a price lower than q, the price of debt issued in previous periods may be lower than q. Thus, one can observe sovereign premiums higher than the limit imposed in the fiscal rule.

4 Benchmark calibration

Table 1 presents the benchmark calibration. A period in the model refers to a quarter. We use a peripheral European economy (Spain) to discipline the parameter values corresponding to the

10In order to compute the sovereign premium implicit in a bond price, we first compute the yield i an investor would earn if it holds the sovereign bond to maturity (forever) and no default is declared. This yield satisfies

$$q_t^i = \sum_{j=1}^{\infty} \frac{(1 - \delta)^{j-1}}{(1 + i)^j}.$$

The sovereign premium is the difference between the yield i and the risk-free rate r.

15
Domestic income autocorrelation coefficient ρ 0.97 Spain 1960Q1-2013Q1
Standard deviation of domestic innovations σ_ϵ 1.04% Spain 1960Q1-2013Q1
Mean productivity μ_y $(-1/2)\sigma_\epsilon^2$ Mean productivity level = 1
Risk aversion of private consumption γ 2 Prior literature
Inverse of labor elasticity ω 0.6 Neumeyer and Perri (2005)
Weight of labor hours ψ $2.48/(1 + \omega)$ Neumeyer and Perri (2005)
Recovery rate of debt in default α 0.35 Cruces and Trebesch (2013)
Minimum issuance price without fiscal rule q 0.3 Never binding in simulations
Risk-free rate r 0.01 Prior literature
Duration of defaults ξ 0.083 Calibrated to fit targets
Discount factor β 0.97 Calibrated to fit targets
Duration of long-term bond δ 0.0275 Calibrated to fit targets
Income loss while in default λ_0 -0.731 Calibrated to fit targets
Income loss while in default λ_1 0.9 Calibrated to fit targets
Risk aversion of public consumption γ_g 3 Calibrated to fit targets
Weight of public consumption π 0.182 Calibrated to fit targets

Table 1: Parameter values.

sovereign borrower. Aguiar and Gopinath (2007) show that the cyclical behavior of the Spanish economy resembles the cyclical behavior of small open developing economies. As Hatchondo et al. (2010), we solve the model numerically using value function iteration and interpolation.\footnote{We use linear interpolation for endowment levels and spline interpolation for asset positions. The algorithm finds two value functions, V^R and V^D, and the bond price q.}

We estimated equation (5) using quarterly real GDP data from Spain ranging from the first quarter of 1960 to the first quarter of 2013. As in Cuadra et al. (2010), we assume that preferences are described by the following function:

$$u(c, g, l) = \pi \frac{g^{1-\gamma_g}}{1 - \gamma_g} + (1 - \pi) \frac{c - \psi l^{1+\omega}/(1 + \omega)]^{1-\gamma}}{1 - \gamma}.$$

\footnote{We use linear interpolation for endowment levels and spline interpolation for asset positions. The algorithm finds two value functions, V^R and V^D, and the bond price q.}
We assume that domestic households have a coefficient of relative risk aversion on private consumption (γ) of 2. The inverse of the labor elasticity (ω) and the weight of labor hours on the utility (ψ) are taken from Neumeyer and Perri (2005), who study business cycles in small open economies. As explained below, the weight of public consumption in the utility (π) and the risk aversion for public consumption (γ_g) are calibrated to fit targets from the data.

We assume an annual risk free rate of 4 percent, which is standard in the literature. The recovery rate of debt in default (α) is assumed to take a value of 0.35. This is the average recovery rate reported by Cruces and Trebesch (2013) for debt restructurings with a reduction in the face value.

We assume that the minimum issuance price for long-term debt (q) equals 30% of the mean default-free price of long-term bonds. This constraint does not bind in the simulations. The yield to maturity implied by the assumed value of q is higher than the maximum yield to maturity at which any European government issued debt since 2008 (see Trebesch and Wright, 2013).

