Uncertainty and the Signaling Channel of Monetary Policy

Jenny Tang*
Harvard University
This draft: January 8, 2014

Abstract

This paper studies optimal monetary policy in an environment where policy actions provide a signal of economic fundamentals to imperfectly informed agents. I derive the optimal discretionary policy in closed form and show that, in contrast to the perfect information case, the signaling channel leads the policymaker to be tougher on inflation. The strength of the signaling effect of policy depends on relative uncertainty levels. As the signaling effect strengthens, the optimal policy under discretion approaches that under commitment to a forward-looking linear rule, thereby decreasing the stabilization bias. This contributes to the central bank finding it optimal to withhold its additional information from private agents. Under a general linear policy rule, inflation and output forecasts can respond positively to a positive interest rate surprise when the signaling channel is strong. This positive response is the opposite of what standard perfect information New Keynesian models predict and it matches empirical patterns found by Romer and Romer (2000) and Campbell, Evans, Fisher, and Justiniano (2012). In addition, I substantiate the existence of a signaling channel by providing new empirical evidence supporting the predicted interaction between uncertainty and the responses of inflation forecasts to interest rate surprises.

1 Introduction

It has become widely accepted that expectations play a key role in the decisions that drive economic fluctuations. How these expectations are formed has been a subject of much debate. With a few exceptions, the majority of macroeconomic models feature private agent expectations of economic fundamentals that are formed independently of policy actions. However, there is a growing body of both anecdotal and empirical evidence supporting the view that monetary policy actions, in fact, communicate information about the economy to the public, and thereby affect agents’ expectations. Thus, it follows that optimal policy may be altered when policy actions also influence the economy through this channel.

*Email: gtang@fas.harvard.edu. I am especially grateful to my advisors Emmanuel Farhi, Gita Gopinath, and Greg Mankiw. I would also like to thank Alberto Alesina, Rüdiger Bachmann, Robert Barro, Fabià Gumbau-Brisa, David Laibson, James Hamilton, Brock Mendel, Giovanni Olivei, Vania Stavrakeva, and participants in the Harvard Macreconomics lunch seminar for helpful comments and suggestions.
In this paper, I study both theoretically and empirically, a setting where asymmetric information exists between the policymaker and private agents. I assume that the policymaker has more information about the state of the economy than private agents. This assumption captures the central bank’s private information about policy targets and its access to some confidential data. A central bank can also be better informed due to devoting more resources to processing data available to all agents\(^1\). In this environment, rational private agents gain information from observations of monetary policy actions that respond to these fundamentals. This process through which policy affects private agents’ beliefs about the state of the economy is what I refer to as the signaling channel.

My first key result is that, for a given monetary policy, the model can produce positive responses of inflation and output forecasts to positive interest rate surprises. Second, I provide a closed-form solution for optimal policy under no commitment. The main conclusion is that the signaling channel alters the policymaker’s tradeoff in a way that allows him to credibly implement an equilibrium closer to the one possible under commitment. This is one of the reasons behind my third key result showing that it can be beneficial for the policymaker to withhold his extra information from the public. Lastly, I present empirical evidence of a positive effect of interest rate surprises on inflation forecasts which is concentrated in periods when prior uncertainty about inflation is high. This result adds to existing empirical evidence of a monetary policy signaling effect.

The analysis is conducted using a standard New Keynesian model with consumers and firms who have homogeneous, but imperfect information about exogenous shocks. Firms are monopolistically competitive and face a nominal price-setting friction. These two elements lead to the following inefficiencies: a standard monopoly distortion and dispersion in prices when there are fluctuations in nominal marginal costs. The allocative distortion associated with price dispersion translates to the efficient level of inflation being zero. In this setting, welfare is maximized when inflation and output are stabilized around their efficient levels\(^2\). The central bank can always achieve zero inflation and bring output to the level that would prevail under flexible prices by stabilizing nominal marginal costs in a way that leads firms to never want to change prices. Therefore, the policymaker is able to maintain the first-best outcome in response to any shocks that do not create a difference between the flexible-price and efficient levels of output. However, when there are shocks that drive a wedge between the flexible-price and efficient output levels, a policy that moves output closer to the efficient level will result in nonzero inflation. This inflation-output tradeoff is the central tension facing the policymaker.

In the baseline model, there are two exogenous shocks: government demand and a time-varying target for the gap between actual output and the flexible-price level\(^3\). The output gap

---

\(^1\)With costly information processing, a central bank that devotes more resources to information processing, relative to private agents, is ultimately better informed about relevant economic fundamentals.

\(^2\)I assume a constant wage bill subsidy financed by lump sum taxes that offsets the average monopoly distortion.

\(^3\)Similar policy target shocks have been used by Faust and Svensson (2001) and Mertens (2011).
target summarizes exogenous variation in the wedge between the efficient and flexible-price levels of output coming from real imperfections not otherwise captured by the model. Another interpretation is that it captures exogenous variation in a politically-motivated output target that differs from the socially efficient level. The government demand shock does not create an inflation-output tradeoff for the policymaker while variations in the output gap target do. The policymaker is better informed than private agents about these shocks and sets the nominal interest rate conditional on this extra knowledge, thus making it a signal to private agents about these fundamentals. This setup reflects a narrative often seen in the popular press: upon seeing a negative interest rate surprise, private agents can interpret this as a countercyclical response to weakness in the economy (lower demand) or a desire to further boost activity (a higher output gap target).

The logic of private agents’ belief formation process reveals that the signaling effect of policy actions depends on the relative uncertainty over demand versus the output gap target. When uncertainty about demand is high compared to uncertainty about the policy target, interest rate surprises lead to larger revisions in private agents’ beliefs about the demand level and smaller revisions to beliefs about the output gap target. The recent crisis provides a good example of a time when uncertainty about economic strength was particularly high and indeed, the press has interpreted many recent policy actions as indicators of economic strength. For example, after the release of the December 2007 FOMC meeting minutes, the New York Times published a story entitled "Discussion of a Fed Cut Only Stirs Up Concerns About a Weak Economy" stating that "while investors usually cheer an impending rate cut, the minutes only fueled anxiety that the economy would fall into a recession". Later on, after the February 2010 decision to raise the discount rate, the Financial Times released an article entitled "Fed Discount Rate Rise Sends Recovery Signal". Interestingly, this was despite the Federal Reserve’s press release explicitly stating that "the modifications [...] do not signal any change in the outlook for the economy or for monetary policy".

My first key result is that when the policy response to demand shocks is inadequate and positive interest rate surprises are a strong enough signal of higher demand, the model produces a positive response of inflation and output gap forecasts to these surprises. This result does not rely on the presence of an output gap target shock and only requires a source of noise preventing agents from perfectly inferring the demand shock from observations of the interest rate. Therefore, this mechanism can explain the empirical patterns documented by Romer and Romer (2000) and Campbell, Evans, Fisher, and Justiniano (2012) which show small increases in forecasts of inflation and real economic activity following positive federal funds rate surprises.

Turning to the question of optimal discretionary interest rate policy, I show in closed form that the interest rate’s signaling effect on private agents’ beliefs about the output gap target makes accommodation of these target shocks more costly. That is, bringing output closer to its target now leads to larger inflation fluctuations compared to the perfect information case. This
change in the inflation-output tradeoff reduces the stabilization bias that typically exists when
the policymaker cannot commit and private agents are forward-looking. This stabilization bias
generally results in excessively large inflation fluctuations. To better understand the source of
this bias and the intuition behind the result, note that raising the output gap in response to
a positive target shock incurs short-run inflation determined by the price-setting behavior of
firms. This inflation-output tradeoff is summarized by a New Keynesian Phillips curve linking
inflation to the output gap and expected future inflation. A discretionary policy typically
accommodates output gap target changes too much relative to the optimal response under
commitment due to contrasting effects of policy on this expected future inflation. Inflation expectations can be split into agents’ expectations of two components: (i) future economic fundamentals and (ii) future policy responses to those fundamentals. In a perfect information setting, a policymaker who cannot commit to future policy has no effect on either part. Therefore, he does not account for the effect of his current actions on previous periods’ inflation expectations. On the other hand, a central banker who commits to a policy rule internalizes this intertemporal effect. He recognizes that committing to maintain smaller responses of inflation to shocks will reduce inflation expectations in prior periods and allow for greater stabilization.

When the policymaker has an information advantage, a discretionary policymaker now affects inflation expectations through the interest rate’s signaling effect on expectations of future fundamentals. I show that greater accommodation of output gap target shocks will make agents more aware of these shocks, thus leading to higher current-period inflation expectations. This tilts the discretionary policymaker’s short-run inflation-output tradeoff in favor of accommodating these shocks less and maintaining smaller inflation fluctuations. That is, the signaling channel allows a discretionary policymaker to be credibly tougher on inflation without making explicit policy commitments. The policy’s departure from the optimal discretionary policy in the perfect information case depends on the amount of influence that policy actions have on private agents’ beliefs. As this marginal effect approaches its largest possible value, I show that the optimal discretionary policy becomes equivalent to the policy under commitment to a forward-looking interest rate rule. Therefore, maintaining an information advantage allows the policymaker to reduce the stabilization bias. This is a contributing factor in my next result on communication policy.

Using this model, I address communication policy by examining whether direct communica-

---

4This is in contrast to the positive average inflation bias that occurs when the policymaker targets a level of output that is above the flexible-price level on average. Clarida, Galí, and Gertler (1999) and Woodford (2003) provide explanations of both the stabilization and average inflation biases in similar New Keynesian models.

5The signaling channel will generally not allow optimal policy under discretion to achieve the same welfare possible under an unrestricted commitment. In particular, optimal discretionary policy continues to be forward-looking with the interest rate responding to past shocks only through their effect on current beliefs. This contrasts with an explicit commitment of responding to lagged shocks for the purpose of improving the set of achievable outcomes intertemporally which has been shown to lead to higher welfare in the perfect information setting (Woodford (2003)).
tion of the policymaker’s additional information to the public improves welfare. In addition to the baseline no direct communication case, I consider communication of either both or one of the exogenous states to private agents prior to their observation of the interest rate. I assume that the interest rate follows the optimal discretionary policy corresponding to each case. Here, I find that the welfare is lowest under full communication of both states so that there is a benefit of maintaining an information advantage. The gains from intransparency come from two sources: (i) a reduction in the stabilization bias as discussed above, and (ii) smaller overall fluctuations under imperfect information even absent a reduction in the stabilization bias. Keeping information away from firms reduces the effects of shocks on firms’ expectations of future marginal cost changes. This reduces inefficient fluctuations on average. Thus, some form of intransparency is always beneficial in this setting. I also show that the current welfare effect of choosing partial versus no communication will always depend on the current realizations of shocks. Therefore, the communication policy problem in this environment will generally exhibit time-inconsistency.

In the last part of the paper, I present new empirical evidence of a signaling role of the federal funds rate. This analysis focuses on inflation forecasts from the Survey of Professional Forecasters published by the Federal Reserve Bank of Philadelphia. I measure federal funds rate surprises using futures prices following Kuttner (2001) and estimate a slightly positive effect of these surprises on inflation forecasts over the 1989Q1-2011Q1 period. This echoes a result from an earlier sample in Romer and Romer (2000). I then decompose this overall effect by showing that the effect is especially strong in periods when forecasters had high uncertainty regarding their previous forecast. This further substantiates an explanation based on a signaling effect of these policy actions. Competing explanations for the positive overall effect, such as a cost channel where higher interest rates raise firms’ financing costs, do not naturally generate this type of interaction.

In another set of empirical results, I estimate time-varying gain coefficients measuring the response of inflation forecasts to general news about inflation. I estimate the coefficients at an annual frequency for the 1971-2012 period and show that there is substantial variation in this coefficient over time. Furthermore, I show that these estimates are negatively correlated with forecast dispersion and positively correlated with subjective uncertainty in a way that is consistent with the predictions of the noisy information framework. This adds to the evidence found in Coibion and Gorodnichenko (2012a) and Coibion and Gorodnichenko (2012b) in support of the noisy information framework.

Lastly, I explore a few extensions of the model which illuminate some general properties of optimal policy when the interest rate has a signaling role. One property is that, if the

---

6Note that I show this under the assumption that direct communication by the central bank is noiseless and costless. Gains from intransparency would only increase if this communication were obscured by signal noise or a friction such as sticky information a la Mankiw and Reis (2002) or rational inattention as in Sims (2003).

7I show below that forecasters’ subjective uncertainty is not highly correlated with economic activity.
policymaker only has superior information about shocks that do not generate an inflation-output tradeoff, optimal policy is invariant to the presence of a signaling channel. I also show using a different set of shocks that when the interest rate has a signaling role, optimal policy responses to shocks can change even for shocks that the central bank does not have superior information about. This occurs because the signaling channel incentivizes the policymaker to maintain smaller inflation deviations conditional on any shock to the economy. When I add a shock to the firms’ price-setting condition, the signaling channel can lead the policymaker to be too tough on inflation relative to a policymaker who commits to a forward-looking interest rate rule.

The next subsection reviews the related literature. Section 2 sets up the model. I discuss equilibrium dynamics under a general linear interest rate rule in Section 3 to build intuition about the interest rate’s signaling effect. I turn to the main question of optimal discretionary interest rate policy in Section 4 with a discussion on the value of information in Section 5. Section 6 outlines extensions of the model. In Section 7, I present empirical results supporting monetary policy’s signaling role and Section 8 concludes.

1.1 Related literature

This paper is related to several literatures. First, I find theoretical results that complement previous work on the signaling effect of monetary policy actions by Cukierman and Meltzer (1986), Faust and Svensson (2001), Geraats (2007), Walsh (2010), Berkelmans (2011), and Mertens (2011). Cukierman and Meltzer (1986), Faust and Svensson (2001), and Geraats (2007) focus on how the signaling channel ameliorates the average inflation bias present when the central bank has a positive average output target. In this paper, I find a complementary result showing that the signaling channel can also lessen the stabilization bias present when there is no average inflation bias. Cukierman and Meltzer (1986) and Faust and Svensson (2001) both use models where agents’ behavior depends on lagged expectations which are a function only of past policy actions. Thus, the presence of a signaling channel does not affect the policymaker’s short-run incentives in their models as it does here. Walsh (2010) and Berkelmans (2011) focus on using numerical methods to study the signaling channel in models where agents have heterogeneous information.

The paper closest to mine is Mertens (2011). However, he focuses on a case where the central bank is more informed only about their policy objective and not other economic fundamentals. I complement his work by showing how this framework is able to produce the empirical results found in Romer and Romer (2000) and Campbell, Evans, Fisher, and Justiniano (2012) when agents also have imperfect information regarding demand shocks. Furthermore, he provides optimal policy results using numerical simulations whereas I can provide closed-form expressions and show links between discretionary and commitment policies by assuming that agents are
able to see lagged true values of fundamentals.

My result on the benefits of central bank intransparency are consistent with the numerical analyses in Faust and Svensson (2001), Walsh (2010), and Mertens (2011). In contrast to these papers, I precisely characterize the sources of gains from intransparency. This finding differs from the conclusions reached in models where private agents’ lack of perfect information is the only friction such as those in the spirit of Lucas Jr. (1972) and Barro (1976)\textsuperscript{8}. In a more stylized setting, Angeletos and Pavan (2007) finds a similar result that less information can be beneficial in an economy that is inefficient under perfect information.

My empirical work finds similar results to those presented in Romer and Romer (2000) and Campbell, Evans, Fisher, and Justiniano (2012) and also relates to the estimation of noisy information models in Coibion and Gorodnichenko (2012a) and Coibion and Gorodnichenko (2012b). To this literature, I add new estimates of time-varying responses of inflation forecasts to news and show that they correlate with forecast dispersion and prior uncertainty in the directions suggested by noisy information models. In addition, I show that the slightly positive estimates of inflation forecasts’ responses to policy actions found in Romer and Romer (2000) are robust to using interest rate surprises identified based on federal funds futures prices. I take this result further by showing a positive interaction between these responses and subjective uncertainty over previous inflation forecasts.

Ellingsen and Soderstrom (2001), Erceg and Levin (2003), and Gurkaynak, Sack, and Swanson (2005) use an interest rate signaling effect to explain various features of the data including inflation persistence and the response of the yield curve to monetary policy actions. Melosi (2013) estimates a dispersed information DSGE model where monetary policy has a signaling effect since the policy rate is assumed to follow a Taylor rule that responds to aggregate variables which individual firms cannot observe. He shows that allowing for a monetary policy signaling effect enables the model to fit inflation forecast data from the SPF better than the corresponding perfect information model.

2 Model

2.1 Setup

The model that I use to study the signaling channel of monetary policy is based on a standard New Keynesian model with monopolistically competitive firms and sticky prices in the style of Calvo (1983). Fluctuations are driven by an exogenous demand shock as well as a shock to the policy target for the output gap. I assume that the monetary authority has perfect information while consumers and firms have homogeneous but imperfect information on these shocks. Private agents observe shocks perfectly with a one-period lag and get information

\textsuperscript{8}Even when information frictions are the only frictions, full communication may be suboptimal if the central bank cannot give perfect, homogeneous information to all agents (Adam (2007), Baeriswyl and Cornand (2010)).
about current values from observing a nominal interest rate that responds linearly to current state variables. I first describe the model structure and then provide details on the information structure and belief formation.

2.1.1 Consumers

There is a representative household who maximizes utility that is additively separable in time, labor, and consumption of a composite good made up of a continuum of varieties

$$\max E \sum_{t=0}^{\infty} \beta^t \left[ U(C_t) - V(L_t) \right], \text{ where } C_t \equiv \left[ \int_0^1 C_{jt}^{\varepsilon^{-1}} \, dj \right]^{\frac{\varepsilon}{1-\varepsilon}}, \varepsilon > 1$$

The economy is cashless. Each consumer gets profits from all firms, pays a lump sum tax, and can trade in a riskless nominal one-period bond so that the budget constraint is

$$\int_0^1 P_{jt}C_{jt} \, dj + B_t \leq R_{t-1}B_{t-1} + W_tL_t - T_t + \int_0^1 \Pi_{jt} \, dj$$

Consumer optimization results in a standard intertemporal Euler equation and an intratemporal labor supply relation involving the price of the composite good

$$U_{C,t} = \beta R_tE \left[ U_{C,t+1} \frac{P_t}{P_{t+1}} \mid \mathcal{I}_t \right]$$

$$\frac{V_{L,t}}{U_{C,t}} = \frac{W_t}{P_t}$$

where $\mathcal{I}_t$ is a time-$t$ information set to be defined below.

The resulting consumer demand for each variety $j$ is

$$C_{jt} = \left( \frac{P_{jt}}{P_t} \right)^{-\varepsilon} C_t$$

and the price of the composite good becomes

$$P_t = \left[ \int_0^1 P_{jt}^{1-\varepsilon} \, dj \right]^{\frac{1}{1-\varepsilon}}$$

2.1.2 Firms

There is a continuum of firms who each maximize profits subject to aggregate demand for their good which consists of consumer demand and exogenous government demand. I assume that the government consumes the same composite good and allocates their demand across varieties
in the same way as consumers. Then, firm $j$ faces total demand of

$$ Y_{jt} = \left( \frac{P_{jt}}{P_t} \right)^{-\varepsilon} Y_t $$

where $Y_t$ is aggregate real output defined as

$$ Y_t \equiv \frac{1}{P_t} \int P_{jt} (C_{jt} + G_{jt}) dj = C_t + G_t $$

Production technologies are identical across firms and linear in each firms’ labor

$$ Y_{jt} = AL_{jt} $$

The labor market is perfectly competitive while firms also receive a constant proportional subsidy $\tau$ on their wage bills so that each firm’s total cost of production is

$$ \psi (Y_{jt}) = (1 - \tau) \frac{W_t}{A} Y_{jt} $$

Firms reset prices during periods chosen randomly such that each firm faces a $1 - \theta$ probability of being able to reset their prices in each period. Firms who cannot reset prices charge their previous price. When a firm can reset its price, it maximizes the net present value of profits. Profits from $k$ periods ahead are discounted according to the stochastic discount factor of the consumer-owners $\beta^k \lambda_{t+k} / \lambda_t$ where $\lambda_{t+k}$ is the Lagrange multiplier on the consumers’ budget constraint which reflects the shadow value of wealth in period $t + k$.

$$ P_{jt}^* = \arg \max_P \sum_{k=0}^{\infty} (\theta \beta)^k E \left[ \frac{\lambda_{t+k}}{\lambda_t} [PY_{jt+k} - \psi(Y_{jt+k})] | I_t \right] $$

Since firms employ identical technologies and hire workers from a centralized labor market, all firms that reset their prices choose the same optimal price in a given period (i.e., $P_{jt}^* = P_t^* \forall j$). Then, the aggregate price level evolves as

$$ P_t = \left[(1 - \theta) (P_t^*)^{1-\varepsilon} + \theta P_{t-1}^{1-\varepsilon} \right]^{\frac{1}{1-\varepsilon}} $$

### 2.2 Equilibrium conditions

Unless otherwise noted, let lower-case letters represent log deviations from steady-state values (i.e., $x_t \equiv \ln \left( X_t / X \right) )$ and let private agents’ expectations be denoted by $x_{t'} | t \equiv E \left[ x_{t'} | I_t \right]$. Then, log-linearizing the above optimality conditions around the deterministic steady state leads to
two equations characterizing aggregate output and inflation dynamics.

\[
\begin{align*}
\tilde{y}_t &= \tilde{y}_{t+1|t} - \frac{1}{\sigma} \left( i_t - \pi_{t+1|t} \right) + d_t - d_{t+1|t} \\
\pi_t &= \beta \pi_{t+1|t} + \kappa \tilde{y}_t
\end{align*}
\]  

(1)

(2)

where \( d_t \) is an aggregate demand shock that originates from government spending

\[
d_t \equiv \frac{\varphi}{\sigma + \varphi} \left( 1 - \frac{C}{Y} \right) g_t
\]

\( \tilde{y}_t \) represents the gap between output and its natural (i.e., flexible-price) level

\[
\tilde{y}_t \equiv y_t - y_t^n \quad \text{where } y_t^n = \frac{\sigma}{\varphi} d_t
\]

The coefficients can be expressed in terms of steady-state values and structural parameters.

\[
\sigma \equiv -\frac{U_{cc}Y}{U_c}, \quad \varphi \equiv \frac{V_{it}L}{V_t}, \quad \kappa = \frac{(1 - \theta) (1 - \beta \theta)}{\theta} (\sigma + \varphi)
\]  

(3)

The first equilibrium condition in equation (1) stems from the resource constraint and the consumers’ Euler equation

\[
c_t = c_{t+1|t} - \frac{1}{\sigma} \left( i_t - \pi_{t+1|t} \right)
\]

The real interest rate gives the price of consumption today relative to tomorrow and so its level determines the difference between period \( t \) and expected \( t + 1 \) consumption. When it is kept at zero, consumption stays at its steady-state level. To determine the relationship between the output gap in period \( t \) and the expected \( t + 1 \) output gap, the expected growth rate of government spending net of variations in the natural level of output also has to be accounted for. This is captured by the natural real rate of interest

\[
r_t^n \equiv \sigma \left( d_t - d_{t+1|t} \right)
\]

The New Keynesian Phillips curve in equation (2) is derived from firms’ pricing behavior, consumers’ labor supply, the resource constraint and the evolution of aggregate prices.

I now define a real interest rate gap between the actual real rate and the natural rate

\[
\tilde{r}_t \equiv i_t - \pi_{t+1|t} - r_t^n
\]

This real interest rate gap affects the output gap in the same way that the real interest rate affects consumption. When it is kept at zero, output stays at its natural level. In this model, this also gives zero inflation. When I examine output gap and inflation responses to interest rate surprises in the next section, it will be convenient to do so through the lens of \( \tilde{r}_t \). Equations
(1) and (2) can be rearranged to show that shocks affect current outcomes through expectations of next period’s outcomes and the real interest rate gap

\[
\begin{align*}
\tilde{y}_t &= \frac{1}{\sigma} \tilde{r}_t \\
\pi_t &= \beta \pi_{t+1|t} + \kappa \tilde{y}_{t+1|t} - \frac{\kappa}{\sigma} \tilde{r}_t
\end{align*}
\]

The model is closed with specifications for the nominal interest rate \(i_t \equiv \ln (R_t/R)\) and the shocks. For now, I assume that the interest rate responds linearly to the demand shock, an output gap target shock \(\tilde{y}_t\) and private agents’ beliefs.

\[
i_t = f_d d_t + f_{d,b} d_{t|t} + f_g \tilde{y}_t + f_{g,b} \tilde{y}_{t|t}
\]

\(\tilde{y}_t\) is the policymaker’s time-varying target for the output gap. The role of this target will be clarified when I present the optimal policy problem. For now, it should be apparent that this shock affects equilibrium output and inflation in a way that’s similar to an exogenous interest rate shock since it only enters the model’s equilibrium conditions through the interest rate. I will first characterize the equilibrium under general policy coefficients to illustrate the effect of the interest rate signaling mechanism in this model. I later show a case where optimal discretionary monetary policy results in interest rate setting behavior that matches the form in (4).

I assume that both shocks follow AR(1) processes

\[
\begin{align*}
d_t &= \rho_d d_{t-1} + \epsilon_{d,t} \\
\tilde{y}_t &= \rho_{\tilde{y}} \tilde{y}_{t-1} + \epsilon_{\tilde{y},t}
\end{align*}
\]

where \(\epsilon_{d,t}\) is serially uncorrelated and normally distributed with mean zero and variance \(\sigma_{d,t-1}^2\). Similarly, \(\epsilon_{\tilde{y},t}\) is serially uncorrelated and normally distributed with mean zero and variance \(\sigma_{\tilde{y},t-1}^2\). The two shocks are uncorrelated with each other and I do not restrict the stochastic properties of \(\sigma_{d,t-1}^2\) and \(\sigma_{\tilde{y},t-1}^2\) for now. This timing of the variances is chosen so that the one-period-ahead conditional distributions of the levels remain normal with known variances. This timing is also used in the uncertainty shock literature by Bloom (2009).

### 2.3 Information structure and belief formation

I assume that agents know the structure of the model and the true values of all parameters, including those in the interest rate rule. However, they do not see the true current values of shocks. This implies that private agents cannot see the true current values of \(\tilde{y}_t\) and \(\pi_t\) (otherwise, they can infer \(d_t\)). My preferred explanation of this setup is that it describes a situation where individuals face idiosyncratic shocks and are not aware of current aggregate conditions.
They also do not see current aggregate outcomes as these are based on decisions made simultaneously by other individuals. The Appendix provides a derivation of the equilibrium conditions for aggregate variables in this type of environment and shows that the only differences are extra terms in the aggregate inflation equation which depend on the exogenous shocks $\epsilon_{d,t}$ and $\epsilon_{g,t}$.

I choose not to proceed with a setup using idiosyncratic shocks in order to abstract from the issues involved with an interest rate providing public information when private agents have heterogenous information.\footnote{Morris and Shin (2002), Angeletos and Pavan (2007), and Lorenzoni (2010) examine these issues in other settings.}

I assume for now that they observe lagged state variables perfectly (perhaps through observations of lagged aggregate outcomes) which mimics the information setup used in Lucas (1973) and many subsequent papers. They also observe $i_t$, which gives an additional piece of information about the current shocks. Formally, the information set of private agents in period $t$ is

$$\mathcal{I}_t = \left\{ i^t, d_t^{t-1}, y_t^{t-1}, (\sigma_d^2)^t, (\sigma_y^2)^t \right\}$$

Meanwhile, I assume that the central bank has perfect information about the entire history of exogenous variables up to time $t$. Thus, the central bank’s information advantage is captured by knowledge of the current shocks $\{\epsilon_{d,t}, \epsilon_{g,t}\}$. One benefit of assuming that agents can see lagged true values is that it limits the signaling effect of the interest rate to current beliefs and allows me to focus on changes to short-run incentives that will be central to the optimal discretionary policy problem. I discuss the case where lagged true values cannot be seen as an extension in Section 6.2.

Since the shocks are AR(1) and past shocks are perfectly observed, previous observations of the interest rate do not give additional information. Beliefs are optimally formed through a static Gaussian signal extraction problem. There is a slight departure due to the dependence of the interest rate on current private agent beliefs. This introduces circularity into the belief formation problem which I resolve using the method outlined in Svensson and Woodford (2003). The basic approach is to posit a form of beliefs and then to re-express the belief formation problem in terms of errors from expectations made absent the interest rate signal. In this form, there is no circularity issue and beliefs can be found using standard signal extraction results. Here, I posit that beliefs take the form

$$d_{t|t} = \rho_d d_{t-1} + K_{d,t} \left( i_t - f_d \rho_d d_{t-1} - f_{d,b} d_{t|t} - f_y \rho_y y_{t-1} - f_{y,b} y_{t|t} \right)$$

$$y_{t|t} = \rho_y y_{t-1} + K_{y,t} \left( i_t - f_d \rho_d d_{t-1} - f_{d,b} d_{t|t} - f_y \rho_y y_{t-1} - f_{y,b} y_{t|t} \right)$$

for some $K_{d,t}, K_{y,t}$ that I will later solve for. Then, I can write the evolution of the shocks and the interest rate in terms of expectational errors defined as $x_t^{err} \equiv x_t - E [x_t | \mathcal{I}_t \setminus i_t]$. Note that this error for $i_t$ corresponds to an interest rate surprise defined as the difference between the
observed interest rate and the one expected based on all period \( t \) information except for the interest rate itself. Thus, I use the notation \( i_t^{\text{surp}} \) to denote this expectational error.

\[
\begin{align*}
    d_t^{\text{err}} &= \epsilon_{d,t} \\
    y_t^{\text{err}} &= \epsilon_{y,t} \\
    i_t^{\text{surp}} &= (1 + f_{d,b}K_{d,t} + f_{y,b}K_{y,t})(f_{d}\epsilon_{d,t} + f_{y}\epsilon_{y,t})
\end{align*}
\] (7)

This is now a standard signal extraction problem which gives

\[
\begin{align*}
    d_{t|t}^{\text{err}} &= \frac{f_{d}\sigma_{d,t-1}^2}{f_{d}^2\sigma_{d,t-1}^2 + f_{y}^2\sigma_{y,t-1}^2} \frac{1}{1 + f_{d,b}K_{d,t} + f_{y,b}K_{y,t}} i_t^{\text{surp}} \\
    y_{t|t}^{\text{err}} &= \frac{f_{y}\sigma_{y,t-1}^2}{f_{d}^2\sigma_{d,t-1}^2 + f_{y}^2\sigma_{y,t-1}^2} \frac{1}{1 + f_{d,b}K_{d,t} + f_{y,b}K_{y,t}} i_t^{\text{surp}}
\end{align*}
\]

Since \( x_{t|t} = x_{t|t}^{\text{err}} + E[x_t|I_t \setminus i_t] \), beliefs will fit the form assumed above so that, in equilibrium, they depend on lagged true states and current shocks

\[
\begin{align*}
    d_{t|t} &= \rho_d d_{t-1} + \underbrace{\frac{f_{d}\sigma_{d,t-1}^2}{f_{d}^2\sigma_{d,t-1}^2 + f_{y}^2\sigma_{y,t-1}^2} (f_{d}\epsilon_{d,t} + f_{y}\epsilon_{y,t})}_{K_{d,t}} \\
    y_{t|t} &= \rho_y y_{t-1} + \underbrace{\frac{f_{y}\sigma_{y,t-1}^2}{f_{d}^2\sigma_{d,t-1}^2 + f_{y}^2\sigma_{y,t-1}^2} (f_{d}\epsilon_{d,t} + f_{y}\epsilon_{y,t})}_{K_{y,t}}
\end{align*}
\] (8) (9)

The AR(1) form of \( d_t \) and \( y_t \) then implies that \( d_{t+h|t} = \rho_d^{h}d_{t|t} \) and \( y_{t+h|t} = \rho_y^{h}y_{t|t} \).

Note the following properties of \( K_{d,t} \) and \( K_{y,t} \):

1. \( f_{d}K_{d,t} + f_{y}K_{y,t} = 1 \)
2. \( \frac{K_{d,t}}{K_{y,t}} = \frac{f_{d}\sigma_{d,t-1}^2}{f_{y}\sigma_{y,t-1}^2} \)

The first property is equivalent to the expression

\[
f_{d}d_{t|t} + f_{y}y_{t|t} = f_{d}d_{t} + f_{y}y_{t}
\]

The linear combination on the right can be perfectly inferred through \( i_t \). Since agents know the form and coefficients of the interest rate rule, the same linear combination of their beliefs has to match the observed sum on the right. Then the belief formation process can be understood as agents observing a sum of two unknown shocks and assigning a portion of this value to each shock. The relative fraction assigned to each underlying shock depends on the relative
importance of that shock in the sum. The second property shows that more of this observed sum is interpreted as coming from a demand shock when the interest rate rule responds relatively more to demand shocks ($\frac{\sigma_d}{\sigma_y}$ is high) or when the demand shock is more variable ($\frac{\sigma_{y:t-1}}{\sigma_{d:t-1}}$ is high). When agents are relatively more unsure about the current demand level versus the central bank’s output gap target, then they find it likely that the policy surprise is due mostly to a change in demand conditions.

3 Equilibrium dynamics

The model is described by a system of equations which summarize private agent optimization ((1) and (2)), policy (equation (4)), shock evolution ((5) and (6)), and beliefs ((8) and (9)). This system of linear stochastic difference equations can be solved by conjecturing that $\tilde{y}_{t+1}$ and $d_{t+1}$ are linear in the true states and current private agent beliefs $\{d_t, \tilde{y}_t, d_{t|t}, \tilde{y}_{t|t}\}$ with unknown coefficients. This allows $\tilde{y}_{t+1|t}$ and $\pi_{t+1|t}$ to be expressed in terms of current beliefs. Then, substituting (4) into (1) and (2) gives two equations in terms of $\{d_t, \tilde{y}_t, d_{t|t}, \tilde{y}_{t|t}\}$ which are used to solve for the unknown coefficients.

With this linear solution, the response of a given outcome $x_t$ to the two structural shocks can each be broken down into three parts

$$\frac{dx_t}{de_{\tilde{y},t}} = \frac{\partial x_t}{\partial \tilde{y}_t} + \frac{\partial x_t}{\partial \tilde{y}_{t|t}} \frac{dy_{t|t}}{de_{\tilde{y},t}} + \frac{\partial x_t}{\partial d_{t|t}} \frac{dd_{t|t}}{de_{\tilde{y},t}}$$

$$\frac{dx_t}{de_{d,t}} = \frac{\partial x_t}{\partial d_t} + \frac{\partial x_t}{\partial d_{t|t}} \frac{dy_{t|t}}{de_{d,t}} + \frac{\partial x_t}{\partial \tilde{y}_{t|t}} \frac{dd_{t|t}}{de_{d,t}}$$

The first term captures the direct effects of shocks on equilibrium conditions or the interest rate. The last two terms capture an indirect expectational effect which works through forward-looking terms in the equilibrium conditions as well as the interest rate’s response to private agents’ beliefs. In this model, the serially correlated nature of the state variables cause agents to form expectations of future outcomes based on today’s beliefs of demand and output gap target levels. These revised expectations affect current outcomes through the standard consumption smoothing and Calvo pricing mechanisms. It is predominantly this expectational effect that is altered when information becomes imperfect. In the perfect information case, beliefs are correct so that $\frac{dy_{t|t}}{de_{\tilde{y},t}} = \frac{dy_t}{de_{\tilde{y},t}} = 1$ and $\frac{dd_{t|t}}{de_{d,t}} = \frac{dd_t}{de_{d,t}} = 1$ while $\frac{dy_{t|t}}{de_{d,t}} = \frac{dy_t}{de_{d,t}} = 0$. Here, these effects become

$$\frac{dy_{t|t}}{de_{\tilde{y},t}} = f_y K_{\tilde{y},t} \in (0, 1), \quad \frac{dd_{t|t}}{de_{\tilde{y},t}} = f_y K_{d,t} \in \left(\frac{f_y}{d}, 0\right)$$

$$\frac{dy_{t|t}}{de_{d,t}} = f_d K_{\tilde{y},t} \in \left(f_d, \frac{f_y}{d}\right), \quad \frac{dd_{t|t}}{de_{d,t}} = f_d K_{d,t} \in (0, 1)$$

Thus, the expectational effects of the two shocks now "spill over" into each other. When a
shock hits the economy, agents observe this through an unexpected change in the interest rate. This observation does not allow them to infer the source of the shock and so they update their beliefs of both the current demand level and the output gap target by a fraction of the interest rate surprise.

The marginal responses of forecasts behave similarly

\[
\frac{dx_{t+1|t}}{d\tilde{y}_t} = \rho_y \left( \frac{\partial x_t}{\partial \tilde{y}_t} + \frac{\partial x_t}{\partial \tilde{y}_t} \right) \frac{d\tilde{y}_t}{d\tilde{y}_t} + \rho_d \left( \frac{\partial x_t}{\partial d_t} + \frac{\partial x_t}{\partial d_t} \right) \frac{dd_t}{d\tilde{y}_t}
\]

\[
\frac{dx_{t+1|t}}{d\epsilon_{d,t}} = \rho_d \left( \frac{\partial x_t}{\partial d_t} + \frac{\partial x_t}{\partial d_t} \right) \frac{dd_t}{d\epsilon_{d,t}} + \rho_y \left( \frac{\partial x_t}{\partial \tilde{y}_t} + \frac{\partial x_t}{\partial \tilde{y}_t} \right) \frac{d\tilde{y}_t}{d\epsilon_{d,t}}
\]

In the remainder of this section, I examine the comovement between current outcomes, forecasts, and interest rate surprises. The interest rate surprise defined in (7) is linear in \( \epsilon_y \) so I can characterize the comovements using the responses to these shocks.

I build intuition for the general case by first examining two benchmark cases.

### 3.1 Benchmark 1: Perfect information with an exogenous interest rate shock

The model above can be made isomorphic to a perfect information model with an exogenous interest rate shock by allowing agents to see the current value of \( d_t \). That is, I suppose for this subsection that the agents’ information set is \( \mathcal{I}_t = \{ i^t, d^t, \tilde{y}^{t-1}, (\sigma_{\bar{y}}^t)^1, (\sigma_{\bar{y}}^t)^2 \} \). Then, with \( f_{\bar{y}} \neq 0 \), the interest rate perfectly reveals \( \tilde{y}_t \) so that beliefs are correct in equilibrium

\[
d_{t|t} = d_t \quad \text{and} \quad \tilde{y}_{t|t} = \tilde{y}_t
\]

Interest rate behavior simplifies to

\[
i_t = (f_d + f_{d,b}) d_t + (f_{\bar{y}} + f_{\bar{y}, b}) \tilde{y}_t
\]

and the interest rate surprise is a scaled output gap target shock

\[
i_t^{\text{surp}} = (f_{\bar{y}} + f_{\bar{y}, b}) \epsilon_{\bar{y},t}
\]

Since agents are perfectly informed after observing \( i_t \), the resulting responses of outcomes to the interest rate surprise are the same familiar results obtained under perfect information. In other words, this case gives a model that’s isomorphic to a perfect information model in which \( (f_{\bar{y}} + f_{\bar{y}, b}) \tilde{y}_t \) is an autocorrelated exogenous component of the nominal interest rate. To get impulse responses that have the usual signs, I make the following assumption that the shocks are not too persistent

**Assumption 1** \( \rho_d, \rho_y \in [0, \bar{\rho}) \) where \( \bar{\rho} \leq \theta \). (See Appendix for the exact expression for \( \bar{\rho} \).)
Under Assumption 1, the familiar perfect information channels of a positive interest rate surprise are at work. First, it raises the current real interest rate gap which lowers the current output gap and inflation holding expectations fixed.

\[ \frac{d\bar{r}_t}{dt_{\text{surp}}} = \frac{(1 - \rho_y)(1 - \beta \rho_y)}{(1 - \rho_y)(1 - \beta \rho_y) - \frac{\kappa}{\sigma} \rho_y} > 0 \]

Secondly, the persistent nature of the output gap target shock means that future real interest rate gaps also increase following a positive interest rate surprise.

\[ \frac{d\bar{r}_{t+h}}{dt_{\text{surp}}} = \rho_y \frac{(1 - \rho_y)(1 - \beta \rho_y)}{(1 - \rho_y)(1 - \beta \rho_y) - \frac{\kappa}{\sigma} \rho_y} \geq 0 \]

This contributes to lower expectations of future output gaps and inflation

\[ \frac{d\bar{y}_{t+|t}}{dt_{\text{surp}}} = -\rho_y \frac{\frac{1}{\sigma} (1 - \beta \rho_y)}{(1 - \rho_y)(1 - \beta \rho_y) - \frac{\kappa}{\sigma} \rho_y} \leq 0 \]

\[ \frac{d\pi_{t+|t}}{dt_{\text{surp}}} = \frac{\frac{\kappa}{\sigma}}{(1 - \rho_y)(1 - \beta \rho_y) - \frac{\kappa}{\sigma} \rho_y} \leq 0 \]

which pushes current values down further. In sum, both the current real interest rate gap and future expectations channels push the current output gap and inflation down following a positive interest rate surprise

\[ \frac{d\bar{y}_t}{dt_{\text{surp}}} = -\frac{\frac{1}{\sigma} (1 - \beta \rho_y)}{(1 - \rho_y)(1 - \beta \rho_y) - \frac{\kappa}{\sigma} \rho_y} < 0 \]

\[ \frac{d\pi_t}{dt_{\text{surp}}} = -\frac{\frac{\kappa}{\sigma}}{(1 - \rho_y)(1 - \beta \rho_y) - \frac{\kappa}{\sigma} \rho_y} < 0 \]

The important properties of this benchmark case which contrast with the cases below are that: (1) both the current output gap and inflation as well as agents’ forecasts of future outcomes respond negatively to an interest rate surprise and (2) the responses do not vary with the relative variance \( \frac{\sigma_{\rho_t}^2}{\sigma_{\rho_t}^2} \). Moreover, these responses do not depend on the values of policy response coefficients.

### 3.2 Benchmark 2: The policymaker perfectly offsets \( d_t \)

For this case, recall that fluctuations in the natural real rate only affect the equilibrium output gap and inflation if they are passed through to fluctuations in the real rate gap. The policymaker can prevent this by setting \( f_d = \sigma \) and \( f_{d,b} = -\sigma \rho_d \) which results in a nominal interest rate that moves one-for-one with changes in the natural real rate of interest while also responding
to fluctuations in the output gap target and agents’ belief about it

\[ i_t = r^n_t + f_y y_t + f_y y_t | t \]

This creates an equilibrium where there are no fluctuations associated with changes in the natural real rate (coming from \( d_t \) or \( d_{y,t} \)) and all movements are due to changes in the output gap target and agents’ belief about its current level. That is,

\[ \frac{\partial y_t}{\partial d_t} = \frac{\partial y_t}{\partial d_{y,t}} = \frac{\partial \pi_t}{\partial d_t} = \frac{\partial \pi_t}{\partial d_{y,t}} = 0 \]

Demand shocks only affect outcomes through agents’ belief about the output gap target.

Here, the responses of a given outcome \( x_t \) to the shocks become

\[ \frac{dx_t}{d\epsilon_g,t} = \frac{\partial x_t}{\partial y_t} + \frac{\partial x_t}{\partial y_t | t} d\epsilon_{g,t} \]
\[ \frac{dx_t}{d\epsilon_d,t} = \frac{\partial x_t}{\partial y_t | t} d\epsilon_{d,t} \]

while the interest rate surprise is linear in the two shocks

\[ i_t^{\text{surp}} = \iota_d \epsilon_{d,t} + \iota_y \epsilon_{g,t} \]

Since the interest rate surprise is now made up of two independent shocks, there are two ways that I can analyze how outcomes move with interest rate surprises. I can look at the "response" of some outcome \( x_t \) to an interest rate surprise conditional on a shock to \( s \in \{d, y\} \) using the ratio \( \frac{dx_t}{d\epsilon_{s,t} / d\epsilon_{s,t}} \). Alternatively, I can also look at the statistic \( \frac{\text{Cov}_{t-1}(x_t, i_t^{\text{surp}})}{\text{Var}_{t-1}(i_t^{\text{surp}})} \) for a given outcome variable \( x_t \). This scaled covariance is analogous to the statistic that is estimated by OLS regressions of the outcome variable on interest rate surprises with the exception that I evaluate the moments using one-period-ahead conditional distributions due to the presence of time-varying uncertainty.

I now state three additional coefficient restrictions which help me to sign responses.

**Assumption 2** \( f_y \in (-\infty, 0), \ f_{y,b} \in (-\infty, -f_y) \)

**Assumption 3** \( f_y \in (-\infty, 0), \ f_{y,b} \in (-\infty, -\rho_y (1 - \beta \rho_y + \frac{\pi}{\sigma} + \beta)) \)

**Assumption 4** \( f_y \in (-\infty, 0), \ f_{y,b} \in (-\infty, -\rho_y (1 + \frac{\pi}{1-\beta \rho_y})) \), \( \rho_d \in (0, \rho_y (1 - \beta \rho_y + \frac{\pi}{\sigma} + \beta)) \)

The first assumption can be understood as policy responding the "right way" to output gap target shocks. Holding constant agents beliefs, \( f_y < 0 \) means that the nominal interest rate is reduced when the output gap target is high. Additionally, \( f_{y,b} < -f_y \) ensures that inflation and the output gap are increasing in the output gap target shock in the perfect information.
version of this model presented above. The second and third assumptions place successively
tighter bounds on the nominal rate’s response to private beliefs about the output gap target
and analogous bounds on ρd which are needed to sign some of the responses below.

Turning first to the responses under each individual shock, I can show the following:

1. Under Assumption 2, \( \frac{d\pi^{surp}}{dt} = \ell_\delta < 0 \) and \( \frac{dr}{dt} \).

2. Under Assumptions 1 and 4, \( \frac{d\pi^{surp}}{dt} = \ell_\delta < 0 \) and \( \frac{dr}{dt} < 0 \); both increase with \( \sigma_{\ell_\delta, t-1}^2 \).

3. Under Assumptions 1 and 3, \( \frac{d\pi^{surp}}{dt} = \ell_\delta < 0 \) and \( \frac{dr}{dt} < 0 \); both increase with \( \sigma_{\ell_\delta, t-1}^2 \).

To explain each of these, I again turn to the corresponding responses of the expected future
variables and the real interest rate gap. First, under Assumptions 1 and 2:

- \( \frac{d\pi^{surp}}{dt} = \ell_\delta < 0 \) and approach zero as \( \frac{\sigma_{\ell_\delta, t-1}^2}{\sigma_{\ell_\delta, t-1}^2} \) increases.

- \( \frac{d\pi^{surp}}{dt} = \ell_\delta < 0 \) and approach zero as \( \frac{\sigma_{\ell_\delta, t-1}^2}{\sigma_{\ell_\delta, t-1}^2} \) increases.

Since the demand shock is perfectly offset, expectations of future outcomes depend only on
expectations of the future output gap target level. A positive interest rate surprise originating
from either underlying shock results in a weakly negative revision to this expectation which
results in negative responses of output gap and inflation expectations. Forward-looking behavior
in this economy means that this negatively affects current outcomes. As \( \frac{\sigma_{\ell_\delta, t-1}^2}{\sigma_{\ell_\delta, t-1}^2} \) increases, interest
rate surprises result in smaller revisions to the believed value of the output gap target and so
this negative effect moves towards zero.

In terms of the real interest rate gap, I can show that

- \( \frac{d\pi^{surp}}{dt} = \ell_\delta < 0 \) and approach zero as \( \frac{\sigma_{\ell_\delta, t-1}^2}{\sigma_{\ell_\delta, t-1}^2} \) increases.

- \( \frac{d\pi^{surp}}{dt} = \ell_\delta < 0 \) and approach zero as \( \frac{\sigma_{\ell_\delta, t-1}^2}{\sigma_{\ell_\delta, t-1}^2} \) increases.

Since the demand shock is perfectly offset, expectations of future outcomes depend only on
expectations of the future output gap target level. A positive interest rate surprise originating
from either underlying shock results in a weakly negative revision to this expectation which
results in negative responses of output gap and inflation expectations. Forward-looking behavior
in this economy means that this negatively affects current outcomes. As \( \frac{\sigma_{\ell_\delta, t-1}^2}{\sigma_{\ell_\delta, t-1}^2} \) increases, interest
rate surprises result in smaller revisions to the believed value of the output gap target and so
this negative effect moves towards zero.

In terms of the real interest rate gap, I can show that

- \( \frac{d\pi^{surp}}{dt} = \ell_\delta < 0 \) and approach zero as \( \frac{\sigma_{\ell_\delta, t-1}^2}{\sigma_{\ell_\delta, t-1}^2} \) increases.

- \( \frac{d\pi^{surp}}{dt} = \ell_\delta < 0 \) and approach zero as \( \frac{\sigma_{\ell_\delta, t-1}^2}{\sigma_{\ell_\delta, t-1}^2} \) increases.

Signing the effect of a higher \( \frac{\sigma_{\ell_\delta, t-1}^2}{\sigma_{\ell_\delta, t-1}^2} \) on \( \frac{d\pi^{surp}}{dt} = \ell_\delta < 0 \) requires further restrictions on \( f_{\ell_\delta, \pi^{surp}} \), but on
net, these two channels produce the effects on current outcomes presented above.

Turning to the scaled conditional covariance between outcomes and interest rate surprises,
I obtain the following under Assumptions 1 and 2:

1. \( \frac{\text{Cov}}{\text{Var}}(\pi_t, \ell_\delta^{surp}) < 0 \) and is increasing in \( \frac{\sigma_{\ell_\delta, t-1}^2}{\sigma_{\ell_\delta, t-1}^2} \). \( \frac{\text{Cov}}{\text{Var}}(\pi_t, \ell_\delta^{surp}) \) approaches zero as \( \frac{\sigma_{\ell_\delta, t-1}^2}{\sigma_{\ell_\delta, t-1}^2} \) increases.

2. \( \frac{\text{Cov}}{\text{Var}}(\pi_t, \ell_\delta^{surp}) < 0 \) and is increasing in \( \frac{\sigma_{\ell_\delta, t-1}^2}{\sigma_{\ell_\delta, t-1}^2} \). \( \frac{\text{Cov}}{\text{Var}}(\pi_t, \ell_\delta^{surp}) \) approaches zero as \( \frac{\sigma_{\ell_\delta, t-1}^2}{\sigma_{\ell_\delta, t-1}^2} \) increases.
This statistic is a weighted average of the responses to individual underlying shocks so the intuition behind the signs of the individual shocks’ effects underlie the sign of this statistic. An increase in \( \frac{\sigma_{d,t}^2}{\sigma_{y,t}^2} \) affects the responses to individual shocks as outlined above, but also results in greater weights on the responses to \( \epsilon_{d,t} \) in this statistic. As \( \frac{\sigma_{dt,1}^2}{\sigma_{yt,1}^2} \rightarrow \infty \), \( \frac{\text{Cov}_{t-1}(\pi_t,_{i^\text{surp}})}{\text{Var}_{t-1}(i_{t^\text{surp}})} \) approaches the response measured by \( \frac{d\pi_t/\sigma_{t^\text{surp}}}{d\epsilon_t/\sigma_{t^\text{surp}}} \) which itself is zero in this limit. The same logic applies to the output gap.

The main departure from the first benchmark case above is the responses’ dependence on the relative uncertainty \( \frac{\sigma_{d,t}^2}{\sigma_{yt,1}^2} \). In this case, the interest rate policy is such that the true level and agents’ belief about demand have no impact on current or future outcomes in equilibrium. Thus, upon observing a positive interest rate surprise, private agents attribute this partly to an increase in demand which has no effect in equilibrium, and partly to a decrease in the output gap target, which has a negative effect on current outcomes and forecasts (under appropriate coefficient restrictions). Then, the net effect is always negative but it is weaker when more of the interest rate surprise is attributed to a change in demand. With the information structure in this model, this happens when uncertainty about demand is high relative to uncertainty about the output gap target.

### 3.3 The general case

For the general case, I use the following restrictions on the interest rate’s response to demand and agents’ belief about the current demand level.

**Assumption 5** \( f_d \in (0, \infty), \ f_d + f_{d,b} \in (0, \sigma (1 - \rho_d)) \)

**Assumption 6** \( f_d \in (0, \infty), \ f_d + f_{d,b} \in \left( 0, \sigma \left( \frac{2 \rho_d}{(1-\rho_d)(1-\beta \rho_d)} - \rho_d \right) \right) \)

The additional feature present under Assumption 5 is that the policy response to demand shocks is not strong enough. Then, positive changes in true demand and agents’ belief about it retain expansionary effects in equilibrium. This allows the model to produce positive responses of current and expected outcomes to positive interest rate surprises.

**Proposition 1** Given Assumptions 1, 2, and 5

1. \( \frac{d\pi_t^\text{surp}}{d\epsilon_t} = \epsilon_y < 0 < \epsilon_d = \frac{d\pi_t^\text{surp}}{d\epsilon_{d,t}} \)

2. \( \frac{d\pi_t^\text{surp}}{d\epsilon_t} \) and \( \frac{d\pi_t^\text{surp}}{d\epsilon_{d,t}} \) can both be positive for large \( \frac{\sigma_{d,t}^2}{\sigma_{y,t}^2} \).

3. \( \frac{d\pi_t^\text{surp}}{d\epsilon_t} \) and \( \frac{d\pi_t^\text{surp}}{d\epsilon_{d,t}} \) can both be positive for large \( \frac{\sigma_{d,t}^2}{\sigma_{y,t}^2} \) under Assumption 6.

4. \( \frac{\text{Cov}_{t-1}(\pi_t,_{i^\text{surp}})}{\text{Var}_{t-1}(i_{t^\text{surp}})} \) is increasing in \( \frac{\sigma_{d,t}^2}{\sigma_{y,t}^2} \) and can be positive for a large enough \( \frac{\sigma_{d,t}^2}{\sigma_{y,t}^2} \). The same is true for the output gap.
5. \[
\frac{d_y t + h_t}{d \tilde{t}} = \frac{d_y t}{d \tilde{t}} \quad \text{can be positive and are increasing in } \frac{\sigma_y^2}{\sigma_{\tilde{y}, t-1}^2}.
\]

6. \[
\frac{d \pi_t + h_t}{d \tilde{t}} = \frac{d \pi_t}{d \tilde{t}} \quad \text{can be positive and are increasing in } \frac{\sigma_{\pi}^2}{\sigma_{\pi, t-1}^2}.
\]

7. \[
\frac{\text{Cov}(\pi_t + h_t, \pi_{\text{surp}})}{\text{Var}(\pi_{\text{surp}})} \quad \text{is increasing in } \frac{\sigma_{\pi, t-1}^2}{\sigma_{\pi, t-1}^2} \quad \text{and can be positive for a large enough } \frac{\sigma_{\pi, t-1}^2}{\sigma_{\pi, t-1}^2}. \quad \text{The same is true for output gap forecasts.}
\]

**Proof.** See Appendix. ■

The part of the interest rate surprise that agents interpret as a demand increase now has a positive effect on current outcomes and forecasts. When uncertainty about demand is relatively high, this positive part of the interest rate surprises’ signaling effect on current outcomes and forecasts is large so the total response can become positive.

This mechanism has been discussed as one reason behind the expansionary responses of inflation and unemployment forecasts to positive interest rate surprises found in Romer and Romer (2000) and Campbell, Evans, Fisher, and Justiniano (2012). The theory presented here also implies that this is particularly likely to be the case when (i) the policy response to fundamental shocks is inadequate and (ii) private agents are relatively more uncertain about the strength of the economy than they are about policy objectives. The recent recession was a period of time where these conditions were plausibly present since the federal funds target effectively reached zero at the end of 2008 and there is also evidence of high economic uncertainty prior to and during the recession, such as the influential work by Bloom (2009). Section 7.4 also presents new empirical evidence that the response of inflation forecasts to interest rate surprises does indeed have a significant interaction with forecasters’ subjective uncertainty.

### 4 Optimal discretionary interest rate policy

In this section, I turn to the question of optimal discretionary interest rate policy. For now, I do not allow the central bank to directly communicate their additional information to the public aside from the information embodied in the interest rate. To retain tractability, I limit attention to the case where variances are constant parameters and consider comparative statics with respect to the relative variance \( \frac{\sigma_y^2}{\sigma_{\tilde{y}}^2} \). I discuss the implications of time-varying uncertainty for the optimal policy problem in Section 6.4. I also assume that the constant wage bill subsidy
\( \tau \) offsets the average monopolist pricing inefficiency so that the steady state is undistorted. Then, a second-order log approximation around the deterministic steady state gives that the consumers’ lifetime utility from date \( t_0 \) onwards is proportional to

\[
U_{t_0,\infty} = -\sum_{t=t_0}^{\infty} \beta^{t-t_0} \frac{1}{2} \left( \frac{y_t^2}{\kappa} + \frac{\varepsilon}{\kappa} \pi_t^2 \right) + \text{h.o.t.}
\]

where I’ve omitted constants and terms independent of policy.

I then consider a monetary authority that maximizes welfare derived from consumer utility but with an exogenous time-varying target for the output gap. A similar time-varying target has been used in other papers studying optimal policy in an imperfect information context such as Mertens (2011) and Faust and Svensson (2001). My preferred interpretation of this shock is that it summarizes short-run deviations of the efficient level of output from the natural flexible-price level of output which are not captured by the above microfoundations. Then, \( \tilde{y}_t - \bar{y}_t \) represents the deviation of actual output from the efficient level. The policymaker’s objective is to minimize the following loss

\[
L_{t_0} = E_{t_0}^{CB} \sum_{t=t_0}^{\infty} \beta^{t-t_0} \frac{1}{2} \left( (\tilde{y}_t - \bar{y}_t)^2 + \frac{\varepsilon}{\kappa} \pi_t^2 \right)
\]

where the expectation is evaluated according to his own information set\(^{10}\).

In the imperfect information case, a policymaker who cannot commit chooses the interest rate level in each period to minimize this loss subject to equilibrium conditions (1) and (2) and taking private agents’ beliefs regarding future policy and the form of current policy as given.

Beliefs regarding future policy affect the expectations \( \{\tilde{y}_{t+1|t}, \pi_{t+1|t}\} \). Since the equilibrium of this model is linear in \( \{d_t, d_{t|t}, \tilde{y}_t, y_{t|t}\} \) while beliefs satisfy \( d_{t+1|t} = \rho_d d_{t|t} \) and \( \tilde{y}_{t+1|t} = \rho_y \tilde{y}_{t|t} \), these expectations can be written in matrix form as

\[
\begin{bmatrix}
\tilde{y}_{t+1|t} \\
\pi_{t+1|t}
\end{bmatrix} = \mathbf{M} \begin{bmatrix}
d_{t+1|t} \\
y_{t+1|t}
\end{bmatrix}
\]

In equilibrium, the coefficients in the matrix \( \mathbf{M} \) are determined by the behavior of future

\(^{10}\)The model equations can be rearranged into the canonical form studied in Clarida, Gali, and Gertler (1999) where the output gap target shock shows up as both a positive cost-push shock and a negative component of the demand shock.
nominal interest rates. Then, taking private agents’ beliefs about future policy as given amounts to the policymaker recognizing that his current choice does not have an effect on this \( M \) matrix. However, the policymaker does recognize that his choice impacts \( \{d_{t+1|t}, \tilde{y}_{t+1|t}\} \) and therefore has a marginal effect on current outcomes through \( \{\tilde{y}_{t+1|t}, \pi_{t+1|t}\} \). This is in contrast to the discretionary policy problem under perfect information where the interest rate level chosen today has zero impact on these expectations.

Unlike the perfect information case, private agents’ beliefs about the form of current policy is now relevant since it determines private agents’ belief formation process. When private agents suppose that the behavior of the current interest rate can be described by

\[
i_t = f_d d_t + f_{d,b} d_{t|t} + f_g \tilde{y}_t + f_{g,b} \tilde{y}_{t|t}
\]

then beliefs follow

\[
d_{t|t} = \rho_d d_{t-1} + K_d i_t^{surp}
\]

\[
\tilde{y}_{t|t} = \rho_g \tilde{y}_{t-1} + K_g i_t^{surp}
\]

where \( i_t^{surp} = i_t - f_d \rho_d d_{t-1} - f_{d,b} d_{t|t} - f_g \rho_g \tilde{y}_{t-1} - f_{g,b} \tilde{y}_{t|t} \)

as shown above, where \( K_d \) and \( K_g \) take the forms given in (8) and (9) with \( \sigma_d^2 \) now being constant. To get around the circularity issue introduced by the interest rate surprise \( i_t^{surp} \) itself being a function of beliefs, I redefine the policy problem as a choice of a component of the interest rate \( i_t^{dis} \) where the realized nominal rate is

\[
i_t = i_t^{dis} + f_{d,b} d_{t|t} + f_{g,b} \tilde{y}_{t|t}
\]

Since the policymaker is free to choose any value of \( i_t^{dis} \), this still gives him full control over the resulting behavior of \( i_t \) and so it does not impose any additional constraint on the policy problem. The benefit of this relabeling is that beliefs can now be written neatly as a function of \( i_t^{dis} \) and lagged exogenous state variables.

\[
d_{t|t} = \rho_d d_{t-1} + K_d \left(i_t^{dis} - f_d \rho_d d_{t-1} - f_g \rho_g \tilde{y}_{t-1}\right)
\]

\[
\tilde{y}_{t|t} = \rho_g \tilde{y}_{t-1} + K_g \left(i_t^{dis} - f_d \rho_d d_{t-1} - f_g \rho_g \tilde{y}_{t-1}\right)
\]

Then, a policymaker who takes private agents’ beliefs about current policy as given considers a change in \( i_t^{dis} \) to have marginal effects of \( K_d \) and \( K_g \) on beliefs \( d_{t|t} \) and \( \tilde{y}_{t|t} \), respectively.

To summarize, a policymaker who can only choose the interest rate level today and cannot make credible commitments about future policy does not internalize the effect of equilibrium interest rate behavior on the following objects: (i) the \( M \) matrix which captures the relationship between beliefs about state variables and expectations \( \{\tilde{y}_{t+1|t}, \pi_{t+1|t}\} \) as well as (ii) the belief
coefficients $K_d$ and $K_g$ which capture the marginal effects of the interest rate on beliefs. This is consistent with the notion that the policymaker chooses the current level of the nominal interest rate but cannot commit to implementing a particular interest rate rule. The main difference from the perfect information discretionary policy problem is that the policymaker recognizes that he can influence expectations of future outcomes through the beliefs in the vector $[d_{it}, \tilde{y}_{it}]'$ in equation (10).

Because the policymaker minimizes a quadratic loss function subject to linear constraints of the same form in each period, the optimal interest rate ends up having the same form as (11). Solving for an equilibrium under optimal policy then consists of finding a solution to the set of linear stochastic difference equations given by (1), (2), (5), (6), (12), (13), and the policymaker’s optimality condition.

**Proposition 2** The policymaker’s optimality condition is

$$\tilde{y}_t - \bar{y}_t = -\mathcal{R} \frac{\pi_t}{\kappa}$$

where

$$\mathcal{R} = \frac{\partial \pi_t}{\partial d_{t}^{\text{dis}}} - \frac{\partial \pi_t}{\partial y_t} K_{\bar{y}}$$

in equilibrium.

$\mathcal{R}$ is itself a function of interest rate response coefficients and is therefore determined in equilibrium. There may be multiple equilibrium values for $\mathcal{R}$ but those that satisfy $\mathcal{R} \geq 0$ exhibit the following properties when $\beta \rho_y > 0$:

1. $\mathcal{R} \in \left[\kappa, \frac{\kappa}{1-\beta \rho_y}\right]$

2. $\mathcal{R}$ is decreasing in $\frac{\sigma_y^2}{\sigma_y^2}$

   - As $\frac{\sigma_y^2}{\sigma_y^2} \to \infty$, $K_{\bar{y}} \to 0$ and $\mathcal{R} \to \kappa$. In this limit, the interest rate has no effect on $\tilde{y}_{it}$ and the optimality condition for policy becomes equivalent to that in the case of optimal discretionary policy when agents have perfect information.

   - As $\frac{\sigma_y^2}{\sigma_y^2} \to 0$, $K_{\bar{y}} \to \frac{1}{f_y}$ and $\mathcal{R} \to \frac{\kappa}{1-\beta \rho_y}$. In this limit, the interest rate has its largest possible effect on $\tilde{y}_{it}$ and the optimality condition for policy becomes equivalent to that in the case of commitment to a rule of the form

   $$i_t = r_t^0 + f_y c \tilde{y}_t + f_y c \tilde{y}_{it}$$

3. When $\beta = 0$ or $\rho_y = 0$, $\mathcal{R} = \kappa$ in equilibrium for any value of $\frac{\sigma_y^2}{\sigma_y^2}$.

This optimal policy solution is unique under any initial supposed private sector belief about current policy that results in beliefs $d_{it}$ and $\tilde{y}_{it}$ that are linear in $i_t^{\text{dis}}$. More specifically, the
same solution is obtained if (11) is replaced with a belief that the current interest rate may also respond linearly to the entire history of past fundamentals.

**Proof.** See Appendix. ■

The optimal policy results in this environment can be understood by noting that the signaling channel tilts the policymaker’s short-run tradeoff between inflation and deviations of the output gap from its target. To better understand this, note that the policymaker’s problem can be recast as one in which he chooses \( \tilde{y}_t \) since there is a one-to-one mapping between the nominal interest rate and \( \tilde{y}_t \) through equation (1). Then, the only remaining constraint imposed on the policymaker is the second equilibrium condition, equation (2), which I rewrite here in terms of the output gap deviation from its target.

\[
\pi_t = \beta \pi_{t+1\mid t} + \kappa (\tilde{y}_t - \bar{y}_t) + \kappa \bar{y}_t
\]

This New Keynesian Phillips curve then summarizes the policymaker’s tradeoff between \( \pi_t \) and \( \tilde{y}_t - \bar{y}_t \). In the perfect information setting, the discretionary policymaker has no impact on \( \pi_{t+1\mid t} \). Therefore, the slope of this constraint is

\[
R^{PI} = \frac{\partial \pi_t}{\partial \tilde{y}_t} = \kappa
\]

When the policymaker has an information advantage, the nominal interest rate now impacts the expectation \( \pi_{t+1\mid t} \) through the belief \( y_{t\mid t} \) since the policymaker recognizes that

\[
\pi_{t+1\mid t} = M_{22} \rho_y \tilde{y}_{t\mid t} \quad \text{and} \quad \frac{d \tilde{y}_{t\mid t}}{d \tilde{y}_t} = K \tilde{y}_t
\]

where \( M_{22} \) is the lower right element of the matrix \( M \) that appears in (10). This changes the slope of the policymaker’s constraint to

\[
R = \frac{\partial \pi_t}{\partial \tilde{y}_t} = \frac{\partial \pi_t}{\partial \tilde{y}_t} + \frac{\partial \pi_t}{\partial d_{t\mid t}} \frac{dd_{t\mid t}}{d \tilde{y}_t} + \frac{\partial \pi_t}{\partial \bar{y}_t} \frac{d \bar{y}_t}{d \tilde{y}_t}
\]

Thus, the policymaker’s optimality condition retains the same form as the perfect information setting where the goal is to maintain an optimal ratio between output and inflation deviations. The key difference is that the slope \( R \) governing this ratio now depends crucially on the size of the effects that the interest rate has on beliefs.

In equilibrium, \( R \) depends only on the effect that interest rates have agents’ belief about the output gap target and not their belief about demand. This is because the policymaker perfectly offsets the effects of changes in the belief about demand on outcomes so that \( \frac{\partial \pi_t}{\partial d_{t\mid t}} = \frac{\partial \tilde{y}_t}{\partial d_{t\mid t}} = 0 \) in equilibrium. Then, the interest rate still affects \( d_{t\mid t} \), but inflation expectations are not ultimately
affected through this channel. On the other hand, changes in the true level and belief about the output gap target will affect inflation expectations under the optimal policy. Thus, what ultimately matters for optimal policy is how much influence the policymaker has on this belief.

Solving for the equilibrium value of $R$ reveals that $R \geq \kappa$, meaning that it’s optimal to maintain smaller inflation deviations relative to output deviations when policy has a larger signaling effect on $\bar{y}_{t|t}$. This reduces the usual stabilization bias that occurs in perfect information New Keynesian models where short-run inflation fluctuations are inefficiently large when a policymaker is not able to commit. As uncertainty about the output gap target grows relative to uncertainty about demand shocks, policy’s signaling effect on $\bar{y}_{t|t}$ becomes larger and this stabilization bias is further reduced. In a more general setting where there may be additional shocks to the rate-setting process, the key measures are uncertainty about the output gap target relative to uncertainty about all other unobserved components of $i_t$.

At the limits of the interest rate’s influence on beliefs, the optimal discretionary policy in this imperfect information model corresponds with some familiar benchmarks. When $\frac{\sigma_y^2}{\sigma_i^2} \to \infty$, the interest rate has no effect on beliefs about the output gap target shock and the optimal discretionary policy under imperfect information coincides with that under perfect information. When $\frac{\sigma_i^2}{\sigma_y^2} \to 0$, the interest rate has its largest possible effect on beliefs about the output gap target shock and the optimal discretionary policy coincides with the optimal policy when the policymaker can commit to an interest rate rule of the form given above. In other words, there is no benefit to this type of commitment at this limit.

In this particular example, the optimal discretionary policy at this limit also coincides with the optimal policy under perfect information when the policymaker can commit to a rule of the form considered in section 4.2.1 of Clarida, Galí, and Gertler (1999) which is

$$i_t = r^n_t + f^c_y \bar{y}_t$$

Lastly, there are two special cases where the equilibrium ratio $R$ does not depend on relative variances levels. This happens when $\rho_y = 0$ or $\beta = 0$.

1. In the $\rho_y = 0$ case, the output gap target becomes white noise so expectations about future levels are always zero. The policymaker only affects agents’ belief about the current output gap target which has no direct impact on current outcomes.

2. In the case of $\beta = 0$, inflation expectations no longer affect the current policy tradeoff since prices are set by firms who no longer take the future into account. Note that the key discount factor that $\beta$ is capturing in this special case is the one used by firms in their price-setting decision. This result still holds if I assume that consumers, and hence the central bank, maintain a positive discount factor different from the firms’.

The stationary equilibrium under this optimality condition features an output gap and
inflation which are linear in $\bar{y}_t$ and $\bar{y}_{t|t}$

$$\bar{y}_t - \bar{y}_t = -\frac{\varepsilon \mathcal{R}}{1 + \varepsilon \mathcal{R}} \bar{y}_t - \frac{\varepsilon \mathcal{R} \beta y}{1 - \beta \rho_y} \bar{y}_{t|t}$$

$$\pi_t = \frac{\kappa}{1 + \varepsilon \mathcal{R}} \bar{y}_t + \frac{\kappa \beta \rho_y}{1 - \beta \rho_y} \bar{y}_{t|t}$$

(15)  

(16)

The next result characterizes the interest rate which implements this equilibrium.

**Corollary 1** A nominal interest rate which can implement this policy is given by

$$i_t^* = r_t^n + f_y^*(\mathcal{R}) \bar{y}_t + f_{y,b}^*(\mathcal{R}) \bar{y}_{t|t}$$

The interest rate moves one-for-one with the natural rate of interest while $f_y^*$ and $f_{y,b}^*$ are functions of $\sigma_y^2$ through $\mathcal{R}$. This interest rate behavior matches that assumed in the second benchmark case above with coefficients on $\bar{y}_t$ and $\bar{y}_{t|t}$ that satisfy Assumption 3. The exact expressions for the functions $f_y^*(\cdot)$ and $f_{y,b}^*(\cdot)$ are given in the Appendix.