As in Arellano (2008) and Chatterjee and Eyigungor (2012), we assume that it is proportionally more costly to default in good times. They show that this property is important in accounting for the dynamics of the sovereign debt interest rate spread. Mendoza and Yue (2012) show that this property of the cost of defaulting arises endogenously in a setup in which defaults affect the ability of local firms to acquire a foreign intermediate input good. Thus, we assume $\phi(z) / \exp(z)$ is increasing in z. In particular, we assume a quadratic TFP loss function during a default episode $\phi(z) = \max \{ \lambda_0 e^{z} + \lambda_1 e^{2z}, 0 \}$.

There are seven remaining parameter values that we calibrate to match seven moments in the data from Spain between 2008 and 2013: the probability with which a government can exit a default (ξ), the rate of decay of coupon obligations ($1 - \delta$), the two parameters that define the productivity cost of defaulting (λ_0, λ_1), the discount factor (β), the weight of public consumption in the utility (π), and the risk aversion for public consumption (γ_g), are calibrated to match: (i) the average time a defaulting government remain excluded from capital markets, (ii) the average duration of government debt, (iii) the level of government debt, (iv) the average long-term interest rate spread, (v) the volatility of private consumption relative to the volatility of public consumption.

12We thank Christoph Trebesch and Mark Wright for sharing their data with us.
income, (vi) the ratio of government consumption to private consumption \((g/c)\), and (vii) the volatility of government consumption relative to the volatility of income. We target an average exclusion from capital markets of three years after a default (we find that in the simulations, the government chooses to exit a default every time it has the opportunity of doing so). This is the estimate obtained by Dias and Richmond (2007) for the median duration of exclusion using their partial access definition of re-entry.\(^ {13} \) A three-year exclusion period is also in the range of estimates reported by Gelos et al. (2011). For the last six targets, we use data from Spain between 2008 to 2013. We choose the 2008-2013 period because the interest rate spread paid by the Spanish government was around zero between 1999 and 2007, and before the Euro the Spanish government issued debt denominated in local currency.

5 Results

For simplicity we first study the effects of introducing fiscal rules in economies that initially are not indebted. We later present results for indebted economies. This section is organized as follows. First, we show that the benchmark model (without rules) can mimic salient features of business cycles in emerging economies. Second, we show that the government can benefit from committing to a debt or spread limits. Third, we show that debt limits are not robust: imposing the debt limit that is optimal for the benchmark calibration may fail to produce welfare gains in other economies. Forth, we show that in contrast to the optimal debt limit for the benchmark economy, the optimal spread limit for the benchmark economy still produces welfare gains in other economies. Fifth, we discuss whether fiscal rules should allow for larger fiscal deficits in bad times (giving room for more countercyclical fiscal policy). Sixth, we show that assuming that the government is shortsighted implies stricter fiscal rules and larger welfare gains. Seventh, we show that gains from imposing fiscal rules could be even larger for indebted economies. Eighth, we discuss a no-default fiscal rule.

\(^ {13} \) According to Dias and Richmond (2007) definition of partial market access, a sovereign in default is said to regain access to capital markets in the first year in which there are positive transfers (in the form of bond or commercial bank loans) to the domestic public or private sector.
Debt / mean annual income (in %) & 61.8 & 61.5 \\
Debt duration (years) & 6.0 & 6.0 \\
Annual spread (in %) & 2.0 & 2.0 \\
Mean g/c (in %) & 36.5 & 36.5 \\
$\sigma(g)/\sigma(y)$ & 0.9 & 0.9 \\
$\sigma(c)/\sigma(y)$ & 1.1 & 1.1 \\

Table 2: Simulations without a fiscal rule. The standard deviation of a variable x is denoted by $\sigma(x)$. The second column is computed using data from Spain. The logarithm of private consumption (c) and income (y) were de-trended using the Hodrick-Prescott filter with a smoothing parameter of 1600. We report deviations from the trend. The debt level in the simulations is calculated as the present value of future payment obligations discounted at the average risk-free rate, i.e., $b(\delta + r)^{-1}$. We report the annualized spread.

5.1 Simulations without a fiscal rule

Table 2 shows that the model without a fiscal rule approximates well moments in the data. Since there has not been a sovereign default in Spain in recent years, we report results for simulated sample paths without defaults. We report the mean of the value of each moment in 1,000 simulation samples. We take the last 74 periods (quarters) of samples in which no default occurs in the last 100 periods.

Figure 1 shows that it is optimal for the government to choose a procyclical fiscal policy. That is, when aggregate output is lower, the tax rate tends to be higher, and the level of public good provision tends to be lower. When income is low, borrowing is more costly because it increases more the probability of default (and future default decisions are not optimal from an ex-ante perspective). Thus, the government borrow less, increases the tax rate, and lowers expenditure. This is consistent with data from Spain (including fiscal adjustment during the current crisis) and other small open economies. For instance, Végh and Vuletin (2011) finds that the three industrial countries with the most procyclical fiscal policy in their sample are Spain, Portugal, and Greece, countries facing significant sovereign risk.
5.2 Fiscal rules

In this subsection we discuss the optimal debt-limit and spread-limit fiscal rules for our benchmark economy. That is, we search for the debt limit that maximizes welfare when imposed to the no-rule economy with the benchmark parameterization. We assume there is no initial debt, and TFP is at its trend level.

We find that the optimal debt ceiling is equal to 52.5 percent of the mean annual output in the benchmark no-rule economy. The optimal spread limit is 0.45 percent. That is, the government cannot increase its debt level while paying a sovereign premium higher than 0.45 percent. Table 3 shows that the preferred debt and spread limits reduces the default frequency and, consequently, the sovereign spread.

As discussed in Section 2, the government benefits from implementing a fiscal rule because the rule mitigates the debt dilution problem. Figure 2 illustrates how a fiscal rule creates new borrowing opportunities for the government. On the one hand, the fiscal rule limits the amount the government can promise to pay (i.e., its debt level). On the other hand, the rule also limits future borrowing, enabling the government to pay a lower interest rate for any chosen debt level.

Table 3 also shows that imposing a spread-limit rule produces welfare gains comparable to the ones implied by imposing a debt limit. For a given economy (i.e., for a given set of parameter
values), the difference between the limit to overborrowing imposed with a fixed debt ceiling and the one imposed with a fixed spread ceiling is that the latter is a state-contingent limit to the debt level. Spreads are higher during economic downturns (when productivity and, thus, the cost of defaulting are lower). Consequently, a spread limit imposes a tighter constraint on debt increases during economic downturns. This difference between debt and spread ceilings could be eliminated by imposing limits that change over the business cycle, as many countries have done (Budina et al., 2012; IMF, 2009; Schaechter et al., 2012). Therefore, we do not want to emphasize this difference (Subsection 5.5 discusses fiscal rules imposing limits that change over the business cycle). We want to emphasize instead advantages of spread limits arising from their robustness.

5.3 Robustness of debt limits

In this subsection we investigate whether the optimal debt limit for one economy still produces benefits when imposed to a different economy. This issue is important because political constraints may lead to supranational fiscal rules that impose common debt limits across countries

<table>
<thead>
<tr>
<th></th>
<th>Without rule</th>
<th>Debt rule (52.5%)</th>
<th>Spread rule (0.45%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Debt / mean annual income (in %)</td>
<td>61.5</td>
<td>54.9</td>
<td>59.4</td>
</tr>
<tr>
<td>Annual spread (in %)</td>
<td>2.0</td>
<td>0.5</td>
<td>1.0</td>
</tr>
<tr>
<td>Mean g/c (in %)</td>
<td>36.5</td>
<td>37.1</td>
<td>36.9</td>
</tr>
<tr>
<td>$\sigma(g)/\sigma(y)$</td>
<td>0.9</td>
<td>0.9</td>
<td>1.0</td>
</tr>
<tr>
<td>$\sigma(c)/\sigma(y)$</td>
<td>1.1</td>
<td>1.1</td>
<td>1.1</td>
</tr>
<tr>
<td>Defaults per 100 years</td>
<td>2.9</td>
<td>0.8</td>
<td>1.1</td>
</tr>
<tr>
<td>Welfare gain (in %)</td>
<td>1.4</td>
<td>1.4</td>
<td>1.1</td>
</tr>
</tbody>
</table>