This can be compared to the nominal interest rate under optimal discretionary policy in the perfect information case which can be written as

$$i_t^{*,PI} = r_t^n + (f_y^*(\kappa) + f_{y,b}^*(\kappa)) \bar{y}_t$$

To ensure unique implementation, the interest rate specification can be augmented by a term that reacts more than one-for-one to deviations of inflation from its intended path

$$i_t^* = r_t^n + (f_y^*(\mathcal{R}) - \phi_y \Gamma_y) \bar{y}_t + (f_{y,b}^*(\mathcal{R}) - \phi_{y,b} \Gamma_{y,b}) \bar{y}_{t|t} + \phi_y \pi_t$$

where $\Gamma_y, \Gamma_{y,b}$ are the coefficients on $\bar{y}_t$ and $\bar{y}_{t|t}$ in the equilibrium solution for $\pi_t$. Choosing $\phi_y > 1$ ensures that the intended equilibrium is the unique solution in the system of equations defined by (1), (2), (5), (6), (12), (13), and this interest rate rule.

**Proof.** See Appendix. ■

A necessary element in these results is that the policymaker has an information advantage regarding an outcome-relevant state variable that has some persistence. I use the term "outcome-relevant" to mean that it creates an inflation-output tradeoff and therefore affects equilibrium outcomes under the optimal policy. This provides the channel through which the current interest rate level can affect expectations $\{\bar{y}_{t+1|t}, \pi_{t+1|t}\}$. Without a state variable that has these features, optimal policy becomes invariant to the signaling channel.

To be precise, consider a model analogous to the one proposed above but with a more general set of shocks. I denote the set of exogenous state variables with a vector $z_t$ that evolves as a
VAR(1) process with independent shocks

\[ z_t = \Upsilon z_{t-1} + e_t, \quad e_t \sim \text{iid } N(0, \Sigma) \] where \( \Sigma \) is diagonal

I partition this vector into two subvectors \( z_{1,t}, z_{2,t} \) where \( z_{1,t} \) is perfectly observed by private agents while they can only see the true value of \( z_{2,t} \) with a lag. I also restrict \( \Upsilon \) so that \( z_{1,t} \) does not depend on lags of \( z_{2,t-1} \) (i.e., \( \Upsilon_{12} = 0 \)) and assume that the eigenvalues of \( \Upsilon \) are less than one in absolute value.

Again, the central bank’s information advantage is that they can observe the current \( z_{2,t} \) while private agents cannot. I then let private agents suppose that the interest rate \( i_t \) is linear in \( z_{1,t}, z_{2,t}, z_{2,t} \) which is the case under the optimal discretionary policy. Let the equilibrium conditions in this model be

\[
\begin{align*}
\ddot{y}_t^{CB} &= \ddot{y}_{t+1}^{CB} - \frac{1}{\sigma} \left( i_t - \pi_{t+1|t} \right) + \Xi \ddot{y}_t z_t \\
\pi_t &= \beta \pi_{t+1|t} + \kappa \ddot{y}_t^{CB} + \Xi \pi z_t
\end{align*}
\]

where I now use \( \ddot{y}_t^{CB} \) to denote the welfare-relevant output gap under this alternate configuration of shocks. Then, I obtain the following

**Proposition 3** Suppose that the shocks in \( z_{2,t} \) do not impose an output-inflation tradeoff. That is, suppose that \( \Xi \pi z_t = \Xi \pi z_{1,t} \) so that only shocks in \( z_{1,t} \) enter into the inflation equilibrium condition. Then the equilibrium under the discretionary optimal policy features

\[
\begin{align*}
\frac{d\ddot{y}_t^{CB}}{dz_{2,t}} &= \frac{d\pi_t}{dz_{2,t}} = 0 \quad \text{while the policymaker’s optimality condition becomes the same as the perfect information case}
\end{align*}
\]

\[ \ddot{y}_t^{CB} = -\varepsilon \pi_t \]

**Proof.** See Appendix. ■

In the language of New Keynesian models, this result show that if the policymaker only has an information advantage regarding demand or natural real interest rate shocks while not having superior knowledge regarding cost-push-type shocks, then the policymaker optimally maintains the same ratio between output gap and inflation deviations as in the perfect information case. While changes in the interest rate still have an effect on private agents’ beliefs \( z_{2,t|t} \), the presence of this signaling channel does not impact optimal discretionary policy when the information advantage is limited to this class of shocks.

### 5 The value of information

In this section, I consider whether it would be beneficial for the policymaker to directly communicate information to private agents. I will first compare the welfare losses under the two
extremes of no communication and full communication. Later on in this section, I examine the case of partial communication.

The no communication case is the one analyzed above where the policymaker can only choose the interest rate under the given asymmetric information structure. Under full communication, the central bank costlessly and noiselessly discloses the true values of both current exogenous states \( \{d_t, \bar{y}_t\} \) to all private agents prior to the observation of the interest rate so that the setting is equivalent to the standard perfect information case. In each of these cases, I presume that the central bank is implementing the optimal discretionary interest rate policy.

The loss under no communication can be evaluated using the equilibrium shown in the previous section. Meanwhile, optimal discretionary policy under full communication is

\[
\ddot{y}_t^{PI} - \ddot{y}_t = -\varepsilon \pi_t^{PI}
\]

Substituting this into (2) and solving forward gives the equilibrium solutions

\[
\ddot{y}_t^{PI} - \ddot{y}_t = \frac{-\varepsilon \kappa}{1 - \beta \rho_y + \varepsilon \kappa} \ddot{y}_t \quad \text{and} \quad \pi_t^{PI} = \frac{\kappa}{1 - \beta \rho_y + \varepsilon \kappa} \ddot{y}_t
\]

The period \( t \) welfare loss consists of a current period loss and an expected future loss

\[
L_t = \left( \bar{y}_t - \ddot{y}_t \right)^2 + \frac{\varepsilon \pi_t^2}{\kappa} + E_t^{CB} \sum_{s=t+1}^{\infty} \beta^{s-t} \left( \left( \bar{y}_s - \ddot{y}_s \right)^2 + \frac{\varepsilon \pi_s^2}{\kappa} \right)
\]

\[
\beta E_t^{CB} L_{t+1}
\]

**Proposition 4** Under an equilibrium where \( \mathcal{R} \geq 0 \),

1. The expected future loss is always higher under full communication

\[
E_t^{CB} L_{t+1} \leq E_t^{CB} L_{t+1}^{PI}
\]

2. The current period loss under no communication may be higher or lower than the full communication case. The difference depends on the current realizations of shocks \( \{\epsilon_{d,t}, \epsilon_{\bar{y},t}\} \).

**Proof.** See Appendix. ■

The gains from no communication relative to full communication comes from two sources. The first is the reduction in the stabilization bias when the interest rate’s signaling effect on inflation expectations leads a discretionary policymaker to be tougher on inflation. The second benefit comes from imperfect information resulting in smaller inflation and output fluctuations even absent a reduction in the stabilization bias. To understand this better, first note that the policymaker is always able to fully offset the effects of changes in demand. Now, consider a positive shock to the output gap target which leads the policymaker to boost output by lowering
the interest rate. The inflation fluctuations created by this action depend on both its impact on firms’ current marginal costs as well as their forecasts of future marginal costs where the latter depends on firms’ beliefs. In the perfect information setting, these components move in tandem since they both depend only on the true output gap target. When firms are imperfectly informed, their forecasts of future marginal costs depend on their beliefs about the output gap target which now moves less than one-for-one with true output gap target shocks while now also moving with demand shocks. Thus, for a given deviation of output away from its efficient level, the resulting inflation fluctuation is now spread across both shocks and ends up being smaller on average. As an extreme example, suppose that after setting the interest rate, the central bank can independently manipulate beliefs by choosing any value of \( y_{t|t} \). Then, it’s clear from the equilibrium in (15) and (16) that it’s always optimal to choose \( y_{t|t} \) in a way that offsets \( \hat{y}_t \). Maintaining imperfect information helps the policymaker to get closer to this ideal.

I can also show that these two benefits of no communication operate independently.

**Corollary 2** To isolate the benefit from an interest rate policy that now exhibits a smaller stabilization bias, I exogenously impose that \( \bar{y}_{s|s} = \bar{y}_s \) for \( s > t \) in evaluating the welfare losses. In this case,

\[
E_t^{CB} L_{t+1} \leq E_t^{CB} L_{t+1}^{PI} \quad \text{for } R \in \left[ \kappa, \frac{\kappa}{1 - \beta \rho_y} \right]
\]

To isolate the benefit of beliefs that do not correlate perfectly with true states, I exogenously impose \( R = \kappa \). In this case,

\[
E_t^{CB} L_{t+1} \leq E_t^{CB} L_{t+1}^{PI}
\]

when \( Var_t^{CB} (\bar{y}_{s|s}) \leq Var_t^{CB} (\bar{y}_s) \) and \( Corr_t^{CB} (\bar{y}_{s|s}, \bar{y}_s) \leq 1 \) for \( s > t \)

which is satisfied in this model.

**Proof.** See Appendix.

As a second exercise, I now consider partial communication where the central bank perfectly communicates the true value of one of the current exogenous states to private agents prior to the realization of the interest rate. The true value of the remaining exogenous state is then perfectly inferred once the interest rate is observed so that all agents are perfectly informed in equilibrium as in the full communication case. The key difference from the full communication case is that the interest rate retains a signaling effect on private agents’ beliefs since it is used to infer the remaining exogenous state which was not already communicated.

I will first consider the case of the central bank communicating the true current state of demand to agents prior to their observation of the interest rate, then their belief about the
current level of the output gap target is inferred from the interest rate as

$$\bar{y}_{t|t} = \frac{1}{f_y} \left( i^{dis}_t - f_d d_t \right)$$

Thus, a discretionary policymaker still faces a signaling effect of $K_y = \frac{d \bar{y}_{t|t}}{dy_t} = \frac{1}{f_y}$ when choosing the interest rate though private agents’ beliefs will be correct in equilibrium. This maximizes the marginal effect of the discretionary policymaker’s interest rate choice on inflation expectations and results in an inflation-output tradeoff characterized by $\mathcal{R} = \frac{\kappa}{1 - \beta \rho_y}$. This achieves the largest possible reduction in the stabilization bias through the signaling channel and raises welfare compared to both the no communication and full communication cases. However, because agents are perfectly informed in equilibrium, beliefs about the output gap target will now move in sync with true shocks which lowers welfare compared to the no communication case. On net, partial communication of only the demand shock is always preferable to full communication but is not unambiguously preferable to no communication.

**Proposition 5** Under an equilibrium where $\mathcal{R} \geq 0$ and with partial communication of only the demand shock denoted by a $d$ superscript,

1. Both the current and expected future welfare losses are higher under full communication than under partial communication of only the demand shock

$$E_t^{CB} L_d^{d} \leq E_t^{CB} L^{PI}_{t+1} \text{ and } l_d^{d} \leq l^{PI} \text{ for any realization of shocks } \{\epsilon_{d,t}, \epsilon_{y,t}\}$$

2. The expected future welfare loss under no communication may be higher or lower than under partial communication of only the demand shock. The difference cannot be unambiguously signed and depends on parameter values.

3. The current period loss under no communication may be higher or lower than under partial communication of only the demand shock. The difference depends on the current realizations of shocks $\{\epsilon_{d,t}, \epsilon_{y,t}\}$ even for a fixed set of parameter values.

**Proof.** See Appendix. ■

Partial communication of only the true current output gap target prior to private agents’ observation of the interest rate results in the same optimal discretionary interest rate policy and welfare loss as full communication. In this case, the interest rate’s signaling effect is only on agents beliefs about demand. As discussed in Section 4, demand shocks are perfectly offset by the policymaker and do not affect inflation in equilibrium. Therefore, the interest rate does not have a signaling effect on inflation expectations through beliefs about demand which results in no reduction of the stabilization bias.
The fact that the current period loss is not unambiguously lower under either no communication or partial communication of only the demand shock implies that this choice features time inconsistency. For a fixed set of parameter values, the central bank always wants to commit to one of these communication policies for future periods. However, there may be realizations of shocks that make the alternate communication policy preferable after taking into account current welfare, which would go against the policymakers’ commitment. This property also suggests that a full analysis of optimal discretionary communication policy in this setting would involve private agents’ beliefs that are formed by a non-Gaussian signal extraction problem. When it’s optimal for the policymaker to communicate only in certain states, then a decision to withhold information is itself informative.

6 Extensions

6.1 Adding more structural shocks

In this section, I explore how the above results may change in environments with a richer set of structural shocks. The optimal discretionary policy is affected by the existence of a signaling channel only through a change in the slope of the short-run inflation-output tradeoff which, in turn, determines the optimal ratio maintained between output gap and inflation deviations. An immediate consequence of this property is that the interest rate should still perfectly offset shocks that affect only the natural real rate of interest regardless of whether the policymaker possesses an information advantage on these shocks.

On the other hand, the presence of additional cost-push-type shocks, which the policymaker cannot perfectly offset, produces more interesting results. First, consider the case of adding a shock $v_t$ to the firms’ price-setting equation so that it becomes

$$
\pi_t = \beta \pi_{t+1|t} + \kappa \tilde{y}_t + v_t
$$

where $v_t = \rho_v v_{t-1} + \epsilon_{v,t}$ with $\epsilon_{v,t} \sim \text{iid } N(0, \sigma^2_v)$ and $\rho_v \in [0, \rho)$. I first assume that both private agents and the policymaker can see the entire history $v^t$ at time $t$ so that the policymaker has no information advantage regarding this shock. Then, I obtain the following

**Proposition 6** The optimal interest rate under discretionary policy with an additional cost-push shock which the policymaker does not have an information advantage for is

$$
i_t^* = r_t^0 + f^*_y(\mathcal{R}) \tilde{y}_t + f^*_{\tilde{y},y}(\mathcal{R}) \tilde{y}^t_{t|t} + f^*_v(\mathcal{R}) v_t
$$

where $\mathcal{R}$ depends on underlying parameters in the same way as in the baseline model.
This can be compared to the optimal interest rate under perfect information

\[ i^{*PL}_t = r^n_t + \left( f^*_y (\kappa) + f^*_{y,b} (\kappa) \right) \bar{y}_t + f^*_v (\kappa) v_t \]

The expression for the function \( f^*_v (\cdot) \) is given in the Appendix.

Proof. See Appendix. ■

Despite the policymaker not having an information advantage about the cost-push shock \( v_t \), the optimal response to this shock is still influenced by the signaling effect that the interest rate has on private agents’ belief about the output gap target. The presence of that signaling effect tilts the short-run inflation-output tradeoff in a way that leads the policymaker to enforce smaller inflation deviations conditional on any shock to the economy.

Another result of adding a cost-push shock is that the optimal discretionary policy in the limit when the interest rate has its largest effect on expectations no longer corresponds to the optimal commitment to a rule of the form

\[ i_t = r^n_t + f^c_y \bar{y}_t + f^c_{y,b} \bar{y}_{t|t} + f^c_v v_t \]

in this limit. The Appendix shows that an optimal commitment to this type of rule implies the same response coefficients for \( \bar{y}_t \) and \( \bar{y}_{t|t} \) but a different response to \( v_t \) given by

\[ f^{*,c}_v = f^*_v \left( \frac{\kappa}{1 - \beta \rho_v} \right) \neq f^*_v \left( \frac{\kappa}{1 - \beta \rho_y} \right) \]

where the last term is the optimal discretionary response to \( v_t \) in this limit as \( R \to \frac{\kappa}{1 - \beta \rho_y} \). Since \( f^*_v (\cdot) \) is increasing in its argument, then if \( \rho_v < \rho_y \), the policymaker operating without commitment actually chooses an interest rate that overreacts to the cost-push shock \( v_t \) relative to the policymaker who can commit to a rule of the form given above. Due to this overreaction, it’s possible for full communication to be welfare-improving in this case depending on the relative importance of the different shocks.

I can also consider the case where the policymaker has an information advantage about \( v_t \) in addition to \( \{d_t, \bar{y}_t\} \). Moreover, beliefs are formed under the following supposed current interest rate behavior which replaces equation (11)

\[ i_t = f_d d_t + f_{d,b} d_{t|t} + f_y \bar{y}_t + f_{y,b} \bar{y}_{t|t} + f_v v_t + f_{v,b} v_{t|t} \]

Now there are three private agent beliefs \( \{d_{t|t}, \bar{y}_{t|t}, v_{t|t}\} \) all of which are linear in \( i^{dis}_t \). If I define \( K_v \equiv \frac{d_{v|t}}{d^{dis}_t} \), then the optimal discretionary policy can be shown to be equivalent to the one derived above in the baseline model with the exception that now, the equilibrium \( R \) depends
on $K_v$ as follows:

$$
\mathcal{R} \equiv \frac{d\pi_t}{d\pi_t^{\text{dis}}} = \frac{\partial \pi_t}{\partial \pi_t^{\text{dis}}} + \frac{\partial \pi_t}{\partial \pi_t^{\text{dis}}} K_y + \frac{\partial \pi_t}{\partial \pi_t^{\text{dis}}} K_v
$$

where $K_y$ and $K_v$ will now depend on $\sigma_y^2, \sigma_y^2$, and the policy coefficients.

### 6.2 Lagged states not observed

When agents cannot see the true lagged states, then beliefs are formed through a Kalman filter rather than a static signal extraction problem. This is the information structure which is more commonly found in the recent literature studying imperfect information in New Keynesian models such as Lorenzoni (2009), Mertens (2011), Berkelmans (2011). The same technique from Svensson and Woodford (2003) used above to deal with the circularity issue present in the belief formation problem can also be applied here. With $\rho_t, \rho_y < 1$ and constant variances, this Kalman filter converges to a steady state where beliefs are given by

$$
\begin{bmatrix}
    d_{t+1} \\
    y_{t+1}
\end{bmatrix} =
\begin{bmatrix}
    d_{t+1} \\
    y_{t+1}
\end{bmatrix} +
\begin{bmatrix}
    \hat{K}_d \\
    \hat{K}_y
\end{bmatrix}
\begin{bmatrix}
    t_{t+1} - f_d d_{t+1} - f_y y_{t+1}
\end{bmatrix}
$$

where $d_{t+1} = \rho_d d_{t+1}$ and $y_{t+1} = \rho_y y_{t+1}$. In this steady state, the $\hat{K}_d, \hat{K}_y$ coefficients are functions of the parameters $\{\rho_d, \rho_y, f_d, f_y, \sigma_d^2, \sigma_y^2\}$. The main difference now is that agents’ prior beliefs are no longer reset based on observations of the true lagged values in each period. Rather, beliefs from period $t$ form the prior belief for period $t + 1$. In essence, this change in the information structure turns private agents’ beliefs into an additional set of endogenous state variables which policy influences.

This adds another dimension to the interest rate’s signaling effect. When agents can see lagged true fundamentals, the interest rate’s signaling effect is limited to private agents’ current expectations. When agents cannot see lagged fundamentals, the policymaker’s choice of the current interest rate now also affects future beliefs and thereby, future outcomes. This additional effect adds a set of new terms to the policymaker’s optimality condition

$$
\begin{align}
\hat{y}_t - \bar{y}_t &= -\mathcal{R} E_t^{CB} [\hat{y}_{t+1} - \bar{y}_{t+1}] d\bar{y}_{t+1}^{\text{dis}}/d\bar{y}_t^{\text{dis}} + \mathcal{R} E_t^{CB} [\pi_{t+1}] d\pi_{t+1}^{\text{dis}}/d\bar{y}_t^{\text{dis}}
\end{align}
$$

In equilibrium, this optimality condition still implies a forward-looking optimal interest rate level which is linear in $\{d_t, d_{t+1}, \hat{y}_t, \bar{y}_t\}$. When expressed in this form, the optimal interest rate no longer moves one-for-one with the natural real rate and a part that’s linear in $[\bar{y}_t, \hat{y}_t]$. To be precise, I denote the optimal interest rate and policy coefficients under this altered information structure by a superscript ** and show that
Proposition 7 In general, when agents cannot see lagged true states

\[ i_t^* \neq r_t^n + f_{y,t}^* \bar{y}_t + f_{y,b,t}^* \bar{y}_b | t \] for any \( f_{y,t}^* , f_{y,b,t}^* \)

Proof. See Appendix. □

To understand the intuition behind this property, suppose instead that the interest rate continues to respond one-for-one to \( r_t^n = \sigma (d_t - \rho_d d_{t|t}) \). This offsets the contemporaneous effects of the natural real rate on outcomes so that ultimately, \( \bar{y}_t \) and \( \pi_t \) move only with variations in the true level and belief about the output gap target. However, now that agents cannot see lagged true states, the current forecast error made about demand carries through to the next period and affects future outcomes through \( \bar{y}_{t+1|t+1} \). Thus, \( d_t \) and \( d_{t|t} \) have a new intertemporal effect on future outcomes through the forecast error \( d_t - d_{t|t} \). A policymaker with an information advantage can detect this forecast error and foresee this effect. This introduces a new element to the tradeoff he faces when deciding how to respond to \( d_t \) and \( d_{t|t} \), which alters the resulting optimal response. The following corollary gives special cases where this new consideration does not apply and the policymaker again finds it optimal to set a nominal interest rate that moves one-for-one with the natural real rate.

Corollary 3 (i) Under \( \hat{K}_d = 0, \hat{K}_y = 0 \), or \( \rho_y = \rho_d \), the interest rate does not affect future beliefs and optimal policy is the same as the case where agents could see lagged true states.

\[ i_t^* = r_t^n + f_{y,t}^* \bar{y}_t + f_{y,b,t}^* \bar{y}_b | t \]

(ii) When \( \rho_d = 0 \), the optimal interest rate responds one-for-one to the natural real rate, but the responses to the output gap target and private agents’ belief about it differ.

\[ i_t^* = r_t^n + f_{y,t}^{**} \bar{y}_t + f_{y,b,t}^{**} \bar{y}_b | t, \text{ where } f_{y,t}^{**} \neq f_{y,t}^* \text{ and } f_{y,b,t}^{**} \neq f_{y,b,t}^* \]

Proof. See Appendix. □

In the first set of special cases, beliefs become a function only of the current interest rate in equilibrium so there is no effect of a marginal change in the interest rate on future outcomes. In the second special case with \( \rho_d = 0 \), though the current interest rate still affects future outcomes through prior beliefs that agents carry into the next period, the current forecast error for the demand shock has no intertemporal effect on future beliefs. Then, the tradeoff with respect to \( d_t \) and \( d_{t|t} \) becomes equivalent to the case above where they only have contemporaneous effects.

6.3 The zero lower bound

A zero lower bound on the nominal interest rate introduces an extra constraint \( i_t \geq 0 \) to the policymaker’s optimization problem. One immediate consequence of introducing this nonlinear
equation to the model is that the solutions for $\ddot{y}_t$ and $\pi_t$ are now nonlinear functions of exogenous state variables. An optimally chosen $i_t$ will also no longer be linear. In general, this means that agents must now form beliefs via a nonlinear filtering problem. The added computational complexity involved with this procedure takes a formal analysis of the ZLB case beyond the scope of this paper, but it’s still possible to make some general observations by examining the optimality conditions.

When the ZLB is binding, there is a new term in the policymaker’s optimality condition which I denote by $\mu_t$. This term is a function of the Lagrange multiplier on this constraint and is a measure of the amount by which the output gap and inflation fall short in these periods compared to the case where the policymaker was free to set a negative $i_t$.

\[
\ddot{y}_t - \bar{y}_t + R_t \frac{\varepsilon}{\kappa} \bar{\pi}_t = \mu_t \leq 0
\]

$R_t$ retains the form

\[
R_t \equiv \frac{d\pi_t}{dy_t} = \frac{\partial \pi_t}{\partial \bar{y}_t} + \frac{\partial \pi_t}{\partial \bar{d}_t} \frac{dd_t}{dy_t} + \frac{\partial \pi_t}{\partial \bar{\pi}_t} \frac{d\bar{\pi}_t}{dy_t}
\]

where the added time subscript captures the fact that the marginal effects in this ratio are now functions of the state variables since $\ddot{y}_t$ and $\pi_t$ are no longer linear.

Now, I turn to the impact of the ZLB on optimal policy in periods when the constraint is not binding. The discretionary policy optimality condition still has the same form as above in these periods with

\[
\ddot{y}_t - \bar{y}_t = R_t \frac{\varepsilon}{\kappa} \bar{\pi}_t
\]

The presence of a ZLB then alters how the economy behaves even in periods when it’s not binding through changes in the equilibrium determination of $R_t$. One difference comes simply from the new nonlinearities in the equilibrium solutions. Another change that is specific to the current information setup is that with some probability of the ZLB binding in the future, there’s a nonzero probability that the policymaker will be unable to fully offset the effects of future demand shocks on $\ddot{y}_{t+1}$ and $\pi_{t+1}$. Then, beliefs about demand levels will have an effect on current outcomes through expectations. This means that when the economy is close to hitting the ZLB, the interest rate’s effect on beliefs about demand start to impact the policymaker’s short-run inflation-output tradeoff captured by $R_t$. Recall that in the case above without a ZLB, it was only the interest rate’s effect on beliefs about the output gap target that mattered.

The presence of a ZLB in conjunction with the interest rate having a signaling channel also means that in periods where the economy is close to the ZLB, an interest rate surprise may have effects similar to those analyzed in Proposition 1 where the policy response to demand shocks is inadequate. The intuition from that result indicates that it may be possible for supposedly expansionary policy actions (i.e., negative interest rate surprises) to be associated with negative
responses of inflation and the output gap in these periods. In this scenario, agents interpret a negative interest rate surprise as news that demand is lower than they previously thought and that it will stay low in the short run since demand is positively autocorrelated. Since the economy is close to the ZLB, they know that the policymaker may be unable to lower the interest rate enough to neutralize the negative effects of low demand in the future. Therefore, they expect the future output gap and inflation rate to be low and this actually depresses current economic activity.

6.4 Optimal policy under dynamic time-varying uncertainty

Here, I consider optimal policy under dynamically varying demand and output gap target uncertainty of the kind assumed in Section 2. To review, in this specification, the shocks \( \epsilon_{d,t} \) and \( \epsilon_{\bar{y},t} \) are serially uncorrelated, uncorrelated with each other, and normally distributed with means zero and variances \( \sigma_{\epsilon_{d,t}}^2 \) and \( \sigma_{\epsilon_{\bar{y},t}}^2 \), respectively. In the case of static variances, I showed that the optimal policy features policy coefficients \( f_{y}^* \) and \( f_{\bar{y},b}^* \) that depend on the relative variance \( \frac{\sigma_{\bar{y},t}^2}{\sigma_{d,t}^2} \). Because of this, I conjecture an equilibrium where policy coefficients are now time-varying through a dependence on the time-varying relative variances. I assume that private agents know the entire history of variances so that they still know the true current value of the policy coefficients. Then, their beliefs take the same form as above with the only difference being time subscripts on the policy coefficients. Due to this time dependence, I conjecture that in equilibrium, \( \bar{y}_t \) and \( \pi_t \) are linear in \( \{d_t, \bar{y}_t, d_{t|t}, \bar{y}_{t|t}\} \) with time-varying coefficients. This means that the policymaker now takes as given that agents’ expectations of future outcomes are linear in beliefs with time-varying coefficients that he takes as given.

\[
\begin{bmatrix}
\bar{y}_{t+1|t} \\
\pi_{t+1|t}
\end{bmatrix} = M_t
\begin{bmatrix}
d_{t+1|t} \\
\bar{y}_{t+1|t}
\end{bmatrix}
\]

Beliefs are formed as follows

\[
d_{t|t} = \rho_d d_{t-1} + K_{d,t} \left(i_{t}^{\text{dis}} - f_d \rho_d d_{t-1} - \bar{y}_t \right) \\
\bar{y}_{t|t} = \rho_{d} \bar{y}_{t-1} + K_{\bar{y},t} \left(i_{t}^{\text{dis}} - f_d \rho_d d_{t-1} - \bar{y}_t \right)
\]

where

\[
K_{d,t} = \frac{f_d \sigma_{d,t}^2 \sigma_{\bar{y},t-1}^2}{f_d \sigma_{d,t}^2 + f_{\bar{y},t}^2} \quad \text{and} \quad K_{\bar{y},t} = \frac{f_{\bar{y},t}}{f_d \sigma_{d,t}^2 + f_{\bar{y},t}^2}
\]

and the policymaker also takes \( K_{d,t} \) and \( K_{\bar{y},t} \) as given.

In this setting, the policymaker’s optimality condition has the same form as before

\[
\bar{y}_t - \bar{y}_t = -\mathcal{R}_t \frac{\varepsilon}{\kappa}
\]
where $\mathcal{R}_t$ is now characterized by a nonlinear stochastic difference equation whose forcing variable is $\sigma_{R,t}^{2}/\sigma_{\hat{y},t}^{2}$ (see Appendix). Furthermore, the optimal interest rate is

$$i^*_t = r^n_t + f^*_y \tilde{y}_t + f^*_y \hat{y}_t$$

where $f^*_y$ is a function of $\mathcal{R}_t$ alone and $f^*_y \hat{y}_t$ can be written as

$$f^*_y \hat{y}_t = E \left[ F (\mathcal{R}_t, \mathcal{R}_{t+1}, ...) | \mathcal{I}_t \right]$$

7 Empirical evidence

7.1 Empirical model

In this section, I examine inflation forecasts and show that they exhibit behavior predicted by the information framework set out above. I focus on inflation forecasts since they play a key role in the model above and there is also a large body of empirical work on inflation forecasts serving as precedent for the following analysis. I motivate the regressions using an empirical model that assumes an AR(1) reduced form for inflation and a Taylor-style interest rate rule that responds directly to inflation\textsuperscript{11}. Coibion and Gorodnichenko (2012a) and Coibion and Gorodnichenko (2012b) show that this type of reduced-form framework characterizes inflation forecast data well.

For the remainder of this section, I suppose that inflation follows an AR(1) process

$$\pi_t = \rho_\pi \pi_{t-1} + \varepsilon_t$$

where $\varepsilon_t \sim N \left(0, \sigma_{\varepsilon,t-1}^2 \right)$ is serially uncorrelated and normally distributed with time-varying variances. Agents cannot observe $\pi_t$ directly but instead receive two signals: one from the observed interest rate which responds to true inflation and another composite signal which contains idiosyncratic noise.

$$i_t = \phi \pi_t + u_t$$

$$s_{jt} = \pi_t + e_{jt}$$

I assume $\phi > 0$ and that the two signal noise terms $\{u_t, e_{jt}\}$ are also serially uncorrelated and normally distributed with variances that are identical across agents and possibly time-varying. Agents additionally observe lagged inflation without noise. This is a departure from the empirical models used in previous studies which generally assume that agents cannot see true inflation at any lag. Another difference is the explicit inclusion of an interest rate signal

\textsuperscript{11}I show in the Appendix that giving private agents an additional signal about inflation and using $\rho_u = \rho_y$ in the structural model allows it to give similar empirical relationships.
containing additional information about inflation. A main element of this formulation is the interest rate’s response to true inflation. If, for example, the interest rate was a function only of private beliefs about $\pi_t$, then it would not convey any additional information to private agents and $i_t$ would not enter independently into forecasts.

Each agent $j$ has the information set $\mathcal{I}_{jt} = \{\pi^{t-1}, i^t, s_j^t, (\pi^{2})^t\}$ and forms his conditional expectation of current inflation via a static Gaussian signal extraction problem that yields

$$
\pi_{t|jt} = \rho_\pi \pi_{t-1} + K_i^t (i_t - E[i_t|\pi_{t-1}]) + K_s^s (s_{jt} - E[s_{jt}|\pi_{t-1}])
$$

where $K_i^t \in (0, \phi^{-1})$ and $K_s^s \in (0, 1)$ are increasing in $\sigma^2_{t, t-1}$, which captures prior uncertainty.

Then, aggregate forecast revisions for different horizons $h \geq 0$ can be shown to depend on interest rate surprises as well as lagged one-period-ahead forecast and nowcast errors.

$$
\hat{\pi}_{t+h|t} - \pi_{t+h|t-1} = \rho_\pi^h K_i^i \left( i_t - E[i_t|\pi_{t-1}] \right) + \rho_\pi^h K_s^s \left( \pi_t - E[\pi_t|\pi_{t-1}] \right)
$$

$$
+ \rho_\pi^{h+1} \left( 1 - K_s^s \right) \left( \pi_{t-1} - E[\pi_{t-1}|\pi_{t-1}] \right) + \text{error}_{ht}
$$

The last error term in this equation is a function of the average noise in $s_t$ and is not correlated with the other RHS terms. This gives a regression equation that is nearly identical to equation (5) in Romer and Romer (2000). The main difference is that while they use the Federal Reserve’s forecasts to control for other inflation-related news, all relevant news in this model is captured by the lagged forecast and nowcast errors.

### 7.1.1 Extensions of the empirical model

I can allow for a standard direct negative effect of $i_t$ on $\pi_t$ of the following form

$$
\pi_t = \rho_\pi \pi_{t-1} - \delta i_t + \varepsilon_t
$$

where $\delta > 0$ and the expressions for $i_t$ and $s_{jt}$ continue to be those given above. This yields a solution for $\pi_t$ that is similar to the above model

$$
\pi_t = \check{\rho}_\pi \pi_{t-1} + \frac{1}{1 + \delta \phi} \varepsilon_t - \frac{\delta}{1 + \delta \phi} u_t \quad \text{where } \check{\rho}_\pi \equiv \frac{\rho_\pi}{1 + \delta \phi}
$$

The main difference here is the covariance between true inflation and the interest rate. In this case, forecast revisions evolve as

$$
\hat{\pi}_{t+h|t} - \pi_{t+h|t-1} = \check{\rho}_\pi^h \hat{K}_i^i \left( i_t - E[i_t|\pi_{t-1}] \right) + \check{\rho}_\pi^h \hat{K}_s^s \left( \pi_t - E[\pi_t|\pi_{t-1}] \right)
$$

$$
+ \check{\rho}_\pi^{h+1} \left( 1 - \hat{K}_s^s \right) \left( \pi_{t-1} - E[\pi_{t-1}|\pi_{t-1}] \right) + \text{error}_{ht}
$$

where $\hat{K}_i^i$ may now take on negative values but both $\hat{K}_i^i$ and $\hat{K}_s^s$ are still increasing in $\sigma^2_{t, t-1}$. 

38
If I do not allow agents to observe lagged inflation, then agents’ forecasts are described by a Kalman filter\textsuperscript{12}. In this case, aggregate forecast revisions evolve as
\[
\pi_{t+h|t} = \rho_s^h \hat{K}_t^i \left( \pi_t - \hat{\pi}_{t|t-1} \right) + \rho_s^h \hat{K}_t^s \left( \pi_t - \hat{\pi}_{t|t-1} \right) + \text{error}_{ht}
\]
where $\hat{K}_t^i \in (0, \phi^{-1})$ and $\hat{K}_t^s \in (0, 1)$ are now increasing in prior uncertainty, $\text{Var}_{t-1} \left( \pi_t \right)$, which itself is increasing in $\sigma^2_{\epsilon,t-1}$. The lagged nowcast term drops out of the regression equation. However, this term enters significantly in the regressions below, suggesting that the assumption that agents can see lagged inflation is valid.

7.2 Data

For aggregate inflation forecasts, I use median forecasts from the Survey of Professional Forecasters provided by the Federal Reserve Bank of Philadelphia. The survey starts in 1968Q4 and is quarterly with about 40 respondents in each quarter. I look specifically at quarterly forecasts of the GNP/GDP deflator (GDP starting in 1992). Real GNP/GDP growth and unemployment forecasts are used for some robustness checks. One unique feature of the SPF is that, in addition to point forecasts, it also asks respondents to report forecasted probability distributions for annual inflation. This allows me to impute a measure of subjective uncertainty over inflation.

For some specifications, I also use the Federal Reserve’s Greenbook forecasts of the GNP/GDP deflator\textsuperscript{13} which are published with a five year lag starting in December 1965.

For actual data, I use real-time data from the Federal Reserve Bank of Philadelphia taking values from a two-quarters ahead vintage (e.g., the 2001Q1 observation for inflation is taken from the 2001Q3 vintage). This timing is chosen to correspond to the final published NIPA estimates prior to annual or benchmark revisions.

To measure policy surprises, I use prices for 30-day federal funds futures obtained from Bloomberg which start in December 1988. I use the method described in Kuttner (2001) to construct surprises on policy news days. I define these as days when the target rate changed or scheduled Federal Open Market Committee meeting days starting in 1994. As described in Swanson (2006), the FOMC only began issuing post-meeting press releases in 1994. Additionally, rate changes were not strongly associated with meeting days prior to 1994. For instance, only 31% of actual target changes from the start of 1989 to the end of 1993 were associated with scheduled meetings compared to 86% starting in 1994 until the target effectively hit zero in late 2008. Thus, pre-1994 meeting days when no change was made are not categorized as news days, but the results are not sensitive to this choice. To get a measure of policy surprises

\textsuperscript{12}This is the linear least-squares forecast which is also optimal if we additionally assume that agents’ prior beliefs about the initial state $\pi_0$ are normally distributed.

\textsuperscript{13}The Greenbook switches to forecasting the GDP deflator measure five months after the SPF switched so these observations are excluded.
that corresponds to the quarterly SPF timing, I sum one-day policy surprises between SPF deadlines\textsuperscript{14}.

Finally, in the regressions estimating the effect of news from interest rate surprises, I exclude dates after 2011Q1 due to the Fed’s decision to begin regularly releasing economic projections of Federal Reserve Board members and Bank presidents in conjunction with post-meeting press releases. The results are not sensitive to this choice.

7.2.1 Imputing subjective uncertainty

I proxy subjective uncertainty using the SPF’s probability forecasts for the GNP/GDP deflator where agents report probabilities of inflation being in pre-defined ranges. Starting in 1981Q3, the survey consistently contains these reports for both the current and following years’ inflation as measured by the percentage change in the annual averages of the price index. To impute the variance associated with these forecasts, I fit a normal distribution to the data by minimizing the sum of squared differences between the reports and the probabilities for the same ranges implied by a normal distribution following Giordani and Söderlind (2003) and Lahiri and Liu (2006). More formally, for a given set of reported probabilities \( \{ q_n \}_{n=1}^N \) corresponding to ranges \( \{ [a_n, b_n) \}_{n=1}^N \), I solve the problem

\[
\min_{\mu, \sigma} \sum_{n=1}^{N} \left( q_i - \left[ \Phi \left( \frac{b_n - \mu}{\sigma} \right) - \Phi \left( \frac{a_n - \mu}{\sigma} \right) \right] \right)^2
\]

I remove individual-level post-1991 means from these variances to account for a switch from GNP to GDP measures and a change in the number of ranges from 6 to 10. In the analysis below, I use the median of the adjusted variances of forecasts for the next year’s inflation as a proxy of subjective forecast uncertainty, denoted as \( Std_t^{\pi} \). The following table shows that this measure is not highly correlated with macroeconomic variables or other measures of uncertainty commonly used in the literature on uncertainty shocks. This low correlation with other uncertainty measures is not surprising since they capture many aspects of economic uncertainty and not just those related to inflation.

\textsuperscript{14}Deadline dates are available starting in 1990Q2. Prior to that, I use the 15th of the middle month of each quarter.
Table 1: Correlations between $\text{Std}_t^x$ and macro variables

<table>
<thead>
<tr>
<th>Macro Variables</th>
<th>$x$</th>
<th>$x_{t-1}$</th>
<th>$x_t$</th>
<th>$x_{t+1}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Inflation</td>
<td>-0.01</td>
<td>0.12</td>
<td>-0.09</td>
<td></td>
</tr>
<tr>
<td>Real GNP/GDP growth</td>
<td>-0.08</td>
<td>0.02</td>
<td>0.10</td>
<td></td>
</tr>
<tr>
<td>Uncertainty Measures</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Google econ uncertainty index</td>
<td>0.22**</td>
<td>0.14</td>
<td>0.11</td>
<td></td>
</tr>
<tr>
<td>Stock volatility</td>
<td>0.00</td>
<td>-0.11</td>
<td>0.10</td>
<td></td>
</tr>
<tr>
<td>Policy uncertainty index</td>
<td>0.07</td>
<td>-0.04</td>
<td>-0.06</td>
<td></td>
</tr>
</tbody>
</table>

Notes: ***/**/** Statistically significant at 1, 5, and 10 percent, respectively.

7.3 Time-variation in sensitivity of inflation forecasts to news

I first estimate the overall effect of all inflation news on forecasts. The above model gives

$$\pi_{t+h|jt} - \pi_{t+h|j,t-1} = K_t \rho_t^h (\pi_t - \pi_{t|j,t-1}) + (1 - K_t) \rho_t^{h+1} (\pi_{t-1} - \pi_{t-1|j,t-1}) + \text{error}_{jht}$$

where $K_t \equiv \phi K_t^i + K_t^s \in (0, 1)$ and is decreasing in signal noise and increasing in prior uncertainty $\sigma_{\pi,t-1}^2$. $\text{error}_{jht}$ may be correlated across individuals and horizons but are uncorrelated across time and with the other RHS variables.

Using 17,716 observations of individual level quarterly data over the period 1971-2012, I obtain annual estimates using a nonlinear least squares estimation of the following equation with standard errors clustered within quarters\(^{15}\).

$$\pi_{t+h|jt} - \pi_{t+h|j,t-1} = \alpha_{ht} + K_{\text{year}} \rho_t^h (\pi_t - \pi_{t|j,t-1}) + K_{\text{year}} \rho_t^{h+1} (\pi_{t-1} - \pi_{t-1|j,t-1}) + \text{error}_{jht}$$

The following graph shows estimates of my main coefficients of interest which are the time-varying responses of inflation forecasts to current news.

\(^{15}\)Coibion and Gorodnichenko (2012a) also estimates time-varying sensitivity of forecasts to news using a different empirical approach. They discuss low frequency changes in this parameter associated with the Great Moderation.
There is substantial time-variation in this coefficient. The next table shows that the estimates are negatively correlated with forecast dispersion (which serves as an imperfect proxy for idiosyncratic signal noise\textsuperscript{16}) and positively correlated with my measure of prior uncertainty as predicted by the model.

<table>
<thead>
<tr>
<th>Variable</th>
<th>Correlation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dispersion: $h = 0$</td>
<td>$-0.39^{**}$</td>
</tr>
<tr>
<td>Dispersion: $h = 1$</td>
<td>$-0.30^{*}$</td>
</tr>
<tr>
<td>Dispersion: $h = 2$</td>
<td>$-0.36^{**}$</td>
</tr>
<tr>
<td>Dispersion: $h = 3$</td>
<td>$-0.15$</td>
</tr>
<tr>
<td>Dispersion: $h = 4$</td>
<td>$-0.13$</td>
</tr>
<tr>
<td>Lagged current year uncertainty</td>
<td>$0.38^{**}$</td>
</tr>
<tr>
<td>Lagged next year uncertainty</td>
<td>$0.40^{**}$</td>
</tr>
</tbody>
</table>

Notes: Correlations are calculated between annual coefficient estimates and annual means of the variables. $^{*}/^{**}/^{***}$ Statistically significant at 1, 5, and 10 percent, respectively.

Meanwhile, time-variation in these estimates does not seem to be associated with macroeconomic variables or other common measures of uncertainty.

\textsuperscript{16} The proxy is imperfect due to a nonmonotonic relationship between idiosyncratic signal noise and forecast dispersion. Forecast dispersion becomes decreasing in idiosyncratic signal noise when it is high relative to the variability of inflation innovations and the exogenous component of the interest rate. As $s_{jt}$ becomes dominated by noise, agents optimally ignore these signals and forecast dispersion approaches zero.
Table 3: Correlations between $\hat{K}^{FE}_{\text{year}}$ and macro variables

<table>
<thead>
<tr>
<th></th>
<th>$x_{t-1}$</th>
<th>$x_t$</th>
<th>$x_{t+1}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Macro Variables</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Inflation</td>
<td>-0.02</td>
<td>-0.07</td>
<td>-0.10</td>
</tr>
<tr>
<td>Real GNP/GDP growth</td>
<td>-0.03</td>
<td>0.27*</td>
<td>0.21</td>
</tr>
<tr>
<td>Uncertainty Measures</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Google econ uncertainty index</td>
<td>-0.07</td>
<td>-0.14</td>
<td>-0.05</td>
</tr>
<tr>
<td>Stock volatility</td>
<td>0.20</td>
<td>0.00</td>
<td>-0.05</td>
</tr>
<tr>
<td>Policy uncertainty index</td>
<td>-0.02</td>
<td>-0.21</td>
<td>-0.19</td>
</tr>
</tbody>
</table>

Notes: Correlations are calculated between annual coefficient estimates and annual means of the variables. **/***/** Statistically significant at 1, 5, and 10 percent, respectively.

7.4 The effect of interest rate surprises on inflation forecasts

In this section, I separately estimate the impact of interest rate news on inflation forecasts and present the main empirical result in support of the interest rate's signaling effect. My estimates echo the findings in Table 8 of Romer and Romer (2000) which shows that monetary policy tightening seems to have a mildly positive though not statistically significant effect on inflation forecasts. This can be seen as estimating a version of (17) with constant coefficients. My analysis differs from theirs in several ways. First, my sample period is 1989:Q1 to 2011:Q1 which has little overlap with their sample which focused on periods between 1974:Q3 and 1991:Q4 with the Volcker years removed. Secondly, I use lagged forecast and nowcast errors as my summary measures of "other news" as implied by the above empirical model while they used changes in the Federal Reserve’s Greenbook forecast. Lastly, they used federal funds rate changes or a dummy variable based on articles in the Wall Street Journal following Cook and Hahn (1989a) and Cook and Hahn (1989b) to measure monetary policy actions. For my regressions, I instead use interest rate surprises measured with one-day changes in federal funds futures prices which arguably has less of an endogeneity problem. Despite these differences, I am able to qualitatively replicate their result. In fact, the regressions show that this positive effect of surprise interest rate tightening on inflation forecasts is actually significant at the 10% level for 2 out of the 4 horizons.
Table 4: Baseline effect of federal funds rate surprises on inflation forecasts

| Dependent variable: $\pi_{t+h|t}$ | 0      | 1      | 2      | 3      |
|------------------------------------|--------|--------|--------|--------|
| $\pi_{t+h|t-1}$                    | 1.036*** | 0.973*** | 0.974*** | 1.021*** |
|                                   | (0.05)  | (0.04)  | (0.03)  | (0.03)  |
| $i_t - \pi_{t|t-1}$                | 0.350*  | 0.176   | 0.276*  | 0.194   |
|                                   | (0.17)  | (0.13)  | (0.13)  | (0.11)  |
| $\pi_t - \pi_{t|t-1}$              | 0.105** | 0.017   | 0.025   | 0.33    |
|                                   | (0.04)  | (0.02)  | (0.02)  | (0.02)  |
| $\pi_{t-1} - \pi_{t-1|t-1}$        | 0.197*** | 0.142*** | 0.067*** | 0.097*** |
|                                   | (0.05)  | (0.03)  | (0.02)  | (0.03)  |
| Constant                           | -0.062  | 0.011   | 0.036   | -0.084  |
|                                   | (0.11)  | (0.10)  | (0.07)  | (0.07)  |
| Adjusted R$^2$                     | 0.885   | 0.928   | 0.952   | 0.949   |
| N                                  | 88      | 88      | 88      | 88      |

Notes: The sample is quarterly data from 1989:Q1 to 2011:Q1 with 1992:Q1 dropped due to the switch in the SPF from the GNP to GDP deflator making the lagged forecast unavailable in that period. ***/*** Statistically significant at 1, 5, and 10 percent, respectively.

To further build upon this and test the main prediction that $K_i^j$ is higher when agents have more uncertainty over the last forecast they made, I interact the news variables in this regression with the measure of subjective prior uncertainty described above. For the following set of regressions, I create dummy variables for the lowest 1/3 and highest 1/3 of prior uncertainty realizations and interacted these with the news measures.
### Table 5: Effect of federal funds rate surprises on inflation forecasts with a high vs low prior uncertainty interaction

| Dependent variable: $\pi_{t+h|t-1}$ | $h =$ | 0       | 1       | 2       | 3       |
|-------------------------------------|-------|---------|---------|---------|---------|
| $\pi_{t+h|t-1}$                     |       | 1.038*** | 0.965*** | 0.961*** | 1.003*** |
| $i_t - \bar{i}_{t|t-1} \times \bar{Std}_{t-1}$ | low   | 0.13    | 0.112   | 0.101   | 0.287**  |
|                                      |       | (0.06)  | (0.06)  | (0.04)  | (0.03)  |
| $\pi_t - \pi_{t|t-1} \times \bar{Std}_{t-1}$ | high  | 1.161*** | 0.660** | 0.715*** | -0.084   |
|                                      |       | (0.40)  | (0.26)  | (0.15)  | (0.13)  |
| $\pi_{t-1} - \pi_{t-1|t-1} \times \bar{Std}_{t-1}$ | low   | 0.076   | -0.046  | -0.021  | 0.031    |
|                                      |       | (0.07)  | (0.04)  | (0.04)  | (0.04)  |
| $\pi_{t-1} - \pi_{t-1|t-1} \times \bar{Std}_{t-1}$ | high  | 0.172**  | 0.038   | 0.024   | -0.054   |
|                                      |       | (0.07)  | (0.04)  | (0.06)  | (0.04)  |
| $\pi_{t-1} - \pi_{t-1|t-1} \times \bar{Std}_{t-1}$ | low   | 0.253**  | 0.209*** | 0.104**  | 0.113*** |
|                                      |       | (0.10)  | (0.06)  | (0.04)  | (0.05)  |
| $\pi_{t-1} - \pi_{t-1|t-1} \times \bar{Std}_{t-1}$ | high  | 0.111   | 0.1      | 0.087   | 0.178**  |
|                                      |       | (0.08)  | (0.06)  | (0.06)  | (0.07)  |
| $\bar{Std}_{t-1}$                   |       | 0.180**  | 0.081   | 0.093**  | 0.002    |
|                                      |       | (0.08)  | (0.05)  | (0.04)  | (0.05)  |
| Constant                            |       | -0.116  | 0.031   | 0.048   | -0.033   |
|                                      |       | (0.14)  | (0.14)  | (0.09)  | (0.10)  |

Notes: The sample is quarterly data from 1989:Q1 to 2011:Q1 with 1992:Q1 dropped due to the switch in the SPF from the GNP to GDP deflator making the lagged forecast unavailable in that period. ***/**/* Statistically significant at 1, 5, and 10 percent, respectively.

Compared to the baseline results, in all but the farthest horizon, the coefficient on interest rates surprises in periods of low prior uncertainty are small and not significant while the coefficients in periods of high uncertainty are much higher and statistically significant. F-tests show that the differences in these coefficients are statistically significant in a few of the horizons as well. In addition, the interactions on the news captured by the lagged forecast and nowcast errors also go in the predicted directions in all but the last horizon. This decomposition of the slightly positive overall effect of interest rate surprises on private forecasts provides additional evidence for an explanation based on a signaling effect of these policy actions. Other possible explanations for the slightly positive overall effect (e.g., a cost channel) do not naturally
generate this type of interaction.

Results are similar when I use a continuous interaction with prior uncertainty.

Table 6: Effect of federal funds rate surprises on inflation forecasts with a continuous prior uncertainty interaction

| Dependent variable: $\pi_{t+h|t}$ | $h =$ | 0   | 1   | 2   | 3   |
|-----------------------------------|-------|-----|-----|-----|-----|
| $\pi_{t+h|t-1}$                   |       | 1.037*** | 0.978*** | 0.992*** | 1.028*** |
|                                   |       | (0.05) | (0.05) | (0.03) | (0.03) |
| $i_t - \overline{i_t|t-1}$        |       | 0.474*** | 0.17 | 0.315** | 0.155 |
|                                   |       | (0.16) | (0.14) | (0.16) | (0.14) |
| $i_t - \overline{i_t|t-1} \times \overline{Std_{t-1}^{\pi}}$ |       | 0.445** | 0.273* | 0.225* | -0.086 |
|                                   |       | (0.22) | (0.15) | (0.13) | (0.13) |
| $\pi_t - \overline{\pi_t|t-1}$    |       | 0.097*** | 0.019 | 0.027 | 0.039 |
|                                   |       | (0.04) | (0.02) | (0.02) | (0.02) |
| $\pi_t - \overline{\pi_t|t-1} \times \overline{Std_{t-1}^{\pi}}$ |       | 0.074* | 0.067** | 0.043** | 0.008 |
|                                   |       | (0.04) | (0.03) | (0.02) | (0.02) |
| $\pi_{t-1} - \overline{\pi_{t-1}|t-1}$ |       | 0.215*** | 0.145*** | 0.067*** | 0.090*** |
|                                   |       | (0.05) | (0.03) | (0.02) | (0.03) |
| $\pi_{t-1} - \overline{\pi_{t-1}|t-1} \times \overline{Std_{t-1}^{\pi}}$ |       | -0.056 | -0.080* | -0.036 | 0.016 |
|                                   |       | (0.06) | (0.04) | (0.03) | (0.04) |
| Std_{t-1}^{\pi}$                 |       | 0.027 | 0.015 | 0.047** | 0.012 |
|                                   |       | (0.04) | (0.03) | (0.02) | (0.02) |
| Constant                          |       | -0.056 | 0.009 | -0.004 | -0.106 |
|                                   |       | (0.11) | (0.11) | (0.06) | (0.08) |

Adjusted R² | 0.889 | 0.931 | 0.954 | 0.947 |
N            | 88    | 88    | 88    | 88    |

Notes: $\overline{Std_{t-1}^{\pi}}$ is standardized to have zero mean and a standard deviation of one. The sample is quarterly data from 1989:Q1 to 2011:Q1 with 1992:Q1 dropped due to the switch in the SPF from the GNP to GDP deflator making the lagged forecast unavailable in that period. ***/**/** Statistically significant at 1, 5, and 10 percent, respectively.

A candidate explanation of why the interaction may be stronger at lower horizons is that the Federal Reserve’s information advantage may be stronger at lower horizons. Some evidence supporting this possibility is presented in Sims (2003) where he tests whether the Federal Reserve’s inflation forecast has a lower RMSE than the SPF’s average forecast and finds stronger evidence for one-quarter-ahead forecasts than for four-quarter-ahead forecasts.
7.4.1 Robustness checks

One might be concerned that forecasters take into account other variables when making inflation forecasts. To address this issue, I add measures of news related to real output growth to both the baseline and prior uncertainty interaction regressions. These news terms are defined analogously as lagged forecast and nowcast errors. The tables given in the Appendix show that the results remain unchanged with this addition. In fact, with these additional controls, the interaction of the response to interest rate surprises with prior uncertainty becomes stronger. The results also are robust to adding corresponding unemployment rate news measures (tables given in Appendix).

I also obtain similar results using the Federal Reserve’s Greenbook forecast revisions as the proxy for other news (following Romer and Romer (2000)) although I lose about five years of observations using this specification due to the Greenbook’s publication lag.

8 Conclusion

In this paper, I explored the impact of a signaling channel on the conduct of optimal interest rate policy as well as equilibrium responses to policy surprises. I found that a discretionary policymaker who is better informed about an output gap target can influence inflation expectations in a way that tilts the short-run inflation-output tradeoff toward a policy that maintains smaller inflation fluctuations. This effect is stronger when the policymaker has a larger impact on inflation expectations. As this influence grows, the optimal discretionary policy approaches the optimal policy under commitment to a forward-looking interest rate rule. Compared to the perfect information case, the signaling effect reduces the stabilization bias which typically exists when the policymaker is unable to commit. This contributes to the finding that it is optimal for the policymaker to maintain an information advantage, which helps to rationalize the Federal Reserve’s policy of publishing staff economic projections with a five-year lag.

For a general interest rate rule, I showed that when the policymaker is better informed about demand shocks (or shocks to the natural real rate of interest) and the policy response to these shocks is inadequate, the it is possible to see positive responses of current economic activity and forecasts to interest rate tightening. This matches the empirical patterns found in the present paper as well as previous work in Romer and Romer (2000) and Campbell, Evans, Fisher, and Justiniano (2012). Furthermore, I provide new empirical evidence showing that the responses of inflation forecasts to positive interest rate surprises are strongly positive when prior uncertainty about inflation is high, as predicted under this information setup.

Though this paper examined a model of monetary policy, the logic behind the optimal policy results is generalizable to other settings where a policymaker possesses superior information and has the potential to influence outcomes through expectations. The positive results showing that
the economy can sometimes grow in response to a supposedly contractionary policy action can also manifest in other scenarios where policy is intended to be countercyclical, such as fiscal policy.

A natural extension of this paper which I reserve for future work is a more extensive study of the impact of incorporating a zero lower bound. In this environment, even optimal policy will not be able to adequately respond to fluctuations in the natural real rate, thus making it more likely that supposedly expansionary policy actions, taken when the economy is close hitting to the ZLB, can lead to further declines in economic activity. The ZLB also provides a setting in which there may be greater benefits of communication in contrast to the results found in this paper.

Lastly, though the linearized form of the model used in this paper was crucial for obtaining closed-form results on optimal policy, I plan to revisit the optimal communication policy question in a more realistic framework that includes higher-order welfare effects of uncertainty as well as a channel for communication to impact the transmission of interest rate policy through its effects on risk premia.

References


49


Walsh, C. E. (2010): “Transparency, the Opacity Bias, and Optimal Flexible Inflation Targeting,” mimeo, University of California, Santa Cruz.

A Aggregate equilibrium conditions with idiosyncratic government spending shocks

In this section, I derive equilibrium conditions for an economy where firms face idiosyncratic government spending shocks. In this environment, it is consistent for consumers and firms not to have information about current aggregate outcomes. This yields a condition for the aggregate output gap which is identical to equation (1) in the model in the main text. The inflation condition differs from equation (2) in a few ways which I outline at the end of the section.

A.1 Setup

The setup shares many features with Lorenzoni (2010). There is a continuum of yeoman farmer households with identical preferences and technology who produce differentiated goods and face a Calvo friction.

Each period contains three stages. In stage 1, the policymaker sees the entire history of aggregate government spending and output gap target levels \( \{g_t, \tilde{y}_t\} \) and sets the nominal interest rate \( i_t \), conditional on these aggregate states. In the private sector, all households have the same beginning-of-period information which contains true realizations of past state variables and the current nominal interest rate so that their Stage 1 information set is \( I_{1t} = \{i_t, g_t, \tilde{y}_t\} \). In this stage, pre-commitments are made regarding aggregate nominal consumption.

In stage 2, each worker–firm \( j \) now realizes his firm-specific government demand shock, \( g_{jt} \), where the idiosyncratic component of \( g_{jt} \) is iid. Firms who are able to reset prices then choose prices based on their updated Stage 2 information sets \( I_{2jt} = g_{jt} \cup I_{1t} \). I do not include past observations of \( g_{jt} \) in these information sets since they are irrelevant for current and future payoffs once \( g_{t-1} \) is known. All firms set prices simultaneously so these decisions are made without knowledge of the current aggregate price. The household receives no further information about \( \tilde{y}_t \).

In stage 3, all prices are revealed and the consumer optimally allocates the pre-committed amount of nominal spending across varieties \( j \). The revelation of prices in this stage also reveals the true aggregate states and households carry this knowledge into Stage 1 of the next period.

Prior to the realizations of \( \{g_{jt}\} \), ex-ante risks are the same across households. I assume that households perfectly risk-share by trading in a complete set of contingent claims in Stage 1. These claims pay out in Stage 1 of the next period so that the amount of wealth each consumer starts the period with is the same across agents.

I assume that the idiosyncratic component of government spending is such that the resulting log-linearized total demand faced by each firm \( j \) is given by

\[
y_{jt} = \frac{C}{Y} c_t + \left( 1 - \frac{C}{Y} \right) g_{jt} - \varepsilon (p_{jt} - p_t) \\
= y_t + \left( 1 - \frac{C}{Y} \right) \omega_{jt} - \varepsilon (p_{jt} - p_t) \\
since y_t = \frac{C}{Y} c_t + \left( 1 - \frac{C}{Y} \right) g_t \text{ by market clearing}
\]

where

\[
g_{jt} = g_t + \omega_{jt}, \quad \omega_{jt} \sim \text{iid } N \left( 0, \sigma^2 \right) \tag{18}
\]
Meanwhile, I continue to assume AR(1) forms for the aggregate shocks

\[ g_t = \rho_g g_{t-1} + \epsilon_{g,t}, \quad \epsilon_{g,t} \sim \text{iid } N (0, \sigma^2_g) \]
\[ \tilde{g}_t = \rho_{\tilde{g}} \tilde{g}_{t-1} + \epsilon_{\tilde{g},t}, \quad \epsilon_{\tilde{g},t} \sim \text{iid } N (0, \sigma^2_{\tilde{g}}) \]

(19)

A.2 Consumption

Preferences are identical across households and the same as the model in the main text

\[
\max E \sum_{t=0}^{\infty} \beta^t [U (C_t) - V (L_t)], \quad \text{where } C_t \equiv \left[ \int_0^1 C^*_{j,t} \, dj \right]^{\frac{\varepsilon - 1}{\varepsilon}}, \varepsilon > 1
\]

All households have access to the same full basket of goods in stage 3 so there’s only one relevant aggregate inflation rate. Then, since all households make pre-commitments to nominal spending in Stage 1 based on the same information set and facing the same idiosyncratic risks, they all choose the same aggregate nominal consumption which yields the following Euler equation in log-linearized form

\[ c_t = E [c_{t+1}|I_t] + \frac{U_c}{U_c + U_g} \left( i_t - E [\pi_{t+1}|I_t] \right) \]

Note that combining this consumption Euler equation with the resource constraint yields the same condition for the aggregate output gap as in equation (1) since I can write

\[
\tilde{y}_t = E [\tilde{y}_{t+1}|I_t] - \frac{1}{\sigma} \left( i_t - E [\pi_{t+1}|I_t] \right) + d_t - E [d_{t+1}|I_t]
\]

(20)

where

\[ \tilde{y}_t \equiv y_t - y^n_t = \frac{C}{Y} c_t + \frac{\varphi}{\sigma + \varphi} \left( 1 - \frac{C}{Y} \right) g_t \]

and

\[ d_t \equiv \frac{\varphi}{\sigma + \varphi} \left( 1 - \frac{C}{Y} \right) g_t \]

as in the main text and importantly, the information set \( I_t \) is also the same as the one used in the main text. This definition of the aggregate demand shock \( d_t \) also gives

\[ d_t = \frac{\varphi}{\sigma + \varphi} \left( 1 - \frac{C}{Y} \right) g_t = \rho_d d_{t-1} + \epsilon_{d,t} \]

(21)

where \( \rho_d = \rho_g \) and \( \epsilon_{d,t} = \frac{\varphi}{\sigma + \varphi} \left( 1 - \frac{C}{Y} \right) \epsilon_{g,t} \)

Purchases of varieties \( j \) are made in Stage 3 after prices are revealed so that

\[ c_{jt} = c_t - \varepsilon (p_{jt} - p_t) \]

A.3 Production and price-setting

In Stage 2, a worker-firm \( j \) learns the government portion of their demand \( g_{jt} \) so their information set is \( I^2_{jt} \equiv \{ i^t, g^{t-1}, \tilde{g}^{t-1}, g_{jt} \} \). They face the demand function

\[ y_{jt} = \frac{C}{Y} c_t + \left( 1 - \frac{C}{Y} \right) g_{jt} - \varepsilon (p_{jt} - p_t) \]
However, they do not see aggregate prices and so they do not know how much they’ll ultimately sell for a given price \( p_{jt} \).

Technology is again linear for each worker-firm

\[
Y_{jt} = AL_{jt}
\]

where the nominal cost of labor (which is a pseudo-wage) is given by the MRS multiplied by the aggregate price index which has the following log-linear form (where \( \varphi, \sigma \) retain the definitions in (3))

\[
w_{jt} = \varphi l_{jt} + \sigma \frac{C}{Y} c_t + p_t
\]

The log-linearized pricing condition for a firm is then the following

\[
p_{jt}^* = (1 - \theta \beta) \sum_{k=0}^{\infty} (\theta \beta)^k E \left[ w_{j,t+k} | T^2_{jt} \right]
\]

\[
= (1 - \theta \beta) \left( \sigma \frac{C}{Y} c_t + E \left[ \varphi y_{jt}^* + p_t | T^2_{jt} \right] \right) + \theta \beta E \left[ p_{j,t+1}^* | T^2_{jt} \right]
\]

where I use a star on \( y_{jt}^* \) to highlight that reset prices depend on output among price resetters which is different from output among non-resetters. Using the firms’ demand function, this can be transformed to

\[
p_{jt}^* = (1 - \theta \beta) \left( (\sigma + \varphi) \frac{C}{Y} c_t + \varphi \left( 1 - \frac{C}{Y} \right) g_{jt} - \varphi \varepsilon p_{jt}^* + (1 + \varphi \varepsilon) E \left[ p_t | T^2_{jt} \right] \right) + \theta \beta E \left[ p_{j,t+1}^* | T^2_{jt} \right]
\]

I assume that the Calvo shock is independent of the idiosyncratic component of government spending such that the average government spending shock among price resetters is equal to the average among all the firms. That is, I assume the following where I order firms so that the set of price resetters are those indexed by \( j \in [\theta, 1] \)

\[
\frac{1}{1 - \theta} \int_{\theta}^{1} g_{jt} dj = g_t
\]

Then, as long as \( p_{jt}^* \) is linear in the variables in \( T^2_{jt} \), this gives

\[
\frac{1}{1 - \theta} \int_{\theta}^{1} p_{jt}^* dj = p_t^* \equiv \int_{0}^{1} p_{jt}^* dj
\]

Secondly, I note that the iid nature of the idiosyncratic component of government spending shocks along with the posited linearity of \( p_{jt}^* \) implies that

\[
E \left[ p_{j,t+1}^* | T^2_{jt} \right] = E \left[ p_{t+1}^* | T^2_{jt} \right]
\]

Then, the aggregate price index implies the usual log-linearized first-order dynamics

\[
p_t = \theta p_{t-1} + \int_{\theta}^{1} p_{jt}^* dj = \theta p_{t-1} + (1 - \theta) p_t^*
\]
Then, expectations have to satisfy
\[ E[p_t | I^2_{jt}] = \theta p_{t-1} + (1 - \theta) E[p_t | I^2_{jt}] \]

The aggregate price relation also gives the following property
\[ (1 - \theta) E[p^*_t | I^2_{jt}] = E[\pi_{t+1} | I^2_{jt}] + (1 - \theta) E[p_t | I^2_{jt}] \]

Aggregating the individual reset prices over resetters \( j \in [\theta, 1] \) and using these properties then gives
\[ (1 - \theta) p_t^* = \frac{(1 - \theta)(1 - \theta \beta)(\sigma + \varphi)}{1 + (1 - \theta \beta) \varepsilon \varphi} \tilde{y}_t + \frac{\theta \beta}{1 + (1 - \theta \beta) \varepsilon \varphi} E[\pi_{t+1} | I^2_{jt}] + (1 - \theta) E[p_t | I^2_{jt}] \]  
(23)

where with a slight abuse of notation, I denote aggregate expectations with
\[ E[x | I^2_t] = \int_0^1 E[x | I^2_{jt}] \, dj \]

This delivers the Phillips curve in this setting
\[ \pi_t = \frac{\beta}{1 + (1 - \theta \beta) \varepsilon \varphi} E[\pi_{t+1} | I^1_t] + \frac{\kappa}{1 + (1 - \theta \beta) \varepsilon \varphi} \tilde{y}_t 
+ \frac{\beta}{1 + (1 - \theta \beta) \varepsilon \varphi} (E[\pi_{t+1} | I^2_t] - E[\pi_{t+1} | I^1_t]) + \frac{(1 - \theta)^2}{\theta} (E[p^*_t | I^2_t] - p_t^*) \]  
(24)

This aggregate inflation condition along with (19), (20), (21), (22), (23), and an interest rate that’s linear in \( \{g^t, y^t\} \) give a set of linear stochastic difference equations that define the equilibrium. Thus, it will be the case that agents’ choices will be linear in the variables in their information sets as I conjectured earlier\(^{17}\).

In particular, behavior of the aggregate output gap and inflation are given by (20) and (24) which are the counterparts to the key equilibrium conditions (1) and (2) from the main text. The only differences in equilibrium behavior of aggregate variables comes from the differences in the inflation equation. Looking at (24), it’s clear that explicitly accounting for idiosyncratic shocks yields a Phillips curve that differs from (2) in the main text in two ways:

1. The coefficients are scaled down by a multiplicative factor \( \frac{1}{1+(1-\theta\beta)\varepsilon \varphi} < 1 \) due to the yeoman farmer decentralized labor market setup.

2. There are two new terms due specifically to the idiosyncratic shocks and information sets.
   - \( E[\pi_{t+1} | I^2_t] - E[\pi_{t+1} | I^1_t] \) reflects the difference in aggregate beliefs that comes from individual agents having the idiosyncratic signals \( \{g_{jt}\} \). \( E[\pi_{t+1} | I^1_t] \) will be a prior based on the histories \( \{g^{t-1}, \tilde{y}^{t-1}\} \) plus a term reflecting news from \( i_t \). \( E[\pi_{t+1} | I^2_t] \) will be the same prior plus a term incorporating the same news from \( i_t \) as well as another term capturing news from the idiosyncratic signals whose noise averages out to zero in aggregate. Hence, the difference between these beliefs will be linear in the news terms with coefficients that are related to the informativeness of the extra signals \( \{g_{jt}\} \). In equilibrium, these news terms, and hence \( E[\pi_{t+1} | I^2_t] - E[\pi_{t+1} | I^1_t] \), are linear in \( \{\epsilon_{d,t}, \epsilon_{g,t}\} \).

\(^{17}\)Lorenzoni (2010) proves this in a model that has a similar structure.
\[ E [p_t^* | T^2_t] - p_t^* \] will be linear in the belief errors \( E [g_t | T^2_t] - g_t \) and \( E [\tilde{y}_t | T^2_t] - \tilde{y}_t \) which are themselves linear in \( \{\epsilon_{d,t}, \epsilon_{g,t}\} \).

In summary, the inflation condition differs from the one used in the main text due to a change of coefficients and extra direct effects of the shocks \( \{\epsilon_{d,t}, \epsilon_{g,t}\} \). This will change the exact expressions for the responses of endogenous variables to shocks. In addition, the government spending shock now enters into the NKPC, thus giving it properties of an additional cost-push shock which poses an inflation-output tradeoff for the policymaker. The qualitative aspects of the paper’s results remain intact.