Table 3: Simulations with fiscal rules. We measure welfare gains as the constant proportional change in consumption of the private good that would leave domestic consumers indifferent between continuing living in the benchmark economy (without a fiscal rule) and moving to an economy with a fiscal rule.
Figure 2: Annualized spread asked by lenders for different levels of debt. The figure assumes the average TFP shock.

as happened, for instance, with the Maastricht Treaty. Furthermore, since there is uncertainty about parameter values, one would like policy recommendations that come out of the model to be robust to changes of these values.

Figure 3 shows that the 52.5 percent debt limit that maximizes welfare in the benchmark economy may fail to produce welfare gains in economies with different levels of debt tolerance. As discussed in the introduction, it is well known that even similar economies in the same region differ greatly in the level of debt tolerance the display, which may also change widely over time. Thus, it seems relevant to study how a given fiscal rule would perform in economies with different levels of debt tolerance. We change the assumed level of debt tolerance in two ways: (i) we increase the average number of years a government is excluded from capital markets (and thus has lower productivity) after defaulting, and (ii) we increase the recovery rate for debt in default (all other parameter values are the ones in the benchmark parameterization). Increasing the exclusion duration increases the cost of defaulting and thus allows the government to pay a lower interest rate for any borrowing level. This makes the government choose higher debt levels. Increasing the recovery rate lowers the lenders’ losses after a default, and thus also allows the government to pay a lower interest rate for any borrowing level and makes the government
choose higher debt levels. Figure 4 shows that indeed the average debt level increases and the average spread decreases with the assumed exclusion duration or recovery rate. The figure shows that overall, we are studying economies with average debt levels between 30 and 90 percent of average trend output and average sovereign spread levels between 1.5 and 2.8 percent. This covers a range of plausible parameterizations of the model for European economies.\footnote{In previous working paper versions of this work we present variations of the model (e.g., endowment economies, zero recovery rates after default) and parameterizations more appropriate for emerging economies (e.g., much higher sovereign spreads and lower debt levels), and we show that all the conclusions presented in this paper are valid. In particular, it is always true that fiscal rules limiting the sovereign premium are more robust than fiscal rules limiting debt levels.}

Figure 3: Welfare gains from imposing the same fiscal rule in economies with different levels of debt tolerance. The debt rule is a debt limit equal to 52.5 percent of the mean level of annual income. The spread rule does not allow the government to increase its debt level while paying a sovereign spread higher than 0.45 percent. The exclusion duration is the average number of years a government is excluded from capital markets (and thus has lower productivity) after defaulting.

Intuitively, in economies with very low debt tolerance the 52.5 percent debt limit is rarely binding and thus does not have significant effects. In contrast, in economies with very high debt tolerance the 52.5 percent debt limit is may be too tight, lowering welfare gains and, for sufficiently high levels of debt tolerance, creating welfare losses. Indeed, Figure 4 shows that the optimal debt limit increases with the assumed level of debt tolerance. Thus, while the results in Subsection 5.2 illustrate the potential benefits from imposing debt limits, this subsection
Figure 4: Average debt and spread levels and optimal debt and spread limits in economies with different levels of debt tolerance. The exclusion duration is the average number of years a government is excluded from capital markets (and thus has lower productivity) after defaulting.

Figures 3 and 4 illustrate risks of doing so.

5.4 Robustness of spread limits

Figure 3 shows that, in contrast with the optimal debt limit for the benchmark economy, the optimal spread limit for the benchmark economy produces substantial welfare gains when imposed to economies with different levels of debt tolerance. Figure 4 further illustrates the greater robustness of spread limits. The figure shows that the economies with different debt tolerance we study differ greatly in the average spread observed without a fiscal rule: the average spread
in the lowest-tolerance economy is almost 1.5 percentage points higher than the average spread in the highest tolerance economy. However, the optimal spread limit is close to 0.5 percent for all these economies. This shows a crucial difference between fiscal rules targeting debt and spread levels.