**B Solution under arbitrary policy coefficients**

Rearranging equilibrium conditions (1) and (2) gives the following system

\[
\begin{bmatrix}
\tilde{y}_t \\
\pi_t
\end{bmatrix}_{\pi t} = \left[ \begin{array}{c}
1 \\
\kappa + \frac{\sigma}{\kappa}
\end{array} \right] \begin{bmatrix}
\tilde{y}_{t+1|t} \\
\pi_{t+1|t}
\end{bmatrix}_{\pi t+1|t} - \frac{1}{\kappa} d_{t+1|t} + \frac{1}{\kappa} d_t - \frac{1}{\kappa} \frac{\sigma}{\kappa} i_t
\]

Conjecturing that the output gap and inflation are both linear in \( \{d_t, d_{t|t}, \tilde{y}_t, \tilde{y}_{t|t}\} \) leads to the following implied form for expectations

\[
\begin{bmatrix}
\tilde{y}_{t+1|t} \\
\pi_{t+1|t}
\end{bmatrix}_{\pi t+1|t} = M \begin{bmatrix}
d_{t+1|t} \\
\tilde{y}_{t+1|t}
\end{bmatrix}_{\pi t+1|t} = M \begin{bmatrix}
\rho_d & 0 \\
0 & \rho_{\tilde{y}}
\end{bmatrix} \begin{bmatrix}
d_{t|t} \\
\tilde{y}_{t|t}
\end{bmatrix}_{\pi t|t}
\]

Using this along with expression (4) for the interest rate then gives

\[
\begin{bmatrix}
\tilde{y}_t \\
\pi_t
\end{bmatrix}_{\pi t} = \left[ \begin{array}{c}
1 \\
\kappa + \frac{\sigma}{\kappa}
\end{array} \right] M \begin{bmatrix}
\rho_d & 0 \\
0 & \rho_{\tilde{y}}
\end{bmatrix} \begin{bmatrix}
d_{t|t} \\
\tilde{y}_{t|t}
\end{bmatrix}_{\pi t|t} - \frac{1}{\kappa} \rho_d d_{t|t} \\
+ \frac{1}{\kappa} d_t - \frac{1}{\kappa} \frac{\sigma}{\kappa} \left( f_d d_t + f_{\tilde{y}} \tilde{y}_t + f_{d,b} d_{t|t} + f_{\tilde{y},b} \tilde{y}_{t|t} \right)
\]

Using this to evaluate the one-period-ahead expectation and matching coefficients gives the solution for \( M \)

\[
M = - \left[ \begin{array}{c}
\frac{1}{\sigma} \Omega_d (1 - \beta \rho_d) (f_d + f_{d,b} - \sigma (1 - \rho_d)) \\
\frac{1}{\sigma} \Omega_d (f_d + f_{d,b} - \sigma (1 - \rho_d)) \\
\frac{1}{\sigma} \Omega_{\tilde{y}} (1 - \beta \rho_{\tilde{y}}) (f_{\tilde{y}} + f_{\tilde{y},b}) \\
\frac{1}{\sigma} \Omega_{\tilde{y}} (f_{\tilde{y}} + f_{\tilde{y},b})
\end{array} \right]
\]

with \( \Omega_d \equiv \frac{1}{(1 - \rho_d) (1 - \beta \rho_d) - \frac{\sigma}{\kappa} \rho_d} \) and \( \Omega_{\tilde{y}} \equiv \frac{1}{(1 - \rho_{\tilde{y}}) (1 - \beta \rho_{\tilde{y}}) - \frac{\sigma}{\kappa} \rho_{\tilde{y}}} \)

This immediately gives the solution for one-period-ahead expectations and substituting this back into the above expression gives the solution for current outcomes, both as functions of current beliefs and true states

\[
\begin{bmatrix}
\tilde{y}_{t+1|t} \\
\pi_{t+1|t}
\end{bmatrix}_{\pi t+1|t} = - \left[ \begin{array}{c}
\frac{1}{\sigma} \Omega_d (1 - \beta \rho_d) (f_d + f_{d,b} - \sigma (1 - \rho_d)) \rho_d \\
\frac{1}{\sigma} \Omega_d (f_d + f_{d,b} - \sigma (1 - \rho_d)) \rho_d \\
\frac{1}{\sigma} \Omega_{\tilde{y}} (1 - \beta \rho_{\tilde{y}}) (f_{\tilde{y}} + f_{\tilde{y},b}) \rho_{\tilde{y}} \\
\frac{1}{\sigma} \Omega_{\tilde{y}} (f_{\tilde{y}} + f_{\tilde{y},b}) \rho_{\tilde{y}}
\end{array} \right] \begin{bmatrix}
d_{t|t} \\
\tilde{y}_{t|t}
\end{bmatrix}_{\pi t|t}
\]

56
\[
\begin{bmatrix}
\tilde{y}_t \\
\pi_t
\end{bmatrix}
= \left[ -\frac{1}{\sigma} \Omega_d (1 - \beta \rho_d) (f_d + f_{d,b} - \sigma (1 - \rho_d)) - (1 - \frac{1}{\sigma} f_d) \\
-\frac{2}{\sigma} \Omega_d (f_d + f_{d,b} - \sigma (1 - \rho_d)) - \kappa (1 - \frac{1}{\sigma} f_d)
\right] d_{t|t}
+ \left[ -\frac{1}{\sigma} \Omega_y (1 - \beta \rho_y) (f_y + f_{y,b}) + \frac{1}{\sigma} f_y \\
-\frac{2}{\sigma} \Omega_y (f_y + f_{y,b}) + \frac{1}{\sigma} f_y
\right] \tilde{y}_{t|t} + \left[ \frac{1}{\sigma} (1 - \frac{1}{\sigma} f_d) - \frac{1}{\sigma} f_y \\
\kappa (1 - \frac{1}{\sigma} f_d) - \frac{1}{\sigma} f_y
\right] \begin{bmatrix} d_t \\ \tilde{y}_t \end{bmatrix}
\] (25)

Longer horizon forecasts then evolve as
\[
\begin{bmatrix}
\tilde{y}_{t+h|t} \\
\pi_{t+h|t}
\end{bmatrix} = - \left[ \frac{1}{\sigma} \Omega_d (1 - \beta \rho_d) (f_d + f_{d,b} - \sigma (1 - \rho_d)) \rho_d^h \frac{1}{\sigma} \Omega_y (1 - \beta \rho_y) (f_y + f_{y,b}) \rho_y^h \\
\frac{2}{\sigma} \Omega_d (f_d + f_{d,b} - \sigma (1 - \rho_d)) \rho_d^h \frac{2}{\sigma} \Omega_y (f_y + f_{y,b}) \rho_y^h
\right] \begin{bmatrix} d_{t|t} \\ \tilde{y}_{t|t} \end{bmatrix}
\]

Setting \( d_{t|t} = d_t \) and \( \tilde{y}_{t|t} = \tilde{y}_t \) leads to the perfect information responses in Section 3.1.
\[
\begin{bmatrix}
\tilde{y}_{t+h|t} \\
\pi_{t+h|t}
\end{bmatrix}^\text{PI} = - \left[ \frac{1}{\sigma} \Omega_d (1 - \beta \rho_d) (f_d + f_{d,b} - \sigma (1 - \rho_d)) \rho_d^h \frac{1}{\sigma} \Omega_y (1 - \beta \rho_y) (f_y + f_{y,b}) \rho_y^h \\
\frac{2}{\sigma} \Omega_d (f_d + f_{d,b} - \sigma (1 - \rho_d)) \rho_d^h \frac{2}{\sigma} \Omega_y (f_y + f_{y,b}) \rho_y^h
\right] \begin{bmatrix} d_t \\ \tilde{y}_t \end{bmatrix}
\]

Responses for \( \tilde{r}_t \) can be obtained using these solutions and the definition \( \tilde{r}_t \equiv i_t - \pi_{t+1|t} - \sigma (d_t - d_{t+1|t}) \).

The signs of responses depend crucially on the signs of \( \Omega_d \) and \( \Omega_y \). In particular, these coefficients need to be positive to ensure that responses go the intuitive way (i.e., the perfect information responses of the output gap and inflation to a positive interest rate surprise are negative). I can show that Assumption 1 achieves this since for a given \( \rho \in \{ \rho_d, \rho_y \} \) the corresponding \( \Omega \) has the same sign as

\[(1 - \rho) (1 - \beta \rho) - \frac{\kappa}{\sigma} \rho = \beta \rho^2 - \left( 1 + \beta + \frac{\kappa}{\sigma} \right) \rho + 1\]

This is a U-shaped parabola with 2 real roots. The larger root is greater than one.

\[
\frac{1 + \beta}{2\beta} + \frac{\kappa}{2\beta} + \frac{\sqrt{(1 + \beta + \frac{\kappa}{\sigma})^2 - 4\beta}}{2\beta} \geq 1 \text{ for } \beta \leq 1
\]

Then, since \( \rho_d, \rho_y < 1 \) must hold in order for the exogenous states to be stationary, \( \rho_d \) and \( \rho_y \) must be below the smaller root of the parabola for \( \Omega_d, \Omega_y \) to be positive. Thus, I impose

\[
\rho_d, \rho_y < \bar{\rho} \equiv \frac{1 + \beta + \frac{\kappa}{\sigma} - \sqrt{(1 + \beta + \frac{\kappa}{\sigma})^2 - 4\beta}}{2\beta}
\]

where \( \frac{\kappa}{\sigma} = \frac{(1 - \theta)(1 - \theta \beta)}{\theta} \left( 1 + \frac{\varphi}{\sigma} \right) \).

Rearranging this shows that \( \bar{\rho} = \theta \) for \( \varphi = 0 \). Combining this with the fact that

\[
\frac{\partial \bar{\rho}}{\partial \frac{\kappa}{\sigma}} = \frac{1}{2\beta} \left[ 1 - \frac{1 + \beta + \frac{\kappa}{\sigma}}{\sqrt{(1 + \beta + \frac{\kappa}{\sigma})^2 - 4\beta}} \right] < 0
\]

shows that \( \bar{\rho} < \theta \) for \( \varphi > 0 \).
C Proof of Proposition 1

To arrive at the results under imperfect information, I first express the interest rate surprise as a function of the policy coefficients and the relative variance

\[ i_t^{\text{surp}} = i_t - E \{ x_t | I_t \ \backslash \ i_t \} \]

\[ = (1 + f_d \sigma_{d,t} + f_g \sigma_{g,t}) \left( f_d \sigma_{d,t} + f_g \sigma_{g,t} \right) \]

\[ = \left[ \frac{f_d (f_d + f_d) \sigma_{d,t}^2 + f_g (f_g + f_g)}{f_d^2 \sigma_{d,t}^2 + f_g^2} \right] + \frac{f_d (f_d + f_d) \sigma_{d,t}^2 + f_g (f_g + f_g)}{f_d \sigma_{d,t}^2 + f_g^2} \cdot \frac{f_d \epsilon_d,t}{f_g \epsilon_g,t} \]

Then, under Assumptions 2 and 5, it’s clear that

\[ \frac{di_t^{\text{surp}}}{de_{d,t}} = \epsilon_d > 0 > \frac{di_t^{\text{surp}}}{de_{g,t}} \]

From here, impulse responses for \( \tilde{g}_t \) and \( \pi_t \) can be obtained from the equilibrium given above and belief formation which gives

\[ \frac{dd_{d,t}}{de_{d,t}} = f_d K_{d,t}, \quad \frac{dd_{d,t}}{de_{g,t}} = f_g K_{d,t} \]

\[ \frac{d\tilde{g}_t}{de_{d,t}} = f_d K_{\tilde{g},t}, \quad \frac{d\tilde{g}_t}{de_{g,t}} = f_g K_{\tilde{g},t} \]

where \( K_{d,t} = \frac{f_d^2 \sigma_{d,t}^2 + f_g^2}{f_d \sigma_{d,t}^2 + f_g^2} \) and \( K_{\tilde{g},t} = \frac{f_g}{f_d \sigma_{d,t}^2 + f_g^2} \)

Putting this all together gives the following relative responses to the exogenous shocks

\[ \frac{d\tilde{g}_t}{di_t^{\text{surp}}} = \frac{1}{\epsilon_g} \left[ \frac{\partial \tilde{g}_t}{\partial \tilde{g}_t} + \frac{\partial \tilde{g}_t}{\partial \tilde{g}_t} \frac{dd_{d,t}}{de_{g,t}} + \frac{\partial \tilde{g}_t}{\partial dd_{d,t}} \frac{dd_{d,t}}{de_{g,t}} \right] \]

\[ = \frac{1}{\sigma} \Omega_g \left( f_d + f_d \right) f_g + \Omega_d \left( f_d + f_d \right) (1 - \beta \rho_d) \left( \frac{f_d}{\sigma_{d,t}^2 + f_g^2} \right) \]

\[ \frac{d\pi_t}{di_t^{\text{surp}}} = \frac{1}{\epsilon_g} \left[ \frac{\partial \pi_t}{\partial \pi_t} + \frac{\partial \pi_t}{\partial \pi_t} \frac{dd_{d,t}}{de_{g,t}} + \frac{\partial \pi_t}{\partial dd_{d,t}} \frac{dd_{d,t}}{de_{g,t}} \right] \]

\[ = \frac{1}{\sigma} \Omega_g \left( f_d + f_d \right) f_g + \Omega_d \left( f_d + f_d \right) (1 - \beta \rho_d) \left( \frac{f_d}{\sigma_{d,t}^2 + f_g^2} \right) \]
\[
\begin{align*}
\frac{dy_t / dx_{d,t}}{d\tau_{t}^{\text{surp}} / dx_{d,t}} &= \frac{1}{\tau_d} \left[ \frac{\partial y_t}{\partial t} + \frac{\partial y_t}{\partial y_t} \frac{dy_t}{dx_{d,t}} + \frac{\partial y_t}{\partial d} \frac{dd_{d,t}}{dx_{d,t}} \right] \\
&= \frac{1}{\tau_d} \left[ -\Omega y \left( 1 - \beta \rho \right) f_y + f_y b \right] f_d f_d + \sigma f_y \Omega \left( 1 - \beta \rho \right) (f_d + f_{d,b} - \sigma (1 - \rho_d)) f_d \sigma_{\gamma, t-1}^2 \\
&= \frac{1}{\sigma f_d} f_d (f_d + f_{d,b}) \sigma_{\gamma, t-1}^2 + f_y f_y b \\
\frac{d\tau_t / dx_{d,t}}{d\tau_{t}^{\text{surp}} / dx_{d,t}} &= \frac{1}{\tau_d} \left[ \frac{\partial \tau_t}{\partial t} + \frac{\partial \tau_t}{\partial y_t} \frac{dy_t}{dx_{d,t}} + \frac{\partial \tau_t}{\partial d} \frac{dd_{d,t}}{dx_{d,t}} \right] \\
&= \frac{\kappa}{\tau_d} \left[ -\Omega y \left( f_y + f_y b \right) f_y g + \sigma f_y \Omega \left( f_d + f_{d,b} - \sigma (1 - \rho_d) \right) f_d \sigma_{\gamma, t-1}^2 + f_y \left( f_y + f_y b \right) \right] \\
&= \frac{\kappa}{\sigma f_d} \left[ f_d (f_d + f_{d,b}) \sigma_{\gamma, t-1}^2 + f_y \left( f_y + f_y b \right) \right] \\
\end{align*}
\]

Assumption 1 gives \( \Omega_d, \Omega_y > 0 \) as discussed in the previous section. For the relative responses to \( \epsilon_{y,t} \), Assumption 2 ensures that the sign is opposite of the sign of the numerators. For the numerators, the same assumption ensures that the first term is positive while the second terms are negative as long as Assumption 6 holds since

\[
(f_d + f_{d,b}) (1 - \beta \rho_d) - \kappa \rho_d < 0 \quad \text{and} \quad f_d + f_{d,b} - \sigma \beta \rho_d (1 - \rho_d) - \kappa \rho_d < 0 \\
\Leftrightarrow f_d + f_{d,b} < \min \left\{ \frac{\kappa \rho_d}{1 - \beta \rho_d}, \rho_d (\sigma \beta (1 - \rho_d) + \kappa) \right\} = \frac{\kappa \rho_d}{1 - \beta \rho_d}
\]

where the last equality comes from the fact that \( \Omega_d > 0 \). Meanwhile, this same fact gives

\[
\begin{align*}
\frac{\kappa \rho_d}{(1 - \rho_d) (1 - \beta \rho_d)} - \sigma \rho_d &< \frac{\kappa \rho_d}{1 - \beta \rho_d} \\
\frac{\kappa \rho_d}{(1 - \rho_d) (1 - \beta \rho_d)} &< \sigma
\end{align*}
\]

Thus, Assumption 6 is sufficient to guarantee that these second terms in the numerators of \( \frac{dy_t / dx_{d,t}}{d\tau_{t}^{\text{surp}} / dx_{d,t}} \) and \( \frac{d\tau_t / dx_{d,t}}{d\tau_{t}^{\text{surp}} / dx_{d,t}} \) are negative while the last fact shows that this assumption places a tighter condition than the one in Assumption 5. Then, it’s clear that \( \frac{dy_t / dx_{d,t}}{d\tau_{t}^{\text{surp}} / dx_{d,t}} \) and \( \frac{d\tau_t / dx_{d,t}}{d\tau_{t}^{\text{surp}} / dx_{d,t}} \) can be positive if the second terms in the numerator are large (i.e., when \( \sigma_{\gamma, t-1}^2 \) is large). For the relative responses to \( \epsilon_{d,t} \), the first terms are negative while the last 2 terms are positive under Assumption 5. Then, it’s clear that they can be positive if the last two terms in the numerator are large (i.e., when \( \sigma_{\gamma, t-1}^2 \) is large).

The scaled covariance between an outcome \( x_t \) and the interest rate surprise is given by

\[
\frac{\text{Cov}_{t-1} \left( x_t, i_t^{\text{surp}} \right)}{\text{Var}_{t-1} \left( i_t^{\text{surp}} \right)} = \frac{d x_t / dx_{d,t}}{d \tau_{t}^{\text{surp}} / dx_{d,t}} \frac{t_d \sigma_{d,t-1}^2 + d x_t / y_t \sigma_{y,t-1}^2}{t_d^2 \sigma_{d,t-1}^2 + i_t \sigma_{y, t-1}^2} + \frac{d x_t / d \tau_{t}^{\text{surp}} / dx_{d,t}}{d \tau_{t}^{\text{surp}} / dx_{d,t}} \frac{f_d \sigma_{\gamma, t-1}^2}{d \tau_{t}^{\text{surp}} / dx_{d,t}} + f_y^2 \frac{d \tau_{t}^{\text{surp}} / dx_{d,t}}{d \tau_{t}^{\text{surp}} / dx_{d,t}} \frac{f_d \sigma_{\gamma, t-1}^2}{d \tau_{t}^{\text{surp}} / dx_{d,t}} + f_y^2
\]

so that

\[
\begin{align*}
\frac{\text{Cov}_{t-1} \left( \pi_t, i_t^{\text{surp}} \right)}{\text{Var}_{t-1} \left( i_t^{\text{surp}} \right)} &= -\frac{\kappa}{\sigma} \Omega y \left( f_y + f_y b \right) f_y + \Omega \left( f_d + f_{d,b} - \sigma (1 - \rho_d) \right) f_d \sigma_{\gamma, t-1}^2 \\
&= \frac{-\kappa}{\sigma} f_d (f_d + f_{d,b}) \sigma_{\gamma, t-1}^2 + f_y \left( f_y + f_y b \right) \\
\frac{\text{Cov}_{t-1} \left( y_t, i_t^{\text{surp}} \right)}{\text{Var}_{t-1} \left( i_t^{\text{surp}} \right)} &= -\frac{1}{\sigma} \frac{\Omega y \left( 1 - \beta \rho_d \right) \left( f_y + f_y b \right) f_y + \Omega \left( f_d + f_{d,b} - \sigma (1 - \rho_d) \right) f_d \sigma_{\gamma, t-1}^2}{f_d (f_d + f_{d,b}) \sigma_{\gamma, t-1}^2 + f_y \left( f_y + f_y b \right)}
\end{align*}
\]
Then, Assumptions 2 and 5 are sufficient to show that

\[
\frac{d \text{Cov}_{t-1}(x_t^{\text{surp}}, \tau_{t-1}^{\text{surp}})}{\text{Var}_{t-1}(\tau_{t-1}^{\text{surp}})} = \frac{\kappa \Omega_y (f_d + f_d, b - \Omega_d (f_d + f_d, b - \sigma (1 - \rho_d)))}{\sigma} \frac{f_d f_y (f_y + f_y, b)}{f_d (f_d + f_d, b)^{2} + f_y (f_y + f_y, b)} > 0
\]

These 2 assumptions are also sufficient to ensure that these scaled covariances are positive for large enough \( \frac{\sigma_d^2_{t-1}}{\sigma_y^2_{t-1}} \).

The responses of forecasts of horizons \( h \geq 1 \) and the real interest rate gap can be signed in a similar manner.

\[
\frac{d \hat{y}_{t+h|t}}{d \hat{y}_t} = \frac{\partial \hat{y}_{t+h|t}}{\partial \hat{y}_t} \frac{d \hat{y}_t}{d \hat{y}_t, t} + \frac{\partial \hat{y}_{t+h|t}}{\partial d_t} \frac{d d_t}{d \hat{y}_t, t} = -\frac{1}{\sigma} \frac{\Omega_y \rho_y^2 (1 - \beta \rho_y) (f_y + f_y, b) f_y + \Omega_d \rho_y^2 (1 - \beta \rho_d) (f_d + f_d, b - \sigma (1 - \rho_d)) f_d \sigma_d^2_{t-1}}{f_d \sigma_y^2_{t-1} + f_y^2}
\]

\[
\frac{d \pi_{t+h|t}}{d \hat{y}_t, t} = \frac{\partial \pi_{t+h|t}}{\partial \hat{y}_t, t} \frac{d \hat{y}_t}{d \hat{y}_t, t} + \frac{\partial \pi_{t+h|t}}{\partial d_t} \frac{d d_t}{d \hat{y}_t, t} = -\frac{1}{\sigma} \frac{\Omega_y \rho_y^2 (f_y + f_y, b) f_y + \Omega_d \rho_y^2 (f_d + f_d, b - \sigma (1 - \rho_d)) f_d \sigma_d^2_{t-1}}{f_d \sigma_y^2_{t-1} + f_y^2}
\]

\[
\frac{d x_{t+h|t}}{d d_t} = \frac{f_d \frac{d x_{t+h|t}}{d \hat{y}_t, t}}{f_d \frac{d \hat{y}_{t+h|t}}{d \hat{y}_t, t}} \text{ for } x_{t+h|t} \in \{ \hat{y}_{t+h|t}, \pi_{t+h|t} \}
\]

\[
\frac{d d_t}{d d_t, t} = \frac{d d_t, t}{d d_t, t} - \frac{\sigma d_d}{d d_t, d_t} + \sigma \rho_d \frac{d d_t}{d d_t, d_t} = \frac{\Omega_y (1 - \rho_y) (1 - \beta \rho_y) (f_y + f_y, b) f_y f_d - \sigma f_y^2 + \Omega_d (1 - \rho_d) (1 - \beta \rho_d) (f_d + f_d, b - \sigma (1 - \rho_d)) f_d \sigma_d^2_{t-1}}{f_d \sigma_y^2_{t-1} + f_y^2}
\]

\[
\frac{d d_t}{d \hat{y}_t, t} = \frac{d d_t, t}{d \hat{y}_t, t} - \frac{\sigma d_d}{d \hat{y}_t, d_t} + \sigma \rho_d \frac{d d_t}{d \hat{y}_t, d_t} = \frac{\Omega_y (1 - \rho_y) (1 - \beta \rho_y) (f_y + f_y, b) f_y^2 + [\sigma + \Omega_d (1 - \rho_d) (1 - \beta \rho_d) (f_d + f_d, b - \sigma (1 - \rho_d)) f_y f_d \sigma_d^2_{t-1}}{f_d \sigma_y^2_{t-1} + f_y^2}
\]

Since the responses of forecasts under the individual shocks are proportional to each other, the scaled covariance between forecasts and the interest rate surprise can be found by looking just at the relative response to the output gap target shock

\[
\frac{\text{Cov}_{t-1}(x_{t+h|t}, \tau_{t-1}^{\text{surp}})}{\text{Var}_{t-1}(\tau_{t-1}^{\text{surp}})} = \frac{d x_{t+h|t}/d \hat{y}_t, t}{d t^{\text{surp}}/d \hat{y}_t, t} \frac{f_d \sigma_d^2_{t-1}}{f_d \sigma_y^2_{t-1} + f_y^2} + \frac{d x_{t+h|t}/d d_t, t}{d \tau^{\text{surp}}/d d_t, t} \frac{f_d \sigma_d^2_{t-1}}{f_d \sigma_y^2_{t-1} + f_y^2} = \frac{d x_{t+h|t}/d \hat{y}_t, t}{d t^{\text{surp}}/d \hat{y}_t, t}
\]
so that
\[
\begin{align*}
\text{Cov}_{t-1} \left( \pi_{t+1|t}, i_t^{\text{surp}} \right) / \text{Var}_{t-1} \left( i_t^{\text{surp}} \right) &= -\frac{\kappa \Omega_y \rho_y^h (f_d + f_{d,b}) f_y + \Omega_d \rho_d^h (f_d + f_{d,b} - \sigma (1 - \rho_d)) f_d \sigma_{\pi,t-1}^{\text{dis}}}{\sigma} f_d \left( f_d + f_{d,b} \right) \sigma_{\pi,t-1}^{\text{dis}} + f_y \left( f_y + f_{y,b} \right) \\
\text{Cov}_{t-1} \left( \hat{y}_{t+1|t}, i_t^{\text{surp}} \right) / \text{Var}_{t-1} \left( i_t^{\text{surp}} \right) &= -\frac{1 \Omega_y \rho_y^h (1 - \beta \rho_y) (f_y + f_{y,b}) f_y + \Omega_d \rho_d^h (1 - \beta \rho_d) (f_d + f_{d,b} - \sigma (1 - \rho_d)) f_d \sigma_{\pi,t-1}^{\text{dis}}}{\sigma} f_d \left( f_d + f_{d,b} \right) \sigma_{\pi,t-1}^{\text{dis}} + f_y \left( f_y + f_{y,b} \right)
\end{align*}
\]

Assumptions 2 and 5 are again sufficient to ensure that these scaled covariances are positive for large enough \( \sigma_{\pi,t-1}^{\text{dis}} \) and that
\[
\begin{align*}
\frac{d}{\sigma \sigma_{\pi,t-1}} \left( \text{Cov}_{t-1} \left( \pi_{t+1|t}, i_t^{\text{surp}} \right) \right) &= \frac{\kappa \Omega_y \rho_y^h (f_d + f_{d,b}) - \Omega_d \rho_d^h (f_d + f_{d,b} - \sigma (1 - \rho_d))}{\sigma} f_d f_y \left( f_y + f_{y,b} \right) > 0 \\
\frac{d}{\sigma \sigma_{\pi,t-1}} \left( \text{Cov}_{t-1} \left( \hat{y}_{t+1|t}, i_t^{\text{surp}} \right) \right) &= \frac{1 \Omega_y \rho_y^h (1 - \beta \rho_y) (f_d + f_{d,b}) - \Omega_d \rho_d^h (1 - \beta \rho_d) (f_d + f_{d,b} - \sigma (1 - \rho_d))}{\sigma} f_d f_y \left( f_y + f_{y,b} \right) > 0
\end{align*}
\]
Looking back at the equilibrium solution, it’s clear that setting \( f_d = \sigma \) and \( f_{d,b} = -\sigma \rho_d \) results in the coefficients on \( d_{1|t} \) and \( d_1 \) being zero. Using these parameter values in the responses immediately gives the properties presented in Section 3.2.

D Proof of Proposition 2

Here, I repeat the equations summarizing the policymaker’s problem described in Section 4
\[
\min_{i^{\text{dis}}, \hat{y}_t, \pi_t} E_t^{CB} \sum_{t=t_0}^{\infty} \beta^{t-t_0} \frac{1}{2} (\hat{y}_t - \bar{y}_t)^2 + \frac{\varepsilon}{\kappa} \pi_t^2
\]
subject to
\[
\begin{align*}
\hat{y}_t &= \hat{y}_{t+1|t} - \frac{1}{\sigma} (i_t - \pi_{t+1|t}) + d_t - d_{t+1|t} \\
\pi_t &= \beta \pi_{t+1|t} + \kappa \hat{y}_t
\end{align*}
\]
where
\[
\begin{bmatrix}
\hat{y}_{t+1|t} \\
\pi_{t+1|t}
\end{bmatrix} = M \begin{bmatrix}
\rho_d & 0 \\
0 & \rho_y
\end{bmatrix} \begin{bmatrix}
d_t \\
\hat{y}_t
\end{bmatrix}
\]
\[
d_t = \rho_d d_{t-1} + K_d \left( i^{\text{dis}}_t - f_d \rho_d d_{t-1} - f_y \rho_y \hat{y}_{t-1} \right)
\]
\[
\bar{y}_t = \rho_y \hat{y}_{t-1} + K_y \left( i^{\text{dis}}_t - f_d \rho_d d_{t-1} - f_y \rho_y \hat{y}_{t-1} \right)
\]
with \( M, K_d, K_y \) taken as given.

Then, I can write the output gap deviation and inflation in matrix form as the following function of current
\[
\begin{align*}
\begin{bmatrix}
\tilde{y}_t - \bar{y}_t \\
\pi_t
\end{bmatrix}
&= 
\begin{bmatrix}
1 & \frac{1}{\sigma} \\
\kappa & \frac{\kappa}{\sigma} + \beta
\end{bmatrix}
M
\begin{bmatrix}
\rho_d & 0 \\
0 & \rho_{\bar{y}}
\end{bmatrix}
\begin{bmatrix}
d_{\delta t} \\
\bar{y}_{t|t}
\end{bmatrix}
- 
\begin{bmatrix}
\frac{1}{\sigma} \\
\frac{\kappa}{\sigma}
\end{bmatrix}
f_{\bar{y},\delta|t} + 
\begin{bmatrix}
1 \\
\kappa
\end{bmatrix}d_t - 
\begin{bmatrix}
1 \\
0
\end{bmatrix}\tilde{y}_t - 
\begin{bmatrix}
\frac{1}{\sigma} \\
\frac{\kappa}{\sigma}
\end{bmatrix}i_t^{\text{dis}}
\end{align*}
\]

By plugging in beliefs, this can be transformed into the following function of exogenous states and \(i_t^{\text{dis}}\)

\[
\begin{align*}
\begin{bmatrix}
\tilde{y}_t - \bar{y}_t \\
\pi_t
\end{bmatrix}
&= 
\Psi
\begin{bmatrix}
1 - K_d f_d & -K_d f_{\bar{y}} \\
-K_{\bar{y}} f_d & 1 - K_{\bar{y}} f_{\bar{y}}
\end{bmatrix}
\begin{bmatrix}
\rho_d d_{t-1} \\
\rho_{\bar{y}} \bar{y}_{t-1}
\end{bmatrix}
+ 
\begin{bmatrix}
1 \\
\kappa
\end{bmatrix}d_t + 
\begin{bmatrix}
H_{\bar{y},\delta} \\
H_{\pi,\delta}
\end{bmatrix}i_t^{\text{dis}}
\end{align*}
\]

where \(\Psi \equiv 
\begin{bmatrix}
1 & \frac{1}{\sigma} \\
\kappa & \frac{\kappa}{\sigma} + \beta
\end{bmatrix}
M
\begin{bmatrix}
\rho_d & 0 \\
0 & \rho_{\bar{y}}
\end{bmatrix}
- 
\begin{bmatrix}
\rho_d + \frac{1}{\sigma} f_{d,b} & \frac{1}{\sigma} f_{d,b} \\
\frac{1}{\kappa} (\rho_d + \frac{1}{\sigma} f_{d,b}) & \frac{1}{\sigma} f_{\bar{y},\bar{y}}
\end{bmatrix}
\]

and \([H_{\bar{y},\delta} \\
H_{\pi,\delta}] \equiv \Psi
\begin{bmatrix}
K_d \\
K_{\bar{y}}
\end{bmatrix}
- 
\begin{bmatrix}
\frac{1}{\sigma} \\
\frac{\kappa}{\sigma}
\end{bmatrix}
= 
\begin{bmatrix}
\frac{\partial y_t}{\partial y_{t+1}} & \frac{\partial y_t}{\partial y_{t+1}} \\
\frac{\partial y_t}{\partial y_{t+1}} & \frac{\partial y_t}{\partial y_{t+1}}
\end{bmatrix}
\]

In this form, it’s clear that the discretionary policymaker has no control over time \(t + 1\) or later outcomes and the problem simplifies to

\[
\min_{i_t^{\text{dis}}} \frac{1}{2} \left( \tilde{y}_t - \bar{y}_t \right)^2 + \frac{\varepsilon}{\kappa} \pi_t^2
\]

subject to (27)

which clearly gives the optimality condition

\[
(\tilde{y}_t - \bar{y}_t) H_{\bar{y},\delta} + \frac{\varepsilon}{\kappa} \pi_t H_{\pi,\delta} = 0 \Rightarrow \tilde{y}_t - \bar{y}_t = -\mathcal{R} \frac{\varepsilon}{\kappa} \pi_t
\]

matching the form given in the proposition with \(\mathcal{R} \equiv \frac{H_{\pi,\delta}}{H_{\bar{y},\delta}} = \frac{\frac{\partial y_t}{\partial y_{t+1}} + \frac{\partial y_t}{\partial y_{t+1}}}{\frac{\partial y_t}{\partial y_{t+1}} + \frac{\partial y_t}{\partial y_{t+1}}} + \frac{\partial y_t}{\partial y_{t+1}} + \frac{\partial y_t}{\partial y_{t+1}}
\]

Solving for \(\tilde{y}_t\) using this optimality condition and substituting this into the inflation condition gives

\[
\pi_t = \beta \pi_{t+1|t} - \mathcal{R} \varepsilon \pi_t + \kappa \bar{y}_t
\]

By restricting attention to nonnegative values of \(\mathcal{R}\), I can iterate this forward while using the fact that \(\bar{y}_{t+h|t} = \rho^h \bar{y}_{t|t}\)
to get a solution for \(\pi_t\) in terms of \(\{\tilde{y}_t, \bar{y}_{t|t}\}\). Substituting that expression for \(\pi_t\) back into the optimality condition gives the solution for \(\tilde{y}_t\) in terms of the same state variables

\[
\pi_t = \frac{K}{1 + \mathcal{R} \varepsilon} \tilde{y}_t + \frac{\beta \rho_{\bar{y}}} {1 - \beta \rho_{\bar{y}} + \mathcal{R} \varepsilon} \tilde{y}_{t|t}
\]

\[
\bar{y}_t = \frac{1}{1 + \mathcal{R} \varepsilon} \tilde{y}_t - \frac{\mathcal{R} \varepsilon \beta \rho_{\bar{y}}}{1 - \beta \rho_{\bar{y}} + \mathcal{R} \varepsilon} \tilde{y}_{t|t}
\]

Then, this gives expressions for expectations \(\tilde{y}_{t+1|t}\) and \(\pi_{t+1|t}\) which immediately reveals the equilibrium value of \(M\) as a function of \(\mathcal{R}\)

\[
\begin{bmatrix}
\tilde{y}_{t+1|t} \\
\pi_{t+1|t}
\end{bmatrix}
= 
\begin{bmatrix}
0 & 1 - \beta \rho_{\bar{y}} - \frac{1}{1 - \beta \rho_{\bar{y}} + \mathcal{R} \varepsilon} \\
0 & \frac{\kappa}{1 - \beta \rho_{\bar{y}} + \mathcal{R} \varepsilon}
\end{bmatrix}
\begin{bmatrix}
\rho_d & 0 \\
0 & \rho_{\bar{y}}
\end{bmatrix}
\begin{bmatrix}
d_{\delta t} \\
\tilde{y}_{t|t}
\end{bmatrix}
\]
These can be used along with (1) to back out the implied nominal interest rate in terms of \( \{d_t, d_{t+1}, \bar{y}_t, \bar{y}_{t+1}\} \)

\[
\begin{align*}
    i_t &= \sigma (d_t - d_{t+1}) + \pi_{t+1} + \sigma (\bar{y}_{t+1} - \bar{y}_t) \\
    &= \frac{\sigma d_t - \sigma \rho_d d_{t+1}}{r_t} - \frac{\sigma}{1 + R\epsilon \epsilon} \bar{y}_t + \sigma \left( \frac{1}{1 + R\epsilon} - \frac{1}{\Omega} \right) \frac{1}{1 - \beta \rho_y + R\epsilon} \bar{y}_{t+1}
\end{align*}
\]  

(28)

Using these optimal response coefficients along with the expression for \( \mathbf{M} \) gives the equilibrium condition for \( \mathcal{R} \)

\[
\begin{align*}
    \mathcal{R} &= \kappa \left( 1 - \beta \rho_y \right) \mathcal{K}_y - \frac{1}{\sigma} - \frac{1}{\left( 1 - \beta \rho_y + R\epsilon \right)} \mathcal{K}_y - \frac{1}{\sigma} \\
    &= \kappa \left( 1 - \beta \rho_y \right) \mathcal{K}_y - \frac{1}{\sigma} \\
    &= \kappa \left( 1 - \beta \rho_y \right) \mathcal{K}_y - \frac{1}{\sigma} \\
\end{align*}
\]  

(29)

Here, it’s clear that when \( \beta \rho_y = 0 \), the terms involving \( \mathcal{K}_y \) drop out of this expression and it gives \( \mathcal{R} = \kappa \).

Rearranging (29) gives

\[
0 = -\beta \rho_y \left( \mathcal{R}^2 \epsilon + \kappa \right) + \left( \mathcal{R} - \kappa \right) (1 - \beta \rho_y + R\epsilon) \left( 1 + R\epsilon \right) \frac{\sigma_y^2}{\sigma_y^2} + 1
\]

(30)

To focus on equilibrium values for \( \mathcal{R} \) which give finite policy response coefficients, I impose \( 1 + R\epsilon \neq 0 \) and \( 1 - \beta \rho_y + R\epsilon \neq 0 \) which allows me to reduce this equilibrium condition to a third-order polynomial

\[
\begin{align*}
0 &= \mathcal{R} (1 - \beta \rho_y) - \kappa + (\mathcal{R} - \kappa) (1 - \beta \rho_y + R\epsilon) \left( 1 + R\epsilon \right) \frac{\sigma_y^2}{\sigma_y^2} \\
&= \epsilon^2 \sigma_y^2 \mathcal{R}^3 + \epsilon \left( 2 - \beta \rho_y - \epsilon \kappa \right) \frac{\sigma_y^2}{\sigma_y^2} \mathcal{R}^2 \\
&+ \left[ (1 - \beta \rho_y) \left( 1 + \frac{\sigma_y^2}{\sigma_y^2} (1 - \epsilon \kappa) \right) - \epsilon \kappa \right] \mathcal{R} - \kappa \left( 1 + (1 - \beta \rho_y) \frac{\sigma_y^2}{\sigma_y^2} \right)
\end{align*}
\]  

(31)

Since the first coefficient in the polynomial is positive while the last is negative, Descartes’ rule of signs says that there must be at least one positive root for any values of the middle two coefficients.

Again, attention is limited to positive solutions for \( \mathcal{R} \). To see that \( \mathcal{R} \geq \kappa \), note that rearranging (30) gives

\[
\mathcal{R} - \kappa = \frac{\beta \rho_y}{1 - \beta \rho_y + R\epsilon} \frac{\mathcal{R}^2 \epsilon + \kappa}{\left( 1 + R\epsilon \right) \frac{\sigma_y^2}{\sigma_y^2} + 1} \geq 0 \quad \text{for} \quad \mathcal{R} \geq 0
\]

Using the expression in (31) gives the upper bound \( \mathcal{R} \leq \frac{\kappa}{1 - \beta \rho_y} \)

\[
\mathcal{R} (1 - \beta \rho_y) - \kappa = -\left( \mathcal{R} - \kappa \right) (1 - \beta \rho_y + R\epsilon) \left( 1 + R\epsilon \right) \frac{\sigma_y^2}{\sigma_y^2} \leq 0 \quad \text{for} \quad \mathcal{R} \geq \kappa
\]

Implicitly differentiating (31) gives

\[
\frac{d \mathcal{R}}{d \left( \frac{\sigma_y^2}{\sigma_y^2} \right)} = -\frac{(\mathcal{R} - \kappa) (1 - \beta \rho_y + R\epsilon) (1 + R\epsilon)}{1 - \beta \rho_y + \left[ (\mathcal{R} - \kappa) \left( (1 - \beta \rho_y + R\epsilon) + (1 + R\epsilon) \right) \epsilon + (1 - \beta \rho_y + R\epsilon) (1 + R\epsilon) \right] \frac{\sigma_y^2}{\sigma_y^2}} < 0
\]

Now, I look at the cases given by the limits of \( \frac{\sigma_y^2}{\sigma_y^2} \).
When $\frac{\sigma^2}{\bar{y}^2} \rightarrow \infty$: In this case, referring back to (29), it’s clear that $K_\bar{y} \rightarrow 0$ and $\mathcal{R} = \kappa$ is the unique solution in this limit. To see that this is the solution of the perfect information case, note that the policymaker’s problem in that setting is

$$\min_{\pi_t} \frac{1}{2} \left( (\bar{y}_t - \bar{y}_t)^2 + \frac{\epsilon}{\kappa^2} \right)$$

subject to (27) but with $d_{t|t} = d_t$ and $\bar{y}_{t|t} = \bar{y}_t$. Then, it’s clear that the optimality condition is the same as the one given in the proposition with $\mathcal{R} = \kappa$.

When $\frac{\sigma^2}{\bar{y}^2} \rightarrow 0$: Equation (29) shows that $\mathcal{R} \rightarrow \frac{\kappa}{1 - \beta \rho_\bar{y}}$ since $K_\bar{y} \rightarrow -\frac{1 + \mathcal{R} \epsilon}{\sigma}$.

Now, I show that this is equivalent to the case of a commitment to a rule of the form

$$i_t = r_t^\alpha + f_{\bar{y}}^{\alpha} \bar{y}_t + f_{\bar{y},b}^{\alpha} \bar{y}_{t|t}$$

First, I substitute these coefficients into the solution under a given rule derived earlier in the Appendix and given in (25))

$$\begin{bmatrix} \bar{y}_t - \bar{y}_t \\ \pi_t \end{bmatrix} = \begin{bmatrix} -\frac{1}{\sigma} \Omega_\bar{y} (1 - \beta \rho_\bar{y}) \left( f_\bar{y}^c + f_{\bar{y},b}^c \right) + \frac{1}{\kappa} f_\bar{y}^c \\ -\frac{\kappa}{\sigma} \Omega_\bar{y} \left( f_\bar{y}^c + f_{\bar{y},b}^c \right) + \frac{\kappa}{\sigma} f_\bar{y}^c \end{bmatrix} \bar{y}_{t|t} + \begin{bmatrix} -\frac{1}{\sigma} f_\bar{y}^c - 1 \\ -\frac{\kappa}{\sigma} f_\bar{y}^c \end{bmatrix} \bar{y}_t$$

where equilibrium beliefs in this limit are given by

$$\bar{y}_{t|t} = \bar{y}_t + \frac{\sigma}{f_\bar{y}^c} \epsilon_{d,t}$$

Then, the policymaker who can commit to this rule solves

$$\min_{f_{\bar{y}}^c, f_{\bar{y},b}^{\alpha}} E_{t_0}^{CB} \sum_{t=t_0}^{\infty} \beta^{t-t_0} \frac{1}{2} \left( (\bar{y}_t - \bar{y}_t)^2 + \frac{\epsilon}{\kappa^2} \right)$$

where

$$\begin{bmatrix} \bar{y}_t - \bar{y}_t \\ \pi_t \end{bmatrix} = \begin{bmatrix} -\frac{1}{\sigma} \Omega_\bar{y} (1 - \beta \rho_\bar{y}) \left( f_\bar{y}^c + f_{\bar{y},b}^c \right) + 1 \\ -\frac{\kappa}{\sigma} \Omega_\bar{y} \left( f_\bar{y}^c + f_{\bar{y},b}^c \right) + \kappa \end{bmatrix} \bar{y}_t + \begin{bmatrix} -\Omega_\bar{y} (1 - \beta \rho_\bar{y}) \left( 1 + \frac{f_{\bar{y},b}^{\alpha}}{f_\bar{y}^c} \right) + 1 \\ -\Omega_\bar{y} \left( 1 + \frac{f_{\bar{y},b}^{\alpha}}{f_\bar{y}^c} \right) + \kappa \end{bmatrix} \epsilon_{d,t}$$

Then, the two optimality conditions are given by

$$0 = \frac{\partial}{\partial f_\bar{y}^c} E_{t_0}^{CB} \sum_{t=t_0}^{\infty} \beta^{t-t_0} \frac{1}{2} \left( (\bar{y}_t - \bar{y}_t)^2 + \frac{\epsilon}{\kappa^2} \right)$$

$$\Rightarrow 0 = E_{t_0}^{CB} \sum_{t=t_0}^{\infty} \beta^{t-t_0} \left( (\bar{y}_t - \bar{y}_t) (1 - \beta \rho_\bar{y}) + \epsilon \pi_t \right) \left[ -\frac{1}{\sigma} \bar{y}_t + \frac{f_{\bar{y},b}^c}{(f_\bar{y}^c)^2} \epsilon_{d,t} \right]$$
\[
0 = \frac{\partial}{\partial \bar{y}_t} E_{t_0} \sum_{t=t_0}^{\infty} \beta^{t-t_0} \frac{1}{2} \left( (\bar{y}_t - \bar{y}_t)^2 + \frac{\varepsilon \pi^2}{\kappa} \right)
\]

\[
\Rightarrow 0 = E_{t_0} \sum_{t=t_0}^{\infty} \beta^{t-t_0} \left( (\bar{y}_t - \bar{y}_t) \left( 1 - \beta \rho_y \right) + \varepsilon \pi_t \right) \left[ -\frac{1}{\sigma} \bar{y}_t - \frac{1}{f_{\bar{y}}^{\text{d},t}} \right]
\]

Both conditions are satisfied by a policy that maintains

\[
\bar{y}_t - \bar{y}_t = -\frac{\varepsilon}{1 - \beta \rho_y} \pi_t \quad \forall t
\]

which is equivalent to the optimality condition of the discretionary policy with \( \mathcal{R} \rightarrow \frac{\kappa}{1 - \beta \rho_y} \) in this limit.

Lastly I show that the same discretionary optimal policy condition is obtained if I start with agents who suppose that current policy responds linearly to the entire history of shocks \( \{d^t, \bar{y}^t\} \). That is, I replace the supposed behavior of current policy in equation (11) with

\[
i_t = \sum_{l=0}^{\infty} f_d^{\text{hist}} (l) d_{t-l} + \sum_{l=0}^{\infty} f_{\bar{y}}^{\text{hist}} (l) \bar{y}_{t-l}
\]

(In equilibrium, a rule that also includes current and lagged private agent beliefs can be written in this form since private agent beliefs are a function of lagged and current state variables in equilibrium.)

Then, beliefs are given by a static Gaussian signal extraction problem where

\[
\begin{bmatrix}
\tilde{d}_{t+1|t} \\
\tilde{\pi}_{t+1|t}
\end{bmatrix} = \begin{bmatrix}
\rho_d d_{t-1} \\
\rho_y \bar{y}_{t-1}
\end{bmatrix} + \begin{bmatrix}
K_{d}^{\text{hist}} \\
K_{\bar{y}}^{\text{hist}}
\end{bmatrix} [i_t - E [i_t | \mathcal{I}_t \setminus i_t]]
\]

(33)

where \( E [i_t | \mathcal{I}_t \setminus i_t] \) is given by

\[
K_{d}^{\text{hist}} = \frac{f_d^{\text{hist}} (0) (0) \sigma_d^2}{(f_d^{\text{hist}} (0))^2 \sigma_d^2 + (f_{\bar{y}}^{\text{hist}} (0))^2 \sigma_{\bar{y}}^2}, \\
K_{\bar{y}}^{\text{hist}} = \frac{f_{\bar{y}}^{\text{hist}} (0) \sigma_{\bar{y}}^2}{(f_d^{\text{hist}} (0))^2 \sigma_d^2 + (f_{\bar{y}}^{\text{hist}} (0))^2 \sigma_{\bar{y}}^2}
\]

To proceed, I now conjecture that the equilibrium solution for the endogenous outcomes \( \tilde{y}_t \) and \( \pi_t \) are linear in the full history of shocks, thus resulting in expectations of the form

\[
\begin{bmatrix}
\tilde{y}_{t+1|t} \\
\tilde{\pi}_{t+1|t}
\end{bmatrix} = M^{\text{hist}} \begin{bmatrix}
\rho_d & 0 \\
0 & \rho_{\bar{y}}
\end{bmatrix} \begin{bmatrix}
\tilde{d}_{t+1|t} \\
\tilde{\pi}_{t+1|t}
\end{bmatrix} + \sum_{l=1}^{\infty} M_{d}^{\text{hist}} (l) d_{t-l} + \sum_{l=1}^{\infty} M_{\bar{y}}^{\text{hist}} (l) \bar{y}_{t-l}
\]

Again, this allows me to write the output gap deviation and inflation as

\[
\begin{bmatrix}
\tilde{y}_t - \bar{y}_t \\
\pi_t
\end{bmatrix} = \sum_{l=0}^{\infty} H_d^{\text{hist}} (l) d_{t-l} + \sum_{l=0}^{\infty} H_{\bar{y}}^{\text{hist}} (l) \bar{y}_{t-l} + \begin{bmatrix}
H_{d}^{\text{hist}} \\
H_{\bar{y}}^{\text{hist}}
\end{bmatrix} i_t
\]

(34)

where

\[
\begin{bmatrix}
H_{d}^{\text{hist}} \\
H_{\bar{y}}^{\text{hist}}
\end{bmatrix} = \left( \begin{bmatrix}
1 & 0 \\
\kappa & \frac{\pi}{\sigma} + \beta
\end{bmatrix} M^{\text{hist}} \begin{bmatrix}
\rho_d & 0 \\
0 & \rho_{\bar{y}}
\end{bmatrix} - \begin{bmatrix}
\rho_d & 0 \\
\rho_{\bar{y}} \kappa & 0
\end{bmatrix} \begin{bmatrix}
K_{d}^{\text{hist}} \\
K_{\bar{y}}^{\text{hist}}
\end{bmatrix} - \begin{bmatrix}
\frac{1}{\sigma} \\
\frac{\pi}{\sigma}
\end{bmatrix}
\]

and \( \{H_d^{\text{hist}} (l), H_{\bar{y}}^{\text{hist}} (l)\}_{l=0}^{\infty} \) are functions of \( M^{\text{hist}}, K_d^{\text{hist}}, K_{\bar{y}}^{\text{hist}}, \{f_d^{\text{hist}} (l), f_{\bar{y}}^{\text{hist}} (l), M_d^{\text{hist}} (l), M_{\bar{y}}^{\text{hist}} (l)\}_{l=0}^{\infty} \).
This again reduces the discretionary policy problem to

\[
\min_i \frac{1}{2} \left( (\tilde{y}_t - \bar{y}_t)^2 + \frac{\varepsilon}{\kappa} \pi_t^2 \right) \quad \text{subject to (34)}
\]

which gives

\[
\tilde{y}_t - \bar{y}_t = -R_{\text{hist}} \frac{\varepsilon}{\kappa} \pi_t \quad \text{where } R_{\text{hist}} = \frac{H_{\text{hist}}^{\pi,i}}{H_{\text{hist}}^{\bar{y},i}}
\]

This is equivalent to the solution above as long as the equilibrium condition for \( R_{\text{hist}} \) is the same. The rest of this section proves this.

Using the equilibrium conditions gives the following expression for expectations

\[
\begin{bmatrix}
\tilde{y}_{t+1|t} \\
\pi_{t+1|t}
\end{bmatrix} = 
\begin{bmatrix}
0 & \frac{1-\beta \rho_y}{1-\beta \rho_y + R_{\text{hist}} e} \\
0 & \frac{1-\beta \rho_y}{1-\beta \rho_y + R_{\text{hist}} e}
\end{bmatrix}
\begin{bmatrix}
\rho_d & 0 \\
0 & \rho_y
\end{bmatrix}
\begin{bmatrix}
d_{t|t} \\
\bar{y}_{t|t}
\end{bmatrix}
\]

and an interest rate that responds only to current true states and beliefs

\[
i^*_t = \sigma d_t - \sigma \rho_d d_{t|t} - \sigma \frac{1}{1 + R_{\text{hist}} e} \bar{y}_t + \sigma \left( \frac{1}{1 + R_{\text{hist}} e} - \frac{1}{\Omega_y 1 - \beta \rho_y + R_{\text{hist}} e} \right) \bar{y}_{t|t}
\]

Combining (32) and (33) shows that equilibrium beliefs are a function only of time \( t \) and \( t-1 \) fundamentals

\[
\begin{bmatrix}
d_{t|t} \\
\bar{y}_{t|t}
\end{bmatrix} = 
\begin{bmatrix}
\rho_d d_{t-1} \\
\rho_y \bar{y}_{t-1}
\end{bmatrix} + 
\begin{bmatrix}
K_{\text{hist}}^d \\
K_{\text{hist}} y
\end{bmatrix}
\begin{bmatrix}
f_{\text{hist}}^d (0) (d_t - \rho_d d_{t-1}) + f_{\text{hist}}^y (0) (\bar{y}_t - \rho_y \bar{y}_{t-1})
\end{bmatrix}
\]

Then, comparing (32) to the optimal interest rate proves that \( f_{\text{hist}}^d (l) = f_{\text{hist}}^y (l) = 0 \) for \( l \geq 2 \). Using these equilibrium beliefs in the expression for \( i^*_t \) allows me to obtain the remaining coefficients \{ \( f_{\text{hist}}^d (0), f_{\text{hist}}^d (1), f_{\text{hist}}^y (0), f_{\text{hist}}^y (1) \) \}

\[
i^*_t = \sigma d_t - \sigma \rho_d \left[ \rho_d d_{t-1} + K_{\text{hist}}^d \left( f_{\text{hist}}^d (0) (d_t - \rho_d d_{t-1}) + f_{\text{hist}}^y (0) (\bar{y}_t - \rho_y \bar{y}_{t-1}) \right) \right] - \sigma \frac{1}{1 + R_{\text{hist}} e} \bar{y}_t
\]

\[
+ \sigma \left( \frac{1}{1 + R_{\text{hist}} e} - \frac{1}{\Omega_y 1 - \beta \rho_y + R_{\text{hist}} e} \right) \left[ \rho_y \bar{y}_{t-1} + K_{\text{hist}}^y \left( f_{\text{hist}}^y (0) (d_t - \rho_d d_{t-1}) + f_{\text{hist}}^y (0) (\bar{y}_t - \rho_y \bar{y}_{t-1}) \right) \right]
\]

\[
= \sigma \left( 1 - \rho_d K_{\text{hist}}^d f_{\text{hist}}^d (0) - \left( \frac{1}{1 + R_{\text{hist}} e} - \frac{1}{\Omega_y 1 - \beta \rho_y + R_{\text{hist}} e} \right) K_{\text{hist}}^y f_{\text{hist}}^d (0) \right) d_t
\]

\[
- \sigma \rho_d \left( f_{\text{hist}}^d (0) - \left( \frac{1}{1 + R_{\text{hist}} e} - \frac{1}{\Omega_y 1 - \beta \rho_y + R_{\text{hist}} e} \right) K_{\text{hist}}^y f_{\text{hist}}^d (0) \right) d_{t-1}
\]

\[
- \sigma \left( \frac{1}{1 + R_{\text{hist}} e} + \rho_d K_{\text{hist}}^d f_{\text{hist}}^y (0) - \left( \frac{1}{1 + R_{\text{hist}} e} - \frac{1}{\Omega_y 1 - \beta \rho_y + R_{\text{hist}} e} \right) K_{\text{hist}}^y f_{\text{hist}}^y (0) \right) \bar{y}_t
\]

\[
+ \sigma \left[ \rho_d K_{\text{hist}}^d f_{\text{hist}}^y (0) + \left( \frac{1}{1 + R_{\text{hist}} e} - \frac{1}{\Omega_y 1 - \beta \rho_y + R_{\text{hist}} e} \right) \left[ 1 - K_{\text{hist}}^y f_{\text{hist}}^y (0) \right] \right] \rho_y \bar{y}_{t-1}
\]
which gives
\[
f_d^{\text{hist}}(0) = \frac{\sigma}{1 + \sigma \rho_d K_d^{\text{hist}} - \sigma \left( \frac{1}{1 + R^{\text{hist}\varepsilon}} - \frac{1}{\Omega_y (1 - \beta \rho_y + R^{\text{hist}\varepsilon})} \right) K_y^{\text{hist}}}
\]
\[
f_y^{\text{hist}}(0) = \frac{-\sigma}{1 + \sigma \rho_d K_d^{\text{hist}} - \sigma \left( \frac{1}{1 + R^{\text{hist}\varepsilon}} - \frac{1}{\Omega_y (1 - \beta \rho_y + R^{\text{hist}\varepsilon})} \right) K_y^{\text{hist}}}
\]

Substituting this into the expression for \( K_y^{\text{hist}} \) gives \( \rho_d K_d^{\text{hist}} \) as a function of \( K_y^{\text{hist}} \).
\[
K_y^{\text{hist}} = -\frac{1}{\sigma} \left(1 + R^{\text{hist}\varepsilon}\right) \frac{\sigma^2}{\sigma_y^2} + 1 \left[1 + \sigma \rho_d K_d^{\text{hist}} - \sigma \left( \frac{1}{1 + R^{\text{hist}\varepsilon}} - \frac{1}{\Omega_y (1 - \beta \rho_y + R^{\text{hist}\varepsilon})} \right) K_y^{\text{hist}} \right]
\]
\[
\Rightarrow \rho_d K_d^{\text{hist}} = \left( \frac{1}{1 + R^{\text{hist}\varepsilon}} - \frac{1}{\Omega_y (1 - \beta \rho_y + R^{\text{hist}\varepsilon})} - \frac{(1 + R^{\text{hist}\varepsilon})^2 \sigma_y^2 + 1}{1 + R^{\text{hist}\varepsilon}} \right) K_y^{\text{hist}} - \frac{1}{\sigma}
\]

Then, using the expression for \( R^{\text{hist}} \) and the equilibrium expression for \( M^{\text{hist}} \) gives
\[
R^{\text{hist}} = \kappa \frac{-\rho_d K_d^{\text{hist}} + \rho_y (1 - \beta \rho_y + R^{\text{hist}\varepsilon}) K_y^{\text{hist}} - \frac{1}{\sigma}}{-\rho_d K_d^{\text{hist}} + \rho_y (1 - \beta \rho_y + R^{\text{hist}\varepsilon}) K_y^{\text{hist}} - \frac{1}{\sigma}} = \kappa \frac{-\beta \rho_y + (1 - \beta \rho_y + R^{\text{hist}\varepsilon}) (1 + R^{\text{hist}\varepsilon})^2 \frac{\sigma_y^2}{\sigma_y^2} + 1}{-R^{\text{hist}\varepsilon} \beta \rho_y + (1 - \beta \rho_y + R^{\text{hist}\varepsilon}) (1 + R^{\text{hist}\varepsilon})^2 \frac{\sigma_y^2}{\sigma_y^2} + 1}
\]

where I again restrict attention to finite interest rate coefficients by looking only for solutions where \( 1 + R^{\text{hist}\varepsilon} \neq 0 \) and \( 1 - \beta \rho_y + R^{\text{hist}\varepsilon} \neq 0 \).

Rearranging this gives
\[
0 = -\beta \rho_y \left( R^{\text{hist}} \frac{\sigma_y^2}{\sigma_y^2} + 1 \right) + \left( R^{\text{hist}} - \kappa \right) \left( 1 - \beta \rho_y + R^{\text{hist}\varepsilon} \right) \left[ \left( 1 + R^{\text{hist}\varepsilon} \right)^2 \frac{\sigma_y^2}{\sigma_y^2} + 1 \right]
\]

which indeed matches equilibrium condition (30) derived above for \( R \) thus showing that the equilibrium is the same when I generalize private agents' belief about current policy to the form in (32).

**D.1 Proof of Corollary 1**

The proof above of Proposition 2 gave the forms of \( f_y(\mathcal{R}) \) and \( f_{y,b}(\mathcal{R}) \) in (28). There, it was also shown that the perfect information discretionary policy optimality condition is
\[
y_t^{\pi I} - \bar{y}_t = -\varepsilon \pi_t^{\pi I}
\]

Again, using this condition along with the NKPC in equation (2) gives
\[
\pi_t^{\pi I} = \frac{\kappa}{1 - \beta \rho_y + \varepsilon \kappa} \bar{y}_t \quad \text{and} \quad \bar{y}_t^{\pi I} = \frac{1 - \beta \rho_y}{1 - \beta \rho_y + \varepsilon \kappa} \bar{y}_t
\]

Then, this gives expressions for expectations
\[
\pi_{t+1}^{\pi I} = \frac{\kappa \rho_y}{1 - \beta \rho_y + \varepsilon \kappa} \bar{y}_t \quad \text{and} \quad \bar{y}_{t+1}^{\pi I} = \frac{\rho_y (1 - \beta \rho_y)}{1 - \beta \rho_y + \varepsilon \kappa} \bar{y}_t
\]
which can again be used along with (1) to back out the implied optimal nominal interest rate in terms of \{d_t, \tilde{y}_t\}

\[
i_t^{PI} = \frac{\sigma (1 - \rho_d) d_t - \sigma \Omega_y}{\varepsilon \beta \rho_y + \varepsilon \kappa} \tilde{y}_t = r_t^n + (f^*_y (\kappa) + f^*_{y,b} (\kappa)) \tilde{y}_t
\]

Returning to the imperfect information case, I next show how the interest rate behavior can be altered to ensure determinacy so that the equilibrium in equations (15) and (16) is the unique path in this model. To do this, I add to the interest rate a term that reacts to deviations of \pi_t from its intended equilibrium path

\[
i_t^* = r_t^n + f^*_y (\mathcal{R}) \tilde{y}_t + f^*_{y,b} (\mathcal{R}) \tilde{y}_{t|t} + \phi_\pi (\pi_t - \pi_t^*)
\]

\[
= r_t^n + (f^*_y (\mathcal{R}) - \phi_\pi \Gamma_y) \tilde{y}_t + (f^*_{y,b} (\mathcal{R}) - \phi_\pi \Gamma_{y,b}) \tilde{y}_{t|t} + \phi_\pi \pi_t
\]

where \pi_t^* = \frac{\kappa}{1 + \beta \rho_y \varepsilon \kappa} \tilde{y}_t + \frac{\beta \rho_y \varepsilon}{1 + \varepsilon \kappa} \tilde{y}_{t|t} is the intended equilibrium.

Clearly, along the intended stationary equilibrium path, \pi_t = \pi_t^* so that the response of \pi_t^* to state variables is the same as without this extra term. What this term does change are the dynamics of \[\tilde{y}_t, \pi_t\] since the system of equilibrium conditions now becomes

\[
\begin{align*}
\tilde{y}_t &= \tilde{y}_{t+1|t} + \frac{1}{\sigma} \pi_{t+1|t} - \frac{1}{\sigma} ((f^*_y (\mathcal{R}) - \phi_\pi \Gamma_y) \tilde{y}_t + (f^*_{y,b} (\mathcal{R}) - \phi_\pi \Gamma_{y,b}) \tilde{y}_{t|t} + \phi_\pi \pi_t) \\
\pi_t &= \beta \pi_{t+1|t} + \kappa \tilde{y}_t \\
\begin{bmatrix}
\tilde{y}_t \\
\pi_t
\end{bmatrix} &= \begin{bmatrix}
\frac{1}{1 + \phi_\pi \kappa} & \frac{1 - \phi_\pi \kappa}{\kappa} \\
\frac{1}{\kappa} & \frac{\kappa}{\sigma} + \beta
\end{bmatrix} \begin{bmatrix}
\tilde{y}_{t+1|t} \\
\pi_{t+1|t}
\end{bmatrix} - \frac{1}{1 + \phi_\pi \kappa} \begin{bmatrix}
\frac{1}{\sigma} \\
\frac{\kappa}{\sigma}
\end{bmatrix} ((f^*_y (\mathcal{R}) - \phi_\pi \Gamma_y) \tilde{y}_t + (f^*_{y,b} (\mathcal{R}) - \phi_\pi \Gamma_{y,b}) \tilde{y}_{t|t})
\end{align*}
\]

Then, determinacy of \[\tilde{y}_t, \pi_t\] is guaranteed by the largest eigenvalue of \(A\) being less than one

\[
\max \{\text{eig}(A)\} = \frac{1 + \beta + \frac{\kappa}{\sigma} \pm \sqrt{(1 + \beta + \frac{\kappa}{\sigma})^2 - 4 \frac{\beta}{1 + \phi_\pi \kappa}}}{2} < 1 \iff \phi_\pi > 1
\]

E Proof of Proposition 3

Here, the equilibrium conditions in matrix form are

\[
\begin{bmatrix}
\gamma CB \\
\pi_t
\end{bmatrix} = \begin{bmatrix}
\frac{1}{\kappa} & \frac{1}{\sigma} \\
\frac{\kappa}{\sigma} + \beta & \frac{\kappa}{\sigma}
\end{bmatrix} \begin{bmatrix}
\gamma_{CB} \\
\pi_{t+1|t}
\end{bmatrix} - \begin{bmatrix}
\frac{1}{\sigma} \\
\frac{\kappa}{\sigma}
\end{bmatrix} i_t + \begin{bmatrix}
\Xi_x \\
\Xi_\pi
\end{bmatrix} z_t
\]

(35)

where the shocks are given by

\[
\begin{bmatrix}
z_{1,t} \\
z_{2,t}
\end{bmatrix} = \begin{bmatrix}
Y_{11} & 0 \\
Y_{21} & Y_{22}
\end{bmatrix} \begin{bmatrix}
z_{1,t-1} \\
z_{2,t-1}
\end{bmatrix} + \epsilon_t, \epsilon_t \sim \text{iid } \mathcal{N}(0, \Sigma) \text{ with } \Sigma \text{ diagonal}
\]

68
In the perfect information case, a discretionary policymaker solves

\[
\min_{i_t, y_t^{CB}, \pi_t} \frac{1}{2} \left( (\tilde{y}_t^{CB})^2 + \frac{\varepsilon}{\kappa} \pi_t^2 \right) \quad \text{subject to (35) where } \tilde{y}_{t+1|t}^{CB} \text{ and } \pi_{t+1|t} \text{ are taken as given}
\]

which clearly yields

\[
\tilde{y}_t^{CB} = -\varepsilon \pi_t
\]

Private agents suppose that the interest rate \(i_t\) is

\[
i_t = F_1 z_{1,t} + F_2 z_{2,t} + F_{2,b} z_{2,t|t}
\]

while their information set is \(\{i^t, z_1^t, z_2^t\} \). Again, I reframe the policymaker’s problem as a choice of \(i^{dis}_t\) where implemented policy is \(i_t = \tilde{i}^{dis}_t + F_{2,b} z_{2,t|t}\). Then, the same process described in Section 2.3 shows that beliefs are the following function of \(i^{dis}_t\) and exogenous lagged variables

\[
z_{2,t|t} = \begin{bmatrix} z_{1,t-1} \\ z_{2,t-1} \end{bmatrix} + K_z \begin{bmatrix} \tilde{i}^{dis}_t - F_2 \gamma_{row2} \begin{bmatrix} z_{1,t-1} \\ z_{2,t-1} \end{bmatrix} \end{bmatrix}
\]

\[
= (I - K_z F_2) \gamma_{row2} \begin{bmatrix} z_{1,t-1} \\ z_{2,t-1} \end{bmatrix} + K_z \tilde{i}^{dis}_t
\]

Then, conjecturing a linear solution for \(\tilde{y}_t^{CB}\) and \(\pi_t\) again leads to a linear conjecture for expectations

\[
\begin{bmatrix} \tilde{y}_{t+1|t}^{CB} \\ \pi_{t+1|t} \end{bmatrix} = M_1 z_{1,t+1|t} + M_2 z_{2,t+1|t} = (M_1 Y_{11} + M_2 Y_{21}) z_{1,t} + M_2 Y_{22} z_{2,t|t}
\]

The current outcomes can then be written in terms of exogenous states and \(i^{dis}_t\)

\[
\begin{bmatrix} \tilde{y}_t^{CB} \\ \pi_t \end{bmatrix} = \begin{bmatrix} 1 & \frac{1}{\sigma} \\ \kappa & \frac{\kappa}{\sigma} + \beta \end{bmatrix} (M_1 Y_{11} + M_2 Y_{21}) z_{1,t} + \begin{bmatrix} \Xi_x \\ \Xi_{\pi} \end{bmatrix} z_t + \Psi z_{2,t|t} - \begin{bmatrix} \frac{1}{\sigma} \\ \frac{\kappa}{\sigma} \end{bmatrix} \tilde{i}^{dis}_t
\]

\[
= \begin{bmatrix} 1 & \frac{1}{\sigma} \\ \kappa & \frac{\kappa}{\sigma} + \beta \end{bmatrix} (M_1 Y_{11} + M_2 Y_{21}) z_{1,t} + \begin{bmatrix} \Xi_x \\ \Xi_{\pi} \end{bmatrix} z_t + \Psi (I - K_z F_2) \gamma_{row2} \begin{bmatrix} z_{1,t-1} \\ z_{2,t-1} \end{bmatrix} + \begin{bmatrix} H_{\bar{g},i} \\ H_{\bar{\pi},i} \end{bmatrix}
\]

where \(\Psi \equiv \begin{bmatrix} 1 & \frac{1}{\sigma} \\ \kappa & \frac{\kappa}{\sigma} + \beta \end{bmatrix} M_2 Y_{22} - \begin{bmatrix} \frac{1}{\sigma} \\ \frac{\kappa}{\sigma} \end{bmatrix} F_{2,b} \) and \(\begin{bmatrix} H_{\bar{g},i} \\ H_{\bar{\pi},i} \end{bmatrix} \equiv \Psi K_z - \begin{bmatrix} \frac{1}{\sigma} \\ \frac{\kappa}{\sigma} \end{bmatrix}
\]

Then, the discretionary policy problem becomes

\[
\min_{i^{dis}_t} \frac{1}{2} \left( (\tilde{y}_t^{CB})^2 + \frac{\varepsilon}{\kappa} \pi_t^2 \right) \quad \text{subject to (36)}
\]

which yields the optimality condition

\[
\tilde{y}_t^{CB} = -\frac{H_{\bar{\pi},i} \varepsilon}{H_{\bar{g},i} \kappa} \pi_t
\]

I again limit attention to equilibrium solutions where \(\frac{H_{\bar{\pi},i}}{H_{\bar{g},i}} \geq 0\). Then, substituting this into the inflation equation
and solving forward for \( \pi_t \) gives

\[
\pi_t = \beta \pi_{t+1|t} + \frac{H_{\xi,i}}{H_{\bar{y},i}} \varepsilon \pi_t + \Xi_{\pi,1} z_{1,t} = \frac{\Xi_{\pi,1}}{1 + \frac{H_{\pi,i}}{H_{\bar{y},i}} \varepsilon} \left[ I - \frac{\beta}{1 + \frac{H_{\pi,i}}{H_{\bar{y},i}} \varepsilon} Y_{11} \right]^{-1} z_{1,t} \]

Then, the optimality condition gives

\[
\tilde{y}^{CB}_{t+1|t} = -\frac{H_{\pi,i}}{H_{\bar{y},i}} \frac{\Xi_{\pi,1}}{1 + \frac{H_{\pi,i}}{H_{\bar{y},i}} \varepsilon} \left[ I - \frac{\beta}{1 + \frac{H_{\pi,i}}{H_{\bar{y},i}} \varepsilon} Y_{11} \right]^{-1} z_{1,t} \]

This shows that fluctuations in the welfare-relevant outcomes \( \tilde{y}^{CB}_{t+1} \) and \( \pi_t \) are only caused by \( z_{1,t} \) and changes in \( z_{2,t} \) and \( z_{2,t|t} \) do not affect these outcomes in equilibrium and so

\[
\frac{d\tilde{y}^{CB}_{t}}{dz_{2,t}} = \frac{d\pi_t}{dz_{2,t}} = \frac{d\tilde{y}^{CB}_{t}}{dz_{2,t|t}} = \frac{d\pi_t}{dz_{2,t|t}} = 0
\]

These expressions also reveal that \( M_2 = 0 \) and give the equilibrium expression for \( M_1 \) since

\[
\begin{bmatrix}
\tilde{y}^{CB}_{t+1|t} \\
\pi_{t+1|t}
\end{bmatrix} = \begin{bmatrix}
-\frac{H_{\pi,i}}{H_{\bar{y},i}} \frac{\Xi_{\pi,1}}{1 + \frac{H_{\pi,i}}{H_{\bar{y},i}} \varepsilon} \\
\frac{\Xi_{\pi,1}}{1 + \frac{H_{\pi,i}}{H_{\bar{y},i}} \varepsilon}
\end{bmatrix} \left[ I - \frac{\beta}{1 + \frac{H_{\pi,i}}{H_{\bar{y},i}} \varepsilon} Y_{11} \right]^{-1} Y_{11} z_{1,t}
\]

Then,

\[
\begin{bmatrix}
H_{\bar{y},i} \\
H_{\pi,i}
\end{bmatrix} = \left( \begin{bmatrix}
\frac{1}{\sigma} & \frac{1}{\kappa} + \beta \\
\frac{1}{\kappa} & \frac{1}{\sigma}
\end{bmatrix} M_2 Y_{22} - \begin{bmatrix}
\frac{1}{\sigma} & \frac{1}{\kappa} + \beta \\
\frac{1}{\kappa} & \frac{1}{\sigma}
\end{bmatrix} F_{2,\nu} \left( K_z - \begin{bmatrix}
\frac{1}{\sigma} \\
\frac{1}{\kappa}
\end{bmatrix}
\right)
\right)
\]

and the discretionary policy optimality condition is equivalent to the perfect information case.