That spread limits are more robust than debt limits is intuitive. Default risk imposes endogenous borrowing constraints to the government. The government benefits from higher debt levels as long as these levels do not imply higher sovereign risk. Gains from imposing fiscal rules arise because rules allow the government to pay a lower spread by mitigating the debt dilution problem. Spread limits achieve this directly, while allowing for higher debt levels in economies with more debt tolerance. Thus, optimal spread limits are not very dependent on the level of debt tolerance. In contrast, since optimal debt limits attack the excessive exposure to sovereign risk indirectly by targeting directly debt levels, they are highly dependent on the level of debt tolerance.

5.5 Fiscal rules and the cyclicality of fiscal policy

We next discuss whether fiscal rules should allow for a larger government deficit in bad times. This is a central element of discussions about fiscal rules in policy circles. In particular, our analysis allows us to shed light on the desirability of “escape clauses” that soften fiscal rules during recessionary periods. These clauses are present in many fiscal rules and are often implemented with the assistance of independent fiscal bodies (Budina et al., 2012; IMF, 2009; Schaechter et al., 2012). Our findings serve as a warning against promoting these clauses in the presence of sovereign risk: promoting a countercyclical fiscal policy reduces the volatility of consumption but at the expense of increasing default risk.

We focus on rules imposing debt limits. Since the sovereign spread changes with the state of the economy, focusing on debt limits instead of on spread limits makes more transparent the discussion of how the limit imposed by the rule should be allowed to change over the business cycle. As in previous subsections, for simplicity, we focus on an economy that initially is not indebted.
We assume the government can commit to a debt limit that is a linear function of the current total factor productivity shock (assuming the debt limit is a function of output instead of productivity would allow the government to manipulate the limit with the tax rate; complicating the interpretation of results):

\[b(z) = \bar{y}[a_0 + a_1(e^{z} - e^\mu z)], \tag{12} \]

where \(\bar{y} \) is the average output level in the simulations of the benchmark economy. We search for the optimal coefficients of the debt limit specified in equation (12).

We find that for the benchmark calibration the best rule does not allow the debt limit to change over the business cycle: the optimal debt limit is the one discussed in Subsection 5.2, which corresponds to \(a_1 = 0 \) and \(a_0 = 2.1 \). Table 4 presents business cycle statistics from simulations of economies with rules that imply an average limit of 52.5 percent but allow the limit to change with the current total productivity shock. The table shows that a fiscal rule that better accommodates a more countercyclical fiscal policy by allowing the debt limit to increase during economic downturns (\(a_1 = -1 \)) is successful in reducing the volatility of public and private consumption. However, this occurs at the expense of increasing the default frequency. Since the cost of defaulting is lower during economic downturns (as reflected in countercyclical sovereign spreads), having higher debt levels during downturns imply a higher default frequency. Table 4 shows that this happens in spite of the average debt level being lower with \(a_1 = -1 \). Consistently, allowing for relatively lower debt ceilings during downturns (\(a_1 = 1 \)) reduces the default frequency at the expense of increasing consumption volatility.

Subsection shows that in the presence of default risk, it may be optimal for a government to sequentially choose a procyclical fiscal policy. This subsection goes further and show that, even when the government can limit future policy choices with a fiscal rule, it may not want to promote a countercyclical policy with this rule.

5.6 Shortsighted governments

In this subsection we discuss the extent to which our findings would change if we assume that governments are shortsighted. Shortsighted governments (for instance, because of political polar-
Table 4: Simulation results with a debt limit $b(z) = \bar{y}[a_0 + a_1(e^z - e^{\mu z})]$, for $a_0 = 2.1$.