**F  Proof of Proposition 4**

I repeat the equilibrium conditions here for convenience

\[
\tilde{y}_t = \tilde{y}_{t+1|t} - \frac{1}{\sigma} (i_t - \pi_{t+1|t}) + d_t - d_{t+1|t}
\]

\[
\pi_t = \beta \pi_{t+1|t} + \kappa \tilde{y}_t
\]

The optimal discretionary interest rate policy under perfect information implements \( \tilde{y}^{PI}_t - \tilde{y}_t = -\varepsilon \pi^{PI}_t \) which yields the solution

\[
\begin{bmatrix}
\tilde{y}^{PI}_t - \tilde{y}_t \\
\pi^{PI}_t
\end{bmatrix} = \begin{bmatrix}
-\varepsilon \kappa \\
\kappa
\end{bmatrix} \frac{1}{1 - \beta \rho_{\bar{y}} + \varepsilon \kappa \tilde{y}_t}
\]

The optimal discretionary interest rate policy under imperfect information implements \( \tilde{y}_t - \tilde{y}_t = -R_{\pi}^{\varepsilon} \pi_t \) which
yields the following solution (as shown in the proof of Proposition 2)

\[
\begin{bmatrix}
\tilde{y}_t - \bar{y}_t \\
\pi_t
\end{bmatrix} = \begin{bmatrix}
-R\varepsilon \\
\kappa
\end{bmatrix} \frac{1}{1 - \beta \rho_y + R\varepsilon} \left( \frac{\beta \rho_y}{1 + R\varepsilon} (\tilde{y}_{t|t} - \bar{y}_t) + \bar{y}_t \right)
\]

The equilibrium belief error is

\[
\tilde{y}_{t|t} - \bar{y}_t = (K_y f_y^*(R) - 1) \epsilon_y,t + K_y \sigma_{e,d,t} = -\frac{(1 + R\varepsilon)^2 \sigma_d^2}{(1 + R\varepsilon)^2 \sigma_d^2 + 1} \epsilon_y,t - \frac{1 + R\varepsilon}{(1 + R\varepsilon)^2 \sigma_d^2 + 1} \epsilon_{d,t}
\]

which gives

\[
E_t^{CB} \left[ \left( \tilde{y}_{s|s} - \bar{y}_s \right)^2 \right] = \frac{(1 + R\varepsilon)^2 \sigma_d^2}{(1 + R\varepsilon)^2 \sigma_d^2 + 1} \quad \text{for } s > t
\]

\[
E_t^{CB} \left[ (\tilde{y}_{s|s} - \bar{y}_s) \bar{y}_s \right] = -\frac{(1 + R\varepsilon)^2 \sigma_d^2}{(1 + R\varepsilon)^2 \sigma_d^2 + 1} \quad \text{for } s > t
\]

Thus, in equilibrium

\[
L_t^{PI} = (\tilde{y}_t^{PI} - \bar{y}_t)^2 + \frac{\varepsilon}{\kappa} (\pi_t^{PI})^2 = \frac{\varepsilon \kappa (1 + \varepsilon \kappa)}{(1 - \beta \rho_y + \varepsilon \kappa)^2} \tilde{y}_t^2
\]

\[
L_t = (\tilde{y}_t - \bar{y}_t)^2 + \frac{\varepsilon}{\kappa} \pi_t^2 = \frac{\varepsilon (R^2 \varepsilon + \kappa)}{(1 - \beta \rho_y + R\varepsilon)^2} \left( \frac{\beta \rho_y}{1 + R\varepsilon} (\tilde{y}_{t|t} - \bar{y}_t) + \bar{y}_t \right)^2
\]

\[
E_t^{CB} L_t^{PI} = E_t^{CB} \sum_{s=t+1}^{\infty} \beta^{s-(t+1)} \left( (\tilde{y}_s^{PI} - \bar{y}_s)^2 + \frac{\varepsilon}{\kappa} (\pi_s^{PI})^2 \right) = \frac{\varepsilon \kappa (1 + \varepsilon \kappa)}{(1 - \beta \rho_y + \varepsilon \kappa)^2} \sum_{s=t+1}^{\infty} \beta^{s-(t+1)} E_t^{CB} \left[ \tilde{y}_s^2 \right]
\]

\[
E_t^{CB} L_{t+1} = E_t^{CB} \sum_{s=t+1}^{\infty} \beta^{s-(t+1)} (\tilde{y}_s - \bar{y}_s)^2 + \frac{\varepsilon}{\kappa} \pi_s^2
\]

\[
= \frac{\varepsilon (R^2 \varepsilon + \kappa)}{(1 - \beta \rho_y + R\varepsilon)^2} \sum_{s=t+1}^{\infty} \beta^{s-(t+1)} E_t^{CB} \left[ \left( \frac{\beta \rho_y}{1 + R\varepsilon} (\tilde{y}_{s|s} - \bar{y}_s) + \bar{y}_s \right)^2 \right]
\]

\[
= \frac{\varepsilon (R^2 \varepsilon + \kappa)}{(1 - \beta \rho_y + R\varepsilon)^2} \left\{ \sum_{s=t+1}^{\infty} \beta^{s-(t+1)} E_t^{CB} \left[ \tilde{y}_s^2 \right] - \frac{2 (1 + R\varepsilon) - \beta \rho_y}{1 + R\varepsilon} \frac{\beta \rho_y}{1 + R\varepsilon} \frac{(1 + R\varepsilon)^2 \sigma_d^2}{(1 + R\varepsilon)^2 \sigma_d^2 + 1} \right\}
\]

The difference in the expected future welfare loss is then

\[
E_t^{CB} \left[ L_{t+1} - L_{t+1}^{PI} \right] = \left( \frac{\varepsilon (R^2 \varepsilon + \kappa)}{(1 - \beta \rho_y + R\varepsilon)^2} - \frac{\varepsilon \kappa (1 + \varepsilon \kappa)}{(1 - \beta \rho_y + \varepsilon \kappa)^2} \right) \sum_{s=t+1}^{\infty} \beta^{s-(t+1)} E_t^{CB} \left[ \tilde{y}_s^2 \right]
\]

\[
- \frac{\beta \rho_y}{1 - \beta} \frac{\varepsilon (R^2 \varepsilon + \kappa)}{(1 - \beta \rho_y + R\varepsilon)^2} \frac{2 (1 + R\varepsilon) - \beta \rho_y}{1 + R\varepsilon} \frac{\beta \rho_y}{1 + R\varepsilon} \frac{(1 + R\varepsilon)^2 \sigma_d^2}{(1 + R\varepsilon)^2 \sigma_d^2 + 1}
\]
To see that the first term is negative, note that Proposition 2 showed that $R \in \left[ \kappa, \frac{\kappa \rho_g}{1 - \beta \rho_g} \right]$. Then, since

$$ \frac{\varepsilon \left( R^2 \varepsilon + \kappa \right)}{(1 - \beta \rho_g + R \varepsilon)^2} = \frac{\varepsilon \kappa (1 + \varepsilon \kappa)}{(1 - \beta \rho_g + \varepsilon \kappa)^2} \text{ for } R = \kappa $$

while

$$ \frac{d}{dR} \frac{\varepsilon \left( R^2 \varepsilon + \kappa \right)}{(1 - \beta \rho_g + R \varepsilon)^2} = 2 \varepsilon^2 \frac{(1 - \beta \rho_g) R - \kappa}{(1 - \beta \rho_g + \varepsilon \kappa)^3} \leq 0 \text{ for } R \in \left[ \kappa, \frac{\kappa}{1 - \beta \rho_g} \right] $$

This proves that

$$ \frac{\varepsilon \left( R^2 \varepsilon + \kappa \right)}{(1 - \beta \rho_g + R \varepsilon)^2} \leq \frac{\varepsilon \kappa (1 + \varepsilon \kappa)}{(1 - \beta \rho_g + \varepsilon \kappa)^2} \text{ for } R \in \left[ \kappa, \frac{\kappa}{1 - \beta \rho_g} \right] $$

The second term is clearly negative since $2 (1 + R \varepsilon) - \beta \rho_g \geq 1 + 2 R \varepsilon \geq 0$.

The difference in the current period loss is

$$ l_t - l_{t+1}^{PI} = \left( \frac{\varepsilon \left( R^2 \varepsilon + \kappa \right)}{(1 - \beta \rho_g + R \varepsilon)^2} - \frac{\varepsilon \kappa (1 + \varepsilon \kappa)}{(1 - \beta \rho_g + \varepsilon \kappa)^2} \right) \tilde{y}_t^2 
+ \frac{\varepsilon \left( R^2 \varepsilon + \kappa \right)}{(1 - \beta \rho_g + R \varepsilon)^2} \beta \rho_g \left( \frac{\beta \rho_g}{1 + R \varepsilon} \left( \tilde{y}_{t+1} - \tilde{y}_{t} \right)^2 + 2 \left( \tilde{y}_{t+1} - \tilde{y}_{t} \right) \tilde{y}_{t} \right) $$

Again, the first term is negative, but the second term may be positive and larger than the first term.

### F.1 Proof of Corollary 2

If I exogenously impose that $\tilde{y}_{s|s} = \bar{y}_s$, then this is equivalent to setting

$$ E_t^{CB} \left[ (\tilde{y}_{s|s} - \bar{y}_s)^2 \right] = E_t^{CB} \left[ (\tilde{y}_{s|s} - \bar{y}_s) \bar{y}_s \right] = 0 $$

which gives

$$ E_t^{CB} \left[ L_{t+1} - L_{t+1}^{PI} \right] = \left( \frac{\varepsilon \left( R^2 \varepsilon + \kappa \right)}{(1 - \beta \rho_g + R \varepsilon)^2} - \frac{\varepsilon \kappa (1 + \varepsilon \kappa)}{(1 - \beta \rho_g + \varepsilon \kappa)^2} \right) \sum_{s=t+1}^{\infty} \beta^{s-(t+1)} E_t^{CB} \left[ \tilde{y}_s^2 \right] $$

$$ \leq 0 \text{ if } R \in \left[ \kappa, \frac{\kappa}{1 - \beta \rho_g} \right] $$

If I exogenously impose $R = \kappa$, then the difference in the expected future welfare loss is then

$$ E_t^{CB} \left[ L_{t+1} - L_{t+1}^{PI} \right] = \frac{\varepsilon \kappa \rho_g}{(1 - \beta \rho_g + \varepsilon \kappa)^2} \sum_{s=t+1}^{\infty} \beta^{s-(t+1)} \left\{ \frac{\beta \rho_g}{1 + \varepsilon \kappa} E_t^{CB} \left[ (\tilde{y}_{s|s} - \bar{y}_s)^2 \right] + 2 E_t^{CB} \left[ (\tilde{y}_{s|s} - \bar{y}_s) \bar{y}_s \right] \right\} $$

$$ = \frac{\varepsilon \kappa \rho_g}{(1 - \beta \rho_g + \varepsilon \kappa)^2} \frac{\beta \rho_g}{1 + \varepsilon \kappa} \sum_{s=t+1}^{\infty} \beta^{s-(t+1)} \left( E_t^{CB} \left[ \tilde{y}_s^2 \right] - E_t^{CB} \left[ \bar{y}_s^2 \right] \right) $$

$$ + 2 \frac{\varepsilon \kappa \rho_g}{(1 - \beta \rho_g + \varepsilon \kappa)^2} \frac{1}{1 + \varepsilon \kappa} \sum_{s=t+1}^{\infty} \beta^{s-(t+1)} \left( E_t^{CB} \left[ \tilde{y}_{s|s} \bar{y}_s \right] - E_t^{CB} \left[ \bar{y}_s^2 \right] \right) $$
This is clearly weakly negative if
\[ E_t^{CB} \left[ \frac{\bar{y}_{s|s}^2}{\bar{y}_s^2} \right] \leq E_t^{CB} \left[ \bar{y}_{s|s}^2 \right] \quad \text{and} \quad E_t^{CB} \left[ \bar{y}_{s|s,s} \bar{y}_s \right] \leq E_t^{CB} \left[ \bar{y}_s^2 \right] \quad \text{for} \ s > t \]

Note that this is equivalent to
\[ \text{Var}_t^{CB} (y_{s|s}) \leq \text{Var}_t^{CB} (y_s) \quad \text{and} \quad \text{Cov}_t^{CB} (\bar{y}_{s|s}, \bar{y}_s) \leq \text{Var}_t^{CB} (y_s) \]

since \( E_t^{CB} \bar{y}_{s|s} = E_t^{CB} \bar{y}_s \) for \( s > t \) so that
\[
\begin{align*}
\text{Cov}_t^{CB} (y_{s|s}, \bar{y}_s) &= E_t^{CB} \left[ \bar{y}_{s|s} \bar{y}_s \right] - (E_t^{CB} \bar{y}_s)^2 \\
\text{Var}_t^{CB} (y_{s|s}) &= E_t^{CB} \left[ y_{s|s}^2 \right] - (E_t^{CB} y_s)^2 \\
\text{Var}_t^{CB} (y_s) &= E_t^{CB} \left[ y_s^2 \right] - (E_t^{CB} y_s)^2
\end{align*}
\]

Then, another set of equivalent conditions is
\[ \text{Var}_t^{CB} (y_{s|s}) \leq \text{Var}_t^{CB} (y_s) \quad \text{and} \quad \text{Corr}_t^{CB} (\bar{y}_{s|s}, \bar{y}_s) = \frac{\text{Cov}_t^{CB} (\bar{y}_{s|s}, \bar{y}_s)}{\sqrt{\text{Var}_t^{CB} (y_s) \cdot \text{Var}_t^{CB} (y_{s|s})}} \leq 1 \]

since this gives
\[ \text{Cov}_t^{CB} (\bar{y}_{s|s}, \bar{y}_s) \leq \sqrt{\text{Var}_t^{CB} (y_s) \cdot \text{Var}_t^{CB} (y_{s|s})} \leq \text{Var}_t^{CB} (y_s) \]

**G Proof of Proposition 5**

Here, I consider the case where the central bank directly communicates \( d_t \) to private agents prior to observing \( i_t \). Then, agents infer \( \bar{y}_t \) upon observing \( i_t \). In equilibrium, since agents know beliefs will be correct with \( d_{i|t} = d_t \) and \( \bar{y}_{i|t} = \bar{y}_t \). However, a key feature of this setup is that the interest rate retains its signaling effect on \( \bar{y}_{i|t} \) since from the policymaker’s point of view, beliefs are the following function of \( i_t^{dis} \).

\[ \bar{y}_{i|t} = \frac{1}{f_{\bar{y}}} \left( i_t^{dis} - f_{d} d_t \right) \]

Thus, the policymaker’s choice has a marginal impact of \( K_{\bar{y}} \equiv \frac{d_{\bar{y}_{i|t}}}{d_{i_t^{dis}}} = \frac{1}{f_{\bar{y}}} \) on beliefs.

Denoting this case with superscript \( d \), (29) shows that the inflation-output tradeoff is at its steepest possible value

\[ R^d = \frac{\kappa}{1 - \beta \rho_{\bar{y}}} \]

with the following equilibrium outcomes under the optimal discretionary interest rate policy after taking into account that beliefs are correct in equilibrium

\[ \pi_t^d = \frac{\kappa (1 - \beta \rho_{\bar{y}})}{1 - \beta \rho_{\bar{y}}^2 + \varepsilon \kappa} \bar{y}_t \quad \text{and} \quad \bar{y}_t^d - \bar{y}_t = -\frac{\varepsilon \kappa}{1 - \beta \rho_{\bar{y}}^2 + \varepsilon \kappa} \bar{y}_t \]

73
Then, the associated welfare loss terms are

\[ l_t^d = \left( \bar{y}_t^d - \bar{y}_t \right)^2 + \frac{\varepsilon}{\kappa} \left( \pi_t^d \right)^2 = \frac{\kappa}{(1 - \beta \rho_g)^2 + \varepsilon \kappa} \bar{y}_t^2 \]

\[ E_t^{CB} L_{t+1}^d = E_t^{CB} \sum_{s=t+1}^{\infty} \beta^{s-(t+1)} \left( \bar{y}_s^d - \bar{y}_s \right)^2 + \frac{\varepsilon}{\kappa} \left( \pi_s^d \right)^2 = \frac{\kappa}{(1 - \beta \rho_g)^2 + \varepsilon \kappa} \sum_{s=t+1}^{\infty} \beta^{s-(t+1)} E_t^{CB} \left[ \bar{y}_s^2 \right] \]

Compared to the case of full communication, communicating only \( d_t \) is strictly preferable for any realizations of the current shocks.

\[ l_t^d - l_t^{PI} = \left( \frac{\varepsilon \kappa}{(1 - \beta \rho_g)^2 + \varepsilon \kappa} - \frac{\varepsilon \kappa (1 + \varepsilon \kappa)}{(1 - \beta \rho_g + \varepsilon \kappa)^2} \right) \bar{y}_t^2 \leq 0 \]

\[ E_t^{CB} \left( L_{t+1}^d - L_{t+1}^{PI} \right) = \left( \frac{\varepsilon \kappa}{(1 - \beta \rho_g)^2 + \varepsilon \kappa} - \frac{\varepsilon \kappa (1 + \varepsilon \kappa)}{(1 - \beta \rho_g + \varepsilon \kappa)^2} \right) \frac{\rho_g^2 \bar{y}_t^2 + \frac{1}{1 - \beta \rho_g^2}}{1 - \beta \rho_g^2} \leq 0 \]

Both the current period welfare loss and expected future loss are lower in the case of communicating only \( d_t \) since \( \beta \rho_g \geq 0 \) and \( \varepsilon \kappa \geq 0 \) \( \Rightarrow \) \( \frac{\varepsilon \kappa}{(1 - \beta \rho_g)^2 + \varepsilon \kappa} \leq \frac{\varepsilon \kappa (1 + \varepsilon \kappa)}{(1 - \beta \rho_g + \varepsilon \kappa)^2} \)

On the other hand, when the case of communicating only \( d_t \) is compared to no additional communication case, neither case produces unambiguously lower losses for either current period or expected future welfare.

\[ l_t^d - l_t = \left( \frac{\kappa}{(1 - \beta \rho_g)^2 + \varepsilon \kappa} - \frac{\mathcal{R}^2 \varepsilon + \kappa}{(1 - \beta \rho_g + \mathcal{R} \varepsilon)^2} \right) \varepsilon \bar{y}_t^2 - \varepsilon (\mathcal{R}^2 \varepsilon + \kappa) \beta \rho_g \frac{\beta \rho_g}{1 - \beta \rho_g + \mathcal{R} \varepsilon} \left( \bar{y}_t^{\ell} - \bar{y}_t \right)^2 + 2 \left( \bar{y}_t^{\ell} - \bar{y}_t \right) \bar{y}_t \]

\[ E_t^{CB} \left( L_{t+1}^d - L_{t+1} \right) = \left( \frac{\kappa}{(1 - \beta \rho_g)^2 + \varepsilon \kappa} - \frac{\mathcal{R}^2 \varepsilon + \kappa}{(1 - \beta \rho_g + \mathcal{R} \varepsilon)^2} \right) \varepsilon \rho_g^2 \bar{y}_t^2 + \frac{1}{1 - \beta \rho_g^2} \frac{2 (1 + \varepsilon \mathcal{R} - \beta \rho_g) \beta \rho_g \sigma \bar{y}_t^2}{(1 + \mathcal{R})^2 \sigma \bar{y}_t^2 + \sigma \bar{y}_t^2} \]

The first term in each of these expressions is negative and reflects the benefit of maximizing the interest rate’s effect on inflation expectations, thereby achieving the largest possible reduction in the stabilization bias through the signaling channel. To see that it’s always negative, note the following

\[ \frac{\kappa}{(1 - \beta \rho_g)^2 + \varepsilon \kappa} = \frac{\mathcal{R}^2 \varepsilon + \kappa}{(1 - \beta \rho_g + \mathcal{R} \varepsilon)^2} \text{ for } \mathcal{R} = \frac{\kappa}{1 - \beta \rho_g} \]

while \( \frac{d}{d\mathcal{R}} \frac{\mathcal{R}^2 \varepsilon + \kappa}{(1 - \beta \rho_g + \mathcal{R} \varepsilon)^2} = -2 \varepsilon \frac{\mathcal{R}^2 \varepsilon + \kappa - (1 - \beta \rho_g) \mathcal{R}}{(1 - \beta \rho_g + \mathcal{R} \varepsilon)^3} \leq 0 \text{ for } \mathcal{R} \in \left[ \kappa, \frac{\kappa}{1 - \beta \rho_g} \right] \]

so that \( \frac{\kappa}{(1 - \beta \rho_g)^2 + \varepsilon \kappa} \leq \frac{\mathcal{R}^2 \varepsilon + \kappa}{(1 - \beta \rho_g + \mathcal{R} \varepsilon)^2} \text{ for } \mathcal{R} \in \left[ \kappa, \frac{\kappa}{1 - \beta \rho_g} \right] \)
The second term in \( E_t^{CB} (L_{t+1}^d - L_{t+1}) \) is positive since \( 2(1 + \mathcal{R}) - \beta \rho_y \geq 1 + 2\mathcal{R} \geq 0 \). This reflects the loss of the benefit of decoupling the comovement in agents’ beliefs about the output gap target and its true value. Thus, whether this type of partial communication is beneficial for expected future welfare losses is ambiguous for general parameter values. Meanwhile, the second term in \( l_t^d - l_t \) can always be positive for large enough negative realizations of \( (\bar{y}_{t+1} - \bar{y}_t) \bar{y}_t \) so this difference stays ambiguous even for a fixed set of parameter values.

The following can be shown for special parameterizations:

- As \( \sigma_d^2 \to 0 \) while \( \sigma_y^2 \) stays positive, \( \mathcal{R} \to \frac{\kappa}{1 - \beta \rho_y} \). As the demand shock becomes more negligible, so does the effect of communicating its true value. Even without any additional communication, the interest rate’s signaling effect on inflation expectations is already high so the further reduction in the stabilization bias from communicating \( d_t \) disappears. Furthermore, as \( \sigma_d^2 \to 0 \), private agents’ forecast errors regarding the output gap target become negligible and their beliefs \( \bar{y}_{t+1} \) approach the true \( \bar{y}_t \) so the benefit of reducing their comovement by not directly communicating also disappears.

\[
\lim_{\sigma_d^2 \to 0} E_t^{CB} L_{t+1} \to E_t^{CB} L_{t+1}^d \\
\lim_{\sigma_d^2 \to 0} l_t \to l_t^d \text{ if } \epsilon_{d,t} = 0
\]

Here, the benefit of not communicating the true value of \( \bar{y}_t \) remains so that

\[
\lim_{\sigma_d^2 \to 0} E_t^{CB} L_{t+1} < E_t^{CB} L_{t+1}^P \quad \text{and} \quad \lim_{\sigma_d^2 \to 0} l_t < l_t^P
\]

- As \( \sigma_y^2 \to 0 \) while \( \sigma_d^2 \) stays positive, \( \mathcal{R} \to \kappa \). In this case, the inflation-output tradeoff disappears entirely and the economy approaches one in which the flexible price equilibrium is always efficient and is achievable regardless of the information setting.

\[
\lim_{\sigma_y^2 \to 0} E_t^{CB} L_{t+1} \to E_t^{CB} L_{t+1}^d = E_t^{CB} L_{t+1}^P \text{ if } \bar{y}_t = 0 \\
\lim_{\sigma_y^2 \to 0} l_t \to l_t^d = l_t^P \text{ if } \epsilon_{\bar{y},t} = \bar{y}_t = 0
\]

- If \( \beta \rho_y = 0 \), then the inflation-output tradeoff is no longer affected by private agents’ beliefs since inflation is driven purely by current marginal costs. Then, the information setting again becomes irrelevant.

\[
E_t^{CB} L_{t+1} = E_t^{CB} L_{t+1}^d = E_t^{CB} L_{t+1}^P \text{ if } \beta \rho_y = 0 \\
l_t = l_t^d = l_t^P \text{ if } \beta \rho_y = 0
\]

### Proof of Proposition 6

Now, I introduce a cost-push shock that private agents have perfect information about (i.e., \( \mathcal{I}_t = \{i^t, v^t, d^t - 1, \bar{y}^t - 1\} \)) so that the equilibrium conditions become

\[
\bar{y}_t = \bar{y}_{t+1} - \frac{1}{\sigma} (i_t - \pi_t + d_t - d_{t+1}) \\
\pi_t = \beta \pi_{t+1} + \kappa \bar{y}_t + v_t
\]
Conjecturing a solution that’s linear in the expanded set of state variables \( \{ d_t, d_{t+1}, y_t, y_{t+1}, v_t \} \) results in expectations of future outcomes of the form

\[
\begin{bmatrix}
\tilde{y}_{t+1} \\
\pi_{t+1}
\end{bmatrix} = M \begin{bmatrix}
\rho_d & 0 \\
0 & \rho_y
\end{bmatrix} \begin{bmatrix}
d_{t+1} \\
y_{t+1}
\end{bmatrix} + M_v \rho_v v_t
\]

Beliefs are now formed according to the supposition that

\[
i_t = f_{d}d_{t} + f_{y}\tilde{y}_{t} + f_{v}v_{t} + f_{d_{t}}d_{t} + f_{y_{t}}\tilde{y}_{t}
\]

and I again define the interest rate policy problem as a choice of a discretionary component of the interest rate \( \tilde{i}_{t}^{dis} \) where the final realized nominal rate is

\[
i_t = \tilde{i}_{t}^{dis} + f_{\tilde{y}_{t}}\tilde{y}_{t} + f_{v_{t}}v_{t}
\]

Beliefs can be derived using the same procedure as Section 2.3 which results in

\[
\begin{bmatrix}
d_{t+1} \\
y_{t+1}
\end{bmatrix} = \begin{bmatrix}
\rho_d & 0 \\
0 & \rho_y
\end{bmatrix} \begin{bmatrix}
d_{t} \\
y_{t}
\end{bmatrix} + \begin{bmatrix}
K_d \\
K_y
\end{bmatrix} \left( \tilde{i}_{t}^{dis} - f_{d}d_{t-1} - f_{y}\tilde{y}_{t-1} - f_{v_{t}}v_{t} \right)
\]

where \( K_d = \frac{f_{d_1} + \nu^2}{f_{d_2} \nu + f_{d_3}} \) and \( K_y = \frac{f_{y_1} + \nu^2}{f_{y_2} \nu + f_{y_3}} \) as before and are again taken as given constants by the discretionary policymaker.

Following the same steps as the proof of Proposition 2, I use the form of expectations and beliefs to write the output gap deviation and inflation in terms of the exogenous states and \( \tilde{i}_{t}^{dis} \) so that the discretionary policy problem becomes

\[
\begin{bmatrix}
\tilde{y}_{t} - \tilde{y}_{t} \\
\pi_{t}
\end{bmatrix} = \Psi \begin{bmatrix}
1 & -K_d f_{d_1} & -K_d f_{y_1} \\
-K_y f_{d_1} & 1 & -K_y f_{y_1}
\end{bmatrix} \begin{bmatrix}
d_{t} \\
y_{t}
\end{bmatrix} + \begin{bmatrix}
1 & -1 \\
\kappa & 0
\end{bmatrix} \begin{bmatrix}
d_{t} \\
y_{t}
\end{bmatrix} + \left( \begin{bmatrix}
1 & \frac{\kappa}{\sigma} + \beta \\
\kappa & \frac{\kappa}{\sigma} + \beta
\end{bmatrix} M_v \rho_v + \begin{bmatrix}
0 & 1
\end{bmatrix} - \Psi \begin{bmatrix}
K_d f_{d_1} & K_d f_{y_1}
\end{bmatrix} \begin{bmatrix}
H_{\tilde{y}_{t}} \\
H_{\pi_{t}}
\end{bmatrix} \right) v_{t} + \begin{bmatrix}
H_{\tilde{y}_{t}} \\
H_{\pi_{t}}
\end{bmatrix} \tilde{i}_{t}^{dis}
\]

Then, clearly, the optimality condition is again

\[
\tilde{y}_{t} - \tilde{y}_{t} = -R_{\nu} \pi_{t} \text{ with } R = \frac{H_{\pi_{t}}}{H_{\tilde{y}_{t}}}
\]

Substituting this into the equilibrium conditions and solving again for the endogenous variables as I did in the
Then, the output gap deviation and inflation written in terms of exogenous variables along with the interest rate have its largest effect on

\[
\pi_t = \beta \pi_{t+1|t} - \mathcal{R} \varepsilon \pi_t + \kappa \bar{y}_t + v_t
\]

\[
= \frac{\kappa}{1 + \mathcal{R} \varepsilon} \bar{y}_t + \frac{\kappa}{1 + \mathcal{R} \varepsilon} \beta \rho_y \bar{y}_t + \frac{1}{1 - \beta \rho_v + \mathcal{R} \varepsilon} v_t
\]

\[
\bar{y}_t = \frac{1}{1 + \mathcal{R} \varepsilon} \bar{y}_t - \frac{\mathcal{R} \varepsilon}{1 + \mathcal{R} \varepsilon} \beta \rho_y \bar{y}_t - \frac{\mathcal{R} \varepsilon}{1 - \beta \rho_v + \mathcal{R} \varepsilon} v_t
\]

and

\[
\begin{bmatrix}
\bar{y}_{t+1|t} \\
\pi_{t+1|t}
\end{bmatrix}
= \begin{bmatrix}
0 & -\frac{1 - \beta \rho_y}{1 - \beta \rho_v + \mathcal{R} \varepsilon} \\
0 & -\frac{1 - \beta \rho_y}{1 - \beta \rho_v + \mathcal{R} \varepsilon}
\end{bmatrix}
\begin{bmatrix}
\rho_d & 0 \\
0 & \rho_y
\end{bmatrix}
\begin{bmatrix}
d_{t|t} \\
\bar{y}_{t|t}
\end{bmatrix}
+ \begin{bmatrix}
-\frac{\mathcal{R} \varepsilon}{1 - \beta \rho_v + \mathcal{R} \varepsilon} \\
-\frac{\mathcal{R} \varepsilon}{1 - \beta \rho_v + \mathcal{R} \varepsilon}
\end{bmatrix}
\rho_v v_t
\]

Then, this implies that the interest rate can be written in terms of \{d_t, d_{t|t}, \bar{y}_t, \bar{y}_{t|t}, v_t\}

\[
i_t^* = \sigma (d_t - d_{t+1|t}) + \pi_{t+1|t} + \sigma (\bar{y}_{t+1|t} - \bar{y}_t)
\]

\[
= \sigma (d_t - \rho_d d_{t|t}) - \sigma \frac{1}{1 + \mathcal{R} \varepsilon} \bar{y}_t + \sigma \left( \frac{1}{1 + \mathcal{R} \varepsilon} - \frac{1}{\Omega_y 1 - \beta \rho_y + \mathcal{R} \varepsilon} \right) \bar{y}_{t|t} + \sigma \frac{1 - \beta \rho_v + \mathcal{R} \varepsilon (1 - \rho_v)}{1 - \beta \rho_v + \mathcal{R} \varepsilon} v_t
\]

It’s clear that the equilibrium conditions between \{M, K_y, f^*_y, f^*_y, \mathcal{R}\} are the same here as in the previous case without the additional cost push shock and so the equilibrium value(s) of \mathcal{R} are also the same.

In the perfect information case, conjecturing a solution that’s linear in state variables \{d_t, \bar{y}_t, v_t\} results in expectations of future outcomes of the form

\[
\begin{bmatrix}
\bar{y}^P_{t+1|t} \\
\pi^P_{t+1|t}
\end{bmatrix}
= M \begin{bmatrix}
\rho_d & 0 \\
0 & \rho_y
\end{bmatrix}
\begin{bmatrix}
d_{t|t} \\
\bar{y}_{t|t}
\end{bmatrix}
+ M_v \rho_v v_t
\]

Then, the output gap deviation and inflation written in terms of exogenous variables along with the interest rate is

\[
\begin{bmatrix}
\bar{y}^P_{t+1|t} - \bar{y}_{t|t} \\
\pi^P_{t+1|t}
\end{bmatrix}
= \left( \Psi + \begin{bmatrix}
1 & 0 \\
-1 & \kappa
\end{bmatrix} \right)
\begin{bmatrix}
d_{t|t} \\
\bar{y}_{t|t}
\end{bmatrix}
+ \left( \begin{bmatrix}
1 & \frac{1}{\sigma} \\
\kappa & \frac{\kappa}{\sigma} + \beta
\end{bmatrix}
M_v \rho_v + \begin{bmatrix}
0 & 1
\end{bmatrix}
\right)
\begin{bmatrix}
v_t - \frac{1}{\sigma}
\end{bmatrix}
i_t^{dis}
\]

Thus, the discretionary policy problem is equivalent to minimizing the current period loss subject to this condition.

Then the perfect information discretionary policy optimality condition and equilibrium conditions (including the interest rate behavior) are again the same as the imperfect information case with \kappa in place of \mathcal{R}.

\section{Overreaction to the additional cost-push shock}

This section shows that when a separate cost-push shock is added to the model, the optimal interest rate under discretion no longer corresponds to the optimal commitment to a forward-looking rule in the limit where the interest rate has its largest effect on \bar{y}_{t|t}.