<table>
<thead>
<tr>
<th></th>
<th>$a_1 = -1$</th>
<th>$a_1 = 0$</th>
<th>$a_1 = 1$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Debt / mean annual income (in %)</td>
<td>53.3</td>
<td>54.9</td>
<td>54.0</td>
</tr>
<tr>
<td>Annual spread (in %)</td>
<td>0.8</td>
<td>0.5</td>
<td>0.4</td>
</tr>
<tr>
<td>Mean g/c (in %)</td>
<td>37.0</td>
<td>37.1</td>
<td>37.2</td>
</tr>
<tr>
<td>$\sigma(g)/\sigma(y)$</td>
<td>0.8</td>
<td>0.9</td>
<td>1.1</td>
</tr>
<tr>
<td>$\sigma(c)/\sigma(y)$</td>
<td>1.0</td>
<td>1.1</td>
<td>1.1</td>
</tr>
<tr>
<td>Defaults per 100 years</td>
<td>1.2</td>
<td>0.8</td>
<td>0.6</td>
</tr>
<tr>
<td>Welfare gain (in %)</td>
<td>0.8</td>
<td>1.4</td>
<td>1.2</td>
</tr>
</tbody>
</table>

ization or political turnover) are typically mentioned as a justification for fiscal rules. Previous subsections show that fiscal rules can be beneficial even without shortsighted government. This subsection shows that assuming shortsighted governments increases the gains from introducing fiscal rules.

To gauge the role of government’s myopia we assume that the fiscal rule is chosen by a planner that discount the future with a β higher than the one governments use each period when they choose their fiscal policy. For instance, one may think that the political coalition necessary to establish a fiscal rule in the constitution requires a majority that mitigates the effects of political polarization when discounting future outcomes (for a discussion of the effects of polarization on fiscal dynamics see Azzimonti, 2011). We repeat the exercise proposed in Subsection 5.2 and find the optimal debt limit when there is no initial debt and an the TFP is at its mean level.

Table 5 presents the optimal fiscal rule chosen by planners who are more patient than shortsighted governments. As expected, the rule chosen giving more weight to future periods imposes lower debt limits. The welfare gain from introducing a fiscal rule may be much higher when we assume the rule corrects government’s myopia.
<table>
<thead>
<tr>
<th>Planner’s discount factor</th>
<th>0.97</th>
<th>0.975</th>
<th>0.980</th>
<th>0.985</th>
</tr>
</thead>
<tbody>
<tr>
<td>Optimal debt limit (% of average output in the no-rule economy)</td>
<td>52.5</td>
<td>49.5</td>
<td>45.0</td>
<td>37.5</td>
</tr>
<tr>
<td>Welfare gain</td>
<td>1.4%</td>
<td>1.5%</td>
<td>1.9%</td>
<td>2.8%</td>
</tr>
</tbody>
</table>

Table 5: Optimal fiscal rule with shortsighted governments. The government’s discount factor is 0.97 in all cases.

5.7 Indebted economies

This subsection discusses fiscal rules for indebted economies. We focus on debt-limit rules. Imposing a debt reduction to an indebted economy may imply a costly transition. We show that, nevertheless, imposing fiscal rules in indebted economies produce substantial welfare gains. In order to lower the number of rules we have to study, we restrict attention to rules imposing limits that do not depend on the current productivity shock.

This subsection assumes that when the government introduces a fiscal rule it announces that the debt limit b will be imposed every period starting in period T. When the rule is announced, the government’s maximization problem is not recursive until T. We solve the problem backwards from the first period in which it becomes recursive. We search for the combination of b and T that maximizes welfare. Delaying the imposition of fiscal rule targets is a common way of dealing with transitions. For instance, Germany amended its constitution in 2009 to introduce a fiscal rule to be enforced after 2016 for the federal government and after 2020 for regional governments. Similarly, Spain amended its constitution in 2011 to introduce a fiscal rule to be enforced after 2020.

We assume the initial debt level is the 62 percent of the average output in the benchmark no-rule economy (the average debt level for that economy). We consider different levels of the productivity shock for the period in which the rule is introduced.

We find that initial productivity level does not significantly affect the rule to which the government would like to commit: in all cases welfare is maximized with a debt limit of 60 percent (of the average output in the benchmark no-rule economy) and a transition of between 5 and 8 quarters (with a longer transition for a lower initial productivity). Welfare gains from
introducing the fiscal rule are between 2.4 and 3.0 percent, depending on the initial level of TFP.

Figure 5 presents the mean spread level after the optimal rule announcement for transition paths in which the government does not default. The figure shows the optimal fiscal rule implies a substantial reduction of the spread, even though the debt limit (60 percent) is very close to the initial debt level (62 percent). This happens because part of the cost of defaulting is losing access to capital markets and this cost is higher when capital markets are more attractive. Since the fiscal rule makes capital markets more attractive (by mitigating the debt dilution problem thus allowing the government to borrow at a lower rate; Figure 2), the rule increases the cost of defaulting allowing the government to borrow more (for a given interest rate). Figure 5 also shows that the spread declines immediately with the rule announcement (before any debt reduction), reflecting the expectation of future debt reductions. This implies that the level of indebtedness could be reduced without any fiscal sacrifice (by not expending all the resources saved in interest payments).

![Figure 5: Spread during transitions that follow the announcement of the optimal debt-limit rule, for samples without defaults.](image)

5.8 A no-default fiscal rule

In this subsection we discuss a fiscal rule that would force the government to pay its debt, eliminating sovereign defaults. Since the dynamic inefficiencies that explain gains from introducing a fiscal rule arise because of default risk, it may seem natural to attack these inefficiencies by eliminating the possibility of default. We show that, however, committing to a rule that eliminates the possibility of default may be very difficult, as the temptation of abandoning such rule would be very large. We also show that, in contrast, the temptation of abandoning a rule limiting the level of sovereign debt or spread is much smaller. This is consistent with the growing number of countries adopting rules that limit their debt level (both directly and through limits to the fiscal deficit) and the rarity of rules intending to eliminate the possibility of defaulting (the IMF fiscal rule database present a thorough description of fiscal rules around the world; see Budina et al., 2012; IMF, 2009; Schaechter et al., 2012).

In order to study the economy with the no-default fiscal rule we introduce an exogenous borrowing limit. Recall that in our model borrowing is endogenously limited by the possibility of default. A fiscal rule eliminating this possibility removes this endogenous borrowing constraint, creating the need for an exogenous borrowing limit. In particular, we assume that in the no-default economy, the government cannot borrow more than fifteen times a low (one standard deviation below the mean) output in the benchmark no-rule economy.

We also change the value of α, which determines the debt reduction the government obtains when defaulting. It is not obvious which value would be reasonable for the high debt levels in the no-default economy. We assume a defaulting government obtain a debt reduction of between 88 and 100 percent and find that this assumption does not change significantly the cost of keeping the fiscal rule. All other parameter values are as in the benchmark calibration. This implies a mean debt level in the simulations that is almost four times the annualized output. Given such high debt levels, the 88 percent debt reduction already implies very high post-default debt levels. Furthermore, assuming a lower debt reduction would force us to solve the default model for a very wide range of debt levels, which would be computationally costly.

In order to compute the cost of continuing with a fiscal rule (or the temptation of abandoning
the rule), we assume abandoning the rule would imply a one-period TFP loss (that does not affect the distribution of TFP in future periods). We find the TFP loss implied by abandoning the rule that would make the representative consumer indifferent between keeping the rule and abandon it forever. For all states in the simulations of the economy with the fiscal rule, we compute the output loss implied by this TFP decline in the no-rule economy.

We find that the temptation of abandoning the no-default fiscal rule would be very large: the maximum cost of continuing with that rule in the simulations is equivalent to an output loss of between 12.3 and 12.4 percent depending of the assumed debt reduction obtained by the defaulting government (the median loss is between 11.5 and 11.6 percent). This is intuitive. If a no-default rule removes the borrowing constraint implied by default risk, a government eager to borrow would accumulate a high level of debt, for which the temptation of abandoning the rule and defaulting would be very large. Therefore, it is difficult to imaging that a government could credibly commit to a no-default rule.

In contrast, the temptation to abandon a fiscal rule limiting either the sovereign debt or spread level is much smaller, if it exists at all. We repeat the exercise described above for the benchmark calibration and the optimal debt and spread limits found for this calibration (a 52.5 percent debt limit and a 0.45 percent spread limit). The maximum cost of continuing with these rules is negative (equivalent to a -3.4 percent output loss for the debt-limit rule an a -1.4 percent loss for the spread-limit rule). That is, the government would never want to abandon these rules and go back to the no-rule economy.

The government would be willing to abandon the debt-limit or spread-limit fiscal rule if it could introduce these rules again soon enough. Nevertheless, the temptation of doing so is still relatively small. For instance, the maximum cost of continuing with these rules instead of abandoning it and reinstating it after one quarter is equivalent to a 1.0 percent output loss for the debt-limit rule an a 1.1 percent loss for the spread-limit rule (the median cost remains negative and is equivalent to a -0.1 percent output loss for both rules). In contrast, even a one-quarter deviation from the no-default fiscal rule would result in a large welfare gain, as it would be enough to benefit from a debt reduction.

Countries are continuing their efforts to make it difficult for themselves to abandon their fiscal
rules. For example, Germany (in 2009) and Spain (in 2011) amended their constitutions to introduce fiscal rules. The super-majorities, referendums, or waiting periods typically required to amend a constitution limit the discretionary power of policymakers in office. In addition, fiscal rules are being complemented with formal enforcement procedures (for instance, automatic correction mechanisms such as “sequestration” processes, and automatic sanctioning procedures), and independent fiscal bodies that set budget assumptions and monitor the implementation of rules (Budina et al., 2012; Schaechter et al., 2012). Several empirical studies find that well designed fiscal rules are associated with stronger fiscal performance (Corbacho and Schwartz, 2007; Debrun and Kumar, 2007; Debrun et al., 2008; Deroose et al., 2006; EC, 2006; Kopits, 2004).

6 Conclusions

We use a sovereign default framework to show that there may be substantial gains from committing to fiscal rules. We also argue that fiscal rules targeting the level of the sovereign default premium may be preferable over rules targeting sovereign debt levels (as most fiscal rules do in reality). Across parameterizations of the model that determine the level of debt tolerance, optimal debt limits vary greatly: the limit that maximizes welfare for one parameterization may fail to produce welfare gains for other plausible parameterizations. In contrast, sovereign-premium limits produce welfare gains across parameterizations. This is intuitive. Sovereign-premium limits attack directly the government’s excessive exposure to sovereign risk. Debt limits attack this problem indirectly, at the risk of imposing excessively low debt levels or being too loose and then innocuous. Since the level of debt tolerance is difficult to identify, and seem to vary greatly both across countries and over time, fiscal rules targeting the sovereign premium are likely to perform better than debt-targeting fiscal rules. We also show that rules should not necessarily promote a countercyclical fiscal policy. Furthermore, benefits from imposing a rule arise even if

\footnote{Hatchondo et al. (2014a) argue that sovereign debt covenants could help enforce fiscal rules.}

\footnote{Difficulties in identifying the effects of fiscal rules are well documented (Poterba, 1996; Heinemann et al., 2011). When comparing predictions in this paper with past experiences with fiscal rules, one should keep in mind that we are assuming certainty about the government’s ability to commit to enforcing a rule, and such certainty was often not present in past experiences.}
governments are not shortsighted and may be very large when governments are shortsighted.

Several interesting issues about the practical implementation of an sovereign-spread-targeting fiscal rule are beyond the scope of this paper. For instance, which sovereign spread should a fiscal rule target? Should the rule target a “core” spread that is less affected by global factors (for instance, targeting the difference between the local sovereign spread and a EMBI-like spread index)? When the spread is above the rule limit, should the government be allowed to rollover debt or should it be forced to reduce its debt level? How much debt should the government be allowed to rollover? Our analysis suggests that spread-targeting fiscal rules are worth considering and, thus, these are interesting avenues for future research.
References