In the limit where \frac{\alpha_y^2}{\sigma_y^2} \to 0, it’s still the case that \mathcal{R} \to \frac{\kappa}{1 - \beta \rho_y} since \frac{K_y}{\sigma} \to -\frac{1 + \mathcal{R} \varepsilon}{\sigma}. However, this is not
equivalent to commitment to a rule of the form

\[i_t = r^n_t + f^y_t \hat{y}_t + f^c_{\hat{y},b} \hat{y}_t + f^c_v v_t\]

The belief \(\hat{y}_t|t\) in the limit where \(\frac{\sigma^2}{\sigma_y^2} \to 0\) is again given by

\[\hat{y}_t|t = \hat{y}_t + \frac{\sigma}{f^y_d} \epsilon_{d,t}\]

Following the same steps given in Section B to obtain a solution under a given linear interest rate rule provides me with the solution

\[
\begin{bmatrix}
\hat{y}_t - \hat{y}_t \\
\pi_t
\end{bmatrix} = - \begin{bmatrix}
\frac{1}{\sigma} \Omega \left(1 - \beta \rho_y \right) \left(f^y_{\hat{y}} + f^c_{\hat{y},b}\right) + 1 \\
\frac{\xi}{\sigma} \Omega \left(f^y_{\hat{y}} + f^c_{\hat{y},b}\right)
\end{bmatrix} \hat{y}_t - \begin{bmatrix}
\Omega_b \rho_y \left(1 - \beta \rho_y + \frac{\xi}{\sigma} \right) \left(1 + \frac{f^y_{\hat{y}}}{f^c_{\hat{y}}}ight) + \frac{f^c_{\hat{y},b}}{f^c_{\hat{y}}} \\
\kappa \Omega_b \rho_y \left(1 - \beta \rho_y + \frac{\xi}{\sigma} + \beta \right) \left(1 + \frac{f^y_{\hat{y}}}{f^c_{\hat{y}}} + \frac{\xi}{\sigma} \right)
\end{bmatrix} \epsilon_{d,t}
\]

Then, the optimality conditions for \(f^y_{\hat{y}}\) and \(f^c_{\hat{y},b}\) are the same as in the proof of Proposition 2

\[
0 = E^{CB}_{t_0} \sum_{t=t_0}^{\infty} \beta^{t-t_0} \left((\hat{y}_t - \hat{y}_t) \left(1 - \beta \rho_y \right) + \varepsilon t \right) \left[\frac{1}{\sigma} \hat{y}_t + \frac{f^c_{\hat{y},b}}{f^y_d} \epsilon_{d,t}\right]
\]

and

\[
0 = E^{CB}_{t_0} \sum_{t=t_0}^{\infty} \beta^{t-t_0} \left((\hat{y}_t - \hat{y}_t) \left(1 - \beta \rho_y \right) + \varepsilon t \right) \left[\frac{1}{\sigma} \hat{y}_t - \frac{1}{f^y_d} \epsilon_{d,t}\right]
\]

The new optimality condition for \(f^c_v\) is

\[
0 = \frac{\partial}{\partial f^c_v} E^{CB}_{t_0} \sum_{t=t_0}^{\infty} \beta^{t-t_0} \frac{1}{2} \left((\hat{y}_t - \hat{y}_t)^2 + \frac{\varepsilon^2}{\kappa \pi_t} \right) \Rightarrow 0 = E^{CB}_{t_0} \sum_{t=t_0}^{\infty} \beta^{t-t_0} \left((\hat{y}_t - \hat{y}_t) + \frac{\varepsilon}{\kappa} \pi_t - \frac{\kappa}{1 - \beta \rho_v} \right) v_t
\]

Now, it’s clear that there’s no single optimal ratio between \(\hat{y}_t - \hat{y}_t\) and \(\pi_t\) that could satisfy all of these.

Using the equilibrium solutions for \(\hat{y}_t - \hat{y}_t\) and \(\pi_t\) and evaluating expectations from an ex-ante unconditional perspective gives the following set of equations that satisfy all three optimality conditions and determine the optimal policy rule coefficients

\[
0 = \left(\frac{1}{\sigma} \Omega \left(1 - \beta \rho_y \right) \left(f^y_{\hat{y}} + f^c_{\hat{y},b}\right) + 1 \right) \left(1 - \beta \rho_y \right) + \varepsilon \frac{\kappa}{\sigma} \Omega \left(f^y_{\hat{y}} + f^c_{\hat{y},b}\right)
\]

\[
0 = \Omega_b \rho_y \left(1 - \beta \rho_y + \frac{\kappa}{\sigma} \right) \left(1 + \frac{f^y_{\hat{y}}}{f^c_{\hat{y}} + \varepsilon} \right) + \frac{f^c_{\hat{y},b}}{f^c_{\hat{y}}} + \varepsilon \left(\kappa \Omega_b \rho_y \left(1 - \beta \rho_y + \frac{\kappa}{\sigma} + \beta \right) \left(1 + \frac{f^y_{\hat{y}}}{f^c_{\hat{y}} + \varepsilon} \right) + \frac{f^c_{\hat{y},b}}{f^c_{\hat{y}}}
\]

\[
0 = \frac{1}{\sigma} \rho_v - \frac{1}{\sigma} f^c_v \left(1 - \beta \rho_v \right) + \varepsilon \frac{1 - \rho_v - \frac{\xi}{\sigma} f^c_v}{\left(1 - \rho_v\right) \left(1 - \beta \rho_v\right) - \frac{\xi}{\sigma} \rho_v}
\]
The resulting solutions are

\[ f^*_y = -\sigma \frac{1}{1 + \frac{\varepsilon \kappa}{\rho_y}} \]
\[ f^*_{\bar{y}, b} = \sigma \left( \frac{1}{1 + \frac{\varepsilon \kappa}{1 - \rho_y}} - \frac{(1 - \rho_y)(1 - \beta \rho_y) - \frac{\kappa}{2} \rho_y}{1 - \beta \rho_y + \frac{\varepsilon \kappa}{1 - \beta \rho_y}} \right) \]
\[ f^*_v = \frac{1}{\sigma} \rho_v + \frac{\varepsilon}{1 - \beta \rho_v} (1 - \rho_v) \]

Then, it’s clear that

\[ f^*_{v,c} = f^*_v \left( \frac{\kappa}{1 - \beta \rho_v} \right) \neq f^*_v \left( \frac{\kappa}{1 - \beta \rho_y} \right) = \frac{1}{\sigma} \rho_v + \frac{\varepsilon}{1 - \beta \rho_v} (1 - \rho_v) \]

and

\[ f^*_{v,c} = f^*_v \left( \frac{\kappa}{1 - \beta \rho_v} \right) < f^*_v \left( \frac{\kappa}{1 - \beta \rho_y} \right) \text{ iff } \rho_v < \rho_y \]

since \( f^*_{v,c}(\mathcal{R}) = \frac{\varepsilon}{\kappa} \left( 1 - \beta \rho_v \right) (1 - \rho_v) - \frac{\varepsilon \rho_v}{2} \left( 1 - \beta \rho_v + \mathcal{R} \varepsilon \right)^2 > 0 \) when \( \rho_v \in [0, \bar{\rho}) \)

**J  Proof of Proposition 7**

In the case that lagged observations are not seen perfectly, beliefs are now given by a Kalman filter. To solve for these beliefs, recall that the latent states and the interest rate signal are perceived by the private agents to be of the form

\[ d_t = \rho_d d_{t-1} + \epsilon_{d,t}, \quad \epsilon_{d,t} \sim N \left( 0, \sigma_d^2 \right) \]
\[ \bar{y}_t = \rho_{\bar{y}} \bar{y}_{t-1} + \epsilon_{\bar{y},t}, \quad \epsilon_{\bar{y},t} \sim N \left( 0, \sigma_{\bar{y}}^2 \right) \]
\[ i_t = f_d d_t + f_{\bar{y}} \bar{y}_t + f_{d, d} d_{t-1} + f_{\bar{y}, \bar{y}} \bar{y}_{t-1} \]

The circularity of the signal can again be resolved by conjecturing a belief structure and then writing the problem in expectational errors defined as \( x^{surp}_t = x_t - x_{t|t-1} \). The conjecture I use is

\[
\begin{bmatrix}
    d_{t|t} \\
    \bar{y}_{t|t}
\end{bmatrix} = \begin{bmatrix}
    d_{t|t-1} \\
    \bar{y}_{t|t-1}
\end{bmatrix} + \begin{bmatrix}
    \hat{K}_d \\
    \hat{K}_{\bar{y}}
\end{bmatrix} \left( i_t - f_d d_{t|t-1} - f_{d, d} d_{t|t} - f_{\bar{y}} \bar{y}_{t|t-1} - f_{\bar{y}, \bar{y}} \bar{y}_{t|t} \right)
\]
\[
= \begin{bmatrix}
    d_{t|t-1} \\
    \bar{y}_{t|t-1}
\end{bmatrix} + \begin{bmatrix}
    \hat{K}_d \\
    \hat{K}_{\bar{y}}
\end{bmatrix} \left[ f_d \\ f_{\bar{y}} \right] \left( \begin{bmatrix}
    d_t \\
    \bar{y}_t
\end{bmatrix} - \begin{bmatrix}
    d_{t|t-1} \\
    \bar{y}_{t|t-1}
\end{bmatrix} \right)
\]
\] in equilibrium

where

\[
\begin{bmatrix}
    d_{t|t-1} \\
    \bar{y}_{t|t-1}
\end{bmatrix} = \begin{bmatrix}
    \rho_d & 0 \\
    0 & \rho_{\bar{y}}
\end{bmatrix} \begin{bmatrix}
    d_{t|t-1} \\
    \bar{y}_{t-1|t-1}
\end{bmatrix}
\]

79
Thus, the expectational errors can be written in state-space form as

\[
\begin{bmatrix}
    \begin{bmatrix}
        d_{e}^{\text{err}} \\
        \tilde{y}_{t}^{\text{err}}
    \end{bmatrix}
    &=
    \begin{bmatrix}
        \rho_d & 0 \\
        0 & \rho_\gamma
    \end{bmatrix}
    \begin{bmatrix}
        1 - \hat{K}_d \delta_{d} - \hat{K}_d \delta_{g} \\
        -\hat{K}_g \delta_{d} - \hat{K}_g \delta_{g}
    \end{bmatrix}
    \begin{bmatrix}
        d_{e}^{\text{err}} \\
        \tilde{y}_{t-1}^{\text{err}}
    \end{bmatrix}
    +
    \begin{bmatrix}
        \varepsilon_{d,t} \\
        \varepsilon_{g,t}
    \end{bmatrix}
\end{bmatrix}
\]

\[
i_{t}^{\text{surp}} = (1 + \hat{K}_d \delta_{d,b} + \hat{K}_g \delta_{g,b}) \begin{bmatrix}
    \delta_{d} \\
    \delta_{g}
\end{bmatrix}
\begin{bmatrix}
    d_{e}^{\text{err}} \\
    \tilde{y}_{t}^{\text{err}}
\end{bmatrix}
\]

In this case, the steady-state Kalman filter gives

\[
\begin{bmatrix}
    d_{e}^{\text{err}} \\
    \tilde{y}_{t}^{\text{err}}
\end{bmatrix}
= \left[\begin{bmatrix}
    d_{e}^{\text{err}} \\
    \tilde{y}_{t}^{\text{err}}
\end{bmatrix}
\right]_{t-1} + \hat{K} \left(i_{t}^{\text{surp}} - i_{t}^{\text{surp}}ight)
= \hat{K} \left(1 + \hat{K}_d \delta_{d,b} + \hat{K}_g \delta_{g,b}\right) \begin{bmatrix}
    \delta_{d} \\
    \delta_{g}
\end{bmatrix}
\begin{bmatrix}
    d_{e}^{\text{err}} \\
    \tilde{y}_{t}^{\text{err}}
\end{bmatrix}
\]

where \( \hat{K} = \hat{P} \begin{bmatrix}
    \delta_{d} \\
    \delta_{g}
\end{bmatrix}
\left(1 + \hat{K}_d \delta_{d,b} + \hat{K}_g \delta_{g,b}\right) \begin{bmatrix}
    \delta_{d} \\
    \delta_{g}
\end{bmatrix}
\hat{P} \begin{bmatrix}
    \delta_{d} \\
    \delta_{g}
\end{bmatrix}\right)^{-1}
\hat{P} = \begin{bmatrix}
    \rho_d & 0 \\
    0 & \rho_\gamma
\end{bmatrix}
\begin{bmatrix}
    \rho_d & 0 \\
    0 & \rho_\gamma
\end{bmatrix} + \begin{bmatrix}
    \sigma^2_d & 0 \\
    0 & \sigma^2_g
\end{bmatrix}
\]

This fulfills our original conjecture with

\[
\begin{bmatrix}
    \hat{K}_d \\
    \hat{K}_g
\end{bmatrix} = \hat{P} \begin{bmatrix}
    \delta_{d} \\
    \delta_{g}
\end{bmatrix} \left(\begin{bmatrix}
    \delta_{d} \\
    \delta_{g}
\end{bmatrix} \hat{P} \begin{bmatrix}
    \delta_{d} \\
    \delta_{g}
\end{bmatrix}\right)^{-1}
\]

and the property that \( \delta_{d} \hat{K}_d + \delta_{g} \hat{K}_g = 1 \) is maintained.

Then, I again define the interest rate as \( i_{t} = i_{t}^{\text{dis}} + f_{d,b} \delta_{d,t} + f_{g,b} \delta_{g,t} \) so that beliefs as a function of past beliefs and \( i_{t}^{\text{dis}} \) are

\[
\begin{bmatrix}
    d_{t|t} \\
    \tilde{y}_{t|t}
\end{bmatrix} = \begin{bmatrix}
    1 - \hat{K}_d \delta_{d} - \hat{K}_d \delta_{g} \\
    -\hat{K}_g \delta_{d} - \hat{K}_g \delta_{g}
\end{bmatrix}
\begin{bmatrix}
    d_{t|t-1} \\
    \tilde{y}_{t|t-1}
\end{bmatrix} + \begin{bmatrix}
    \hat{K}_d \\
    \hat{K}_g
\end{bmatrix} \begin{bmatrix}
    i_{t}^{\text{dis}}
\end{bmatrix} \tag{37a}
\]

\[
\begin{bmatrix}
    d_{t+1|t} \\
    \tilde{y}_{t+1|t}
\end{bmatrix} = \begin{bmatrix}
    \rho_d & 0 \\
    0 & \rho_\gamma
\end{bmatrix}
\begin{bmatrix}
    d_{t|t} \\
    \tilde{y}_{t|t}
\end{bmatrix} \tag{37b}
\]

Then, I follow the same steps as the proof of Proposition 2 and use the linear form of expectations

\[
\begin{bmatrix}
    \tilde{y}_{t+1|t} \\
    \pi_{t+1|t}
\end{bmatrix} = \begin{bmatrix}
    \rho_d & 0 \\
    0 & \rho_\gamma
\end{bmatrix}
\begin{bmatrix}
    d_{t|t} \\
    \tilde{y}_{t|t}
\end{bmatrix}
\]

to write \( \tilde{y}_{t} - \tilde{y}_{t} \) as a linear function of prior beliefs, exogenous states, and \( i_{t}^{\text{dis}} \)

\[
\begin{bmatrix}
    \tilde{y}_{t} - \tilde{y}_{t} \\
    \pi_{t}
\end{bmatrix} = \Psi \begin{bmatrix}
    1 - \hat{K}_d \delta_{d} - \hat{K}_d \delta_{g} \\
    -\hat{K}_g \delta_{d} - \hat{K}_g \delta_{g}
\end{bmatrix}
\begin{bmatrix}
    d_{t|t-1} \\
    \tilde{y}_{t|t-1}
\end{bmatrix} + \begin{bmatrix}
    1 & -1 \\
    \kappa & 0
\end{bmatrix}
\begin{bmatrix}
    d_{t} \\
    \tilde{y}_{t}
\end{bmatrix} + \begin{bmatrix}
    H_{\tilde{y},i} \\
    H_{\pi,i}
\end{bmatrix} \begin{bmatrix}
    i_{t}^{\text{dis}}
\end{bmatrix} \tag{38}
\]

where \( \Psi = \begin{bmatrix}
    1 & \frac{1}{\sigma} \\
    \kappa & \frac{\pi}{\sigma} + \beta
\end{bmatrix}
\begin{bmatrix}
    \rho_d & 0 \\
    0 & \rho_\gamma
\end{bmatrix} - \begin{bmatrix}
    \rho_d + \frac{1}{\sigma} \delta_{d,b} + \frac{1}{\sigma} \delta_{g,b} \\
    \kappa (\rho_d + \frac{1}{\sigma} \delta_{d,b}) + \frac{\pi}{\sigma} \delta_{g,b}
\end{bmatrix}
\]

and \( H_{\tilde{y},i} = \Psi \hat{K}_d \hat{K}_g \begin{bmatrix}
    1 \\
    \kappa
\end{bmatrix} \begin{bmatrix}
    \frac{1}{\sigma} \\
    \frac{\pi}{\sigma}
\end{bmatrix} \tag{39} \)

80
Now, the discretionary policymaker’s problem can be written as the following Bellman recursion where his choice today now has an effect on the expected future welfare loss since today’s beliefs become the prior for period $t+1$ beliefs

$$V (dt, \tilde{y}_t, d_{t|t-1}, \tilde{y}_{t|t-1}) = \min_{\tilde{y}_t, \pi_t, d_{t|t-1}, \tilde{y}_{t|t-1}} \left\{ \frac{1}{2} (\tilde{y}_t - \tilde{y}_{t|t})^2 + \frac{\varepsilon}{\kappa} \pi_t^2 \right\} + \beta E_t^{CB} V (dt+1, \tilde{y}_{t+1}, d_{t+1|t}, \tilde{y}_{t+1|t})$$

subject to (37) and (38)

Then, the FOC and EC combine to give the optimality condition

$$\tilde{y}_t - \tilde{y}_{t|t} + H_{\pi, i} \in \pi_t = -\beta \frac{H_{\tilde{y}, i}}{H_{\tilde{y}, i}} \left( \frac{d\tilde{y}_{t+1}}{d\tilde{y}_{t+1}|t} \rho_d \tilde{K}_d + \frac{d\tilde{y}_{t+1}}{d\tilde{y}_{t+1}|t} \rho_y \tilde{K}_y \right) E_t^{CB} [\tilde{y}_{t+1} - \tilde{y}_{t+1}]$$

Matching coefficients gives the same equilibrium value for $M$ as a function of the interest rate coefficients as the case derived in Appendix B where agents could see lagged beliefs.

Then, to see if an interest rate of the form

$$i_t = \pi^n_t + f_{\tilde{y}} \tilde{y}_t + f_{\tilde{y}, b} \tilde{y}_{t|t}$$

can satisfy this optimality condition, I use these supposed policy coefficients which gives

$$M = -\begin{bmatrix} 0 & \frac{1}{\sigma} \Omega_y (1 - \beta \rho_y) (f_{\tilde{y}} + f_{\tilde{y}, b}) \\ 0 & \frac{\kappa}{\sigma} \Omega_y (f_{\tilde{y}} + f_{\tilde{y}, b}) \end{bmatrix}$$

and an equilibrium where $\tilde{y}_t - \tilde{y}_{t|t}$ and $\pi_t$ are linear in $\{\tilde{y}_t, \tilde{y}_{t|t}\}$

$$\begin{bmatrix} \tilde{y}_t - \tilde{y}_{t|t} \\ \pi_t \end{bmatrix} = -\begin{bmatrix} 0 & \frac{1}{\sigma} \rho_y (1 - \beta \rho_y + \frac{\kappa}{\sigma}) \Omega_y (f_{\tilde{y}} + f_{\tilde{y}, b}) + \frac{1}{\sigma} f_{\tilde{y}, b} \\ 0 & \frac{\kappa}{\sigma} \rho_y (1 - \beta \rho_y + \frac{\kappa}{\sigma} + \beta) \Omega_y (f_{\tilde{y}} + f_{\tilde{y}, b}) + \frac{\kappa}{\sigma} f_{\tilde{y}, b} \end{bmatrix} \tilde{y}_{t|t} + \begin{bmatrix} -1 & -\frac{1}{\sigma} f_{\tilde{y}} \\ \frac{\kappa}{\sigma} \end{bmatrix} \tilde{y}_t$$

and

$$\begin{bmatrix} H_{\tilde{y}, i} \\ H_{\pi, i} \end{bmatrix} = -\begin{bmatrix} \frac{1}{\sigma} \rho_y (1 - \beta \rho_y + \frac{\kappa}{\sigma}) \Omega_y (f_{\tilde{y}} + f_{\tilde{y}, b}) + \frac{1}{\sigma} f_{\tilde{y}, b} \\ \frac{\kappa}{\sigma} \rho_y (1 - \beta \rho_y + \frac{\kappa}{\sigma} + \beta) \Omega_y (f_{\tilde{y}} + f_{\tilde{y}, b}) + \frac{\kappa}{\sigma} f_{\tilde{y}, b} \end{bmatrix} \tilde{K}_y - \begin{bmatrix} \frac{1}{\sigma} \rho_y \\ \frac{\kappa}{\sigma} \end{bmatrix} \tilde{K}_y$$

Then, this gives

$$\frac{d\tilde{y}_{t+1}}{d\tilde{y}_{t+1}|t} \rho_d \tilde{K}_d + \frac{d\tilde{y}_{t+1}}{d\tilde{y}_{t+1}|t} \rho_y \tilde{K}_y = \frac{\partial \tilde{y}_{t+1}}{\partial \tilde{y}_{t+1}|t+1} \left( \frac{d\tilde{y}_{t+1}|t+1}{d\tilde{y}_{t+1}|t} \rho_d \tilde{K}_d + \frac{d\tilde{y}_{t+1}|t+1}{d\tilde{y}_{t+1}|t} \rho_y \tilde{K}_y \right)$$

and similarly for $\pi_{t+1}$. This means the policymaker’s optimality condition simplifies to

$$\tilde{y}_t - \tilde{y}_{t|t} + H_{\pi, i} \in \pi_t = -\beta \tilde{K}_y \tilde{K}_d (\rho_y - \rho_d) \sigma \left[ \frac{\partial \tilde{y}_t}{\partial \tilde{y}_{t|t}} E_t^{CB} [\tilde{y}_{t+1} - \tilde{y}_{t+1}] + \frac{\partial \pi_t}{\partial \pi_{t|t}} E_t^{CB} \pi_{t+1} \right]$$

Then, the LHS of this condition is a function of $\{\tilde{y}_t, \tilde{y}_{t|t}\}$ and that the term inside the expectations on the RHS
is a function of \( \{ \bar{y}_{t+1}, \bar{y}_{t+1|t+1} \} \). However, this means that the expectation itself is a function of \( \{ d_t - d_{t|t}, \bar{y}_t, \bar{y}_{t|t} \} \) since

\[
\bar{y}_{t+1|t+1} = \rho_y \bar{y}_{t|t} + \bar{K}_\bar{y} \left( f_d d_{t+1} + f_y \bar{y}_{t+1} - f_d \rho_d d_{t|t} - f_y \rho_y \bar{y}_{t|t} \right) \\
\Rightarrow E_t^{CB} \bar{y}_{t+1|t+1} = \rho_y \bar{y}_{t|t} + \bar{K}_\bar{y} \left( f_d \rho_d (d_t - d_{t|t}) + f_y \rho_y (\bar{y}_t - \bar{y}_{t|t}) \right)
\]

Thus, the optimality condition cannot be satisfied under the premise that \( i_t = r_t^n + f_y \bar{y}_t + f_y b y_{t|t} \) for general parameter values.

J.1 Proof of Corollary 3

Recall that the policymaker’s optimality condition is

\[
\tilde{y}_t - \bar{y}_t + \frac{H_{\pi,i}}{H_{\bar{y},i}} \frac{\varepsilon}{\kappa} \pi_t = -\frac{\beta \bar{K}_\bar{y} \bar{K}_d \left( \rho_y - \rho_d \right) f_d}{H_{\bar{y},d}} \left[ \frac{\partial \bar{y}_t}{\partial \bar{y}_{t|t}} E_t^{CB} \left[ \bar{y}_{t+1} - \bar{y}_{t+1} \right] + \frac{\partial \pi_t}{\partial \bar{y}_{t|t}} E_t^{CB} \pi_{t+1} \right]
\]

In the special case where \( \bar{K}_\bar{y} \bar{K}_d \left( \rho_y - \rho_d \right) = 0 \), the new terms introduced to the optimality condition drop out and it collapses to the same condition as before.

\[
\tilde{y}_t - \bar{y}_t = -\frac{H_{\pi,i}}{H_{\bar{y},d}} \frac{\varepsilon}{\kappa} \pi_t
\]

Substituting this into the equilibrium conditions shows that the interest rate rule features the same responses to \( \{ d_t, d_{t|t}, \bar{y}_t, \bar{y}_{t|t} \} \) as in the case where agents could see lagged fundamentals. The condition \( \bar{K}_\bar{y} \bar{K}_d \left( \rho_y - \rho_d \right) = 0 \) captures the case where the current policy choice no longer affects future outcomes since it no longer affects the future belief \( \bar{y}_{t+1|t+1} \). This can be broken down into the following subcases:

1. \( \bar{K}_\bar{y} = 0 \) (\( \Leftrightarrow \bar{K}_d = \frac{1}{f_d} \)): In this case, equilibrium beliefs are given by

\[
\bar{y}_{t|t} = \rho_y \bar{y}_{t-1|t-1} \\
d_{t|t} = \frac{1}{f_d} \left( r_t^{dis} - f_y \rho_y \bar{y}_{t-1|t-1} \right)
\]

Then, the interest rate only affects the current belief \( d_{t|t} \) and not future beliefs.

2. \( \bar{K}_d = 0 \) (\( \Leftrightarrow \bar{K}_\bar{y} = \frac{1}{f_y} \)): In this case, equilibrium beliefs are given by

\[
d_{t|t} = \rho_d d_{t-1|t-1} \\
\bar{y}_{t|t} = \frac{1}{f_y} \left( r_t^{dis} - f_d \rho_d d_{t-1|t-1} \right)
\]

Again, the interest rate only affects the current belief \( \bar{y}_{t|t} \) and not future beliefs.
3. $\rho_d = \rho_y = \rho$: Note that it’s always possible to write beliefs as a distributed lag of interest rate news

$$
\begin{bmatrix}
    d_{t|t} \\
    \bar{y}_{t|t}
\end{bmatrix} = \begin{bmatrix}
    \rho_d d_{t-1|t-1} \\
    \rho_y \bar{y}_{t-1|t-1}
\end{bmatrix} + \begin{bmatrix}
    K_d \\
    K_y
\end{bmatrix} \begin{bmatrix}
    i_t^{\text{dis}} - f_d d_{t|t-1} - f_y \bar{y}_{t|t-1}
\end{bmatrix}
$$

$$
d_{t|t} = \hat{K}_d \sum_{j=0}^{\infty} \rho_d^j \begin{bmatrix}
    i_{t-j}^{\text{dis}} - i_{t-j|t-1}^{\text{dis}}
\end{bmatrix}
$$

$$
\bar{y}_{t|t} = \hat{K}_y \sum_{j=0}^{\infty} \rho_y^j \begin{bmatrix}
    i_{t-j}^{\text{dis}} - i_{t-j|t-1}^{\text{dis}}
\end{bmatrix}
$$

When the autocorrelations are equal, the interest rate itself becomes AR(1) with an innovation that is the composite of the two underlying shocks

$$i_{t+1}^{\text{dis}} = f_d d_{t+1} + f_y \bar{y}_{t+1} = \rho_i^{\text{dis}} + f_d \epsilon_{d,t} + f_y \epsilon_{\bar{y},t}$$

Then, beliefs collapse to a function of just today’s interest rate in equilibrium.

$$
d_{t|t} = \hat{K}_d \sum_{j=0}^{\infty} \rho_d^j \begin{bmatrix}
    i_{t-j}^{\text{dis}} - \rho_i^{\text{dis}}
\end{bmatrix} = \hat{K}_d i_{t}^{\text{dis}}
$$

$$\bar{y}_{t|t} = \hat{K}_y \sum_{j=0}^{\infty} \rho_y^j \begin{bmatrix}
    i_{t-j}^{\text{dis}} - \rho_i^{\text{dis}}
\end{bmatrix} = \hat{K}_y i_{t}^{\text{dis}}$$

In the special case where $\rho_d = 0$, equilibrium beliefs are given by

$$\bar{y}_{t+1|t+1} = \rho_y \bar{y}_{t|t} + \hat{K}_y \left(f_d d_{t+1} + f_y \bar{y}_{t+1} - f_y \rho_y \bar{y}_{t|t}\right)$$

$$\Rightarrow E_t^{CB} \bar{y}_{t+1|t+1} = \rho_y \bar{y}_{t|t} + \hat{K}_y f_y \rho_y \left(\bar{y}_{t} - \bar{y}_{t|t}\right)$$

and the RHS is now only a function of $\bar{y}_{t}$ and $\bar{y}_{t|t}$. Then, it’s verified that the optimality condition holds with $f_d = \sigma$, $f_{d,b} = -\sigma \rho_d$. In general, the coefficients $f_{\bar{y}}$ and $f_{\bar{y},b}$ will differ from the case where lags can be seen since the coefficients in that case only set the LHS to zero.

**K Optimal policy under time-varying uncertainty**

This section looks at optimal discretionary policy when uncertainty in the exogenous states is time-varying

$$
d_t = \rho_d d_{t-1} + \epsilon_{d,t}, \quad \epsilon_{d,t} \sim N \left(0, \sigma_{d,t-1}^2\right) \text{ and is serially uncorrelated}
$$

$$\bar{y}_t = \rho_y \bar{y}_{t-1} + \epsilon_{\bar{y},t}, \quad \epsilon_{\bar{y},t} \sim N \left(0, \sigma_{\bar{y},t-1}^2\right) \text{ and is serially uncorrelated}
$$

Private agents’ information sets are $\mathcal{I}_t = \left\{ i^t, d^{t-1}, \bar{y}^{t-1}, (\sigma_d^2)^t, (\sigma_{\bar{y}}^2)^t, \mathbf{f}^t \right\}$ where $\mathbf{f}_t$ denotes the vector of time $t$ interest rate responses to the state variables $\{d_t, d_{t|t}, \bar{y}_t, \bar{y}_{t|t}\}$.

Beliefs can be derived in the same way as in Section 2.3. The only difference now is that the belief coefficients
contain time-varying policy coefficients.

\[ K_{d,t} = \frac{f_{d,t} \sigma_{d,t-1}^2}{f_{d,t}^2 \sigma_{y,t-1}^2 + f_{y,t}^2} \quad \text{and} \quad K_{y,t} = \frac{f_{y,t}}{f_{d,t}^2 \sigma_{y,t-1}^2 + f_{y,t}^2} \]

Then, if I specify implemented policy as

\[ i_t = i_t^{\text{dis}} + f_{d,b,t} d_{t | t} + f_{y,b,t} \bar{y}_{t | t} \]

Beliefs are again linear in \( i_t^{\text{dis}} \)

\[
\begin{bmatrix}
  d_{t | t} \\
  \bar{y}_{t | t}
\end{bmatrix} =
\begin{bmatrix}
  1 - K_{d,t} f_{d,t} & -K_{d,t} f_{y,t} \\
  -K_{y,t} f_{d,t} & 1 - K_{y,t} f_{y,t}
\end{bmatrix}
\begin{bmatrix}
  \rho_d d_{t-1} \\
  \rho_y \bar{y}_{t-1}
\end{bmatrix}
\begin{bmatrix}
  K_{d,t} \\
  K_{y,t}
\end{bmatrix} i_t^{\text{dis}}
\]

Longer horizon forecasts will continue to be \( d_{t+h|t} = \rho^h d_{t|t} \) and \( \bar{y}_{t+h|t} = \rho^h \bar{y}_{t|t} \).

I then posit that equilibrium expectations are linear in these beliefs with time-varying coefficients

\[
\begin{bmatrix}
  \bar{y}_{t+1|t} \\
  \pi_{t+1|t}
\end{bmatrix} =
\begin{bmatrix}
  \rho_d & 0 \\
  0 & \rho_y
\end{bmatrix}
\begin{bmatrix}
  d_{t|t} \\
  \bar{y}_{t|t}
\end{bmatrix} +
\begin{bmatrix}
  H_{\bar{y},i,t} \\
  H_{\pi,i,t}
\end{bmatrix} i_t^{\text{dis}}
\]

Then, \( \bar{y}_t - \bar{y}_t \) and \( \pi_t \) can again be written in terms of exogenous states and \( i_t^{\text{dis}} \)

\[
\begin{bmatrix}
  \bar{y}_t - \bar{y}_t \\
  \pi_t
\end{bmatrix} =
\begin{bmatrix}
  1 & \frac{1}{\sigma} & \frac{\beta}{\sigma} \\
  \frac{1}{\kappa} & \frac{\beta}{\sigma} & \beta
\end{bmatrix}
\begin{bmatrix}
  \rho_d & 0 \\
  0 & \rho_y
\end{bmatrix}
\begin{bmatrix}
  d_{t|t} \\
  \bar{y}_{t|t}
\end{bmatrix} +
\begin{bmatrix}
  H_{\bar{y},i,t} \\
  H_{\pi,i,t}
\end{bmatrix} i_t^{\text{dis}}
\]

where \( \Psi_t \equiv \begin{bmatrix}
  1 & \frac{1}{\sigma} & \frac{\beta}{\sigma} \\
  \frac{1}{\kappa} & \frac{\beta}{\sigma} & \beta
\end{bmatrix} \]

and

\[
\begin{bmatrix}
  H_{\bar{y},i,t} \\
  H_{\pi,i,t}
\end{bmatrix} =
\begin{bmatrix}
  K^d_d \\
  K^y_y
\end{bmatrix} -
\begin{bmatrix}
  \frac{1}{\sigma} \\
  \frac{\beta}{\sigma}
\end{bmatrix}
\]

In this form, it’s again true that the discretionary policymaker has no control over time \( t+1 \) or later outcomes and the problem simplifies to

\[
\min_{i_t^{\text{dis}}} \frac{1}{2} \left( (\bar{y}_t - \bar{y}_t)^2 + \frac{\varepsilon}{\kappa} \pi_t^2 \right) \quad \text{subject to the preceding equation}
\]

Thus, the FOC is analogous to the constant variances case but with a time-varying \( R_t \)

\[
\bar{y}_t - \bar{y}_t = -R_t \frac{\varepsilon}{\kappa} \pi_t, \quad \text{where} \quad R_t = \frac{H_{\pi,i,t}}{H_{\bar{y},i,t}}
\]

Using this FOC and the structural equations to back out the optimal equilibrium \( i_t \), gives
a non-linear stochastic difference equation implicitly relating past relative variances which are not informative about future levels of the output gap target. By taking

\[ \lim_{T \to \infty} \left( \prod_{k=0}^{T} \frac{\beta}{1 + \mathcal{R}_t \varepsilon} \right)^{\pi_{t+T}|t} = 0. \]

Then, expectations are

\[
\begin{align*}
\pi_{t+1}|t & = \kappa E \left[ \frac{1}{1 + \mathcal{R}_{t+1} \varepsilon} + \frac{\beta \rho_y}{(1 + \mathcal{R}_{t+1} \varepsilon)(1 + \mathcal{R}_{t+2} \varepsilon)} + \ldots | \mathcal{I}_t \right] \rho_y \bar{y}_{t|t} \\
\bar{y}_{t+1}|t & = \left\{ 1 - E \left[ \mathcal{R}_{t+1} \varepsilon \left( \frac{1}{1 + \mathcal{R}_{t+1} \varepsilon} + \frac{\beta \rho_y}{(1 + \mathcal{R}_{t+1} \varepsilon)(1 + \mathcal{R}_{t+2} \varepsilon)} + \ldots \right) | \mathcal{I}_t \right] \right\} \rho_y \bar{y}_{t|t}
\end{align*}
\]

By taking \( \bar{y}_{t|t} \) out of the expectations, I'm assuming (and later show) that \( \mathcal{R}_t \) will be a function of current and past relative variances which are not informative about future levels of the output gap target.

Then, this implies that the interest rate can be written in terms of \( \{d_t, d_{t|t}, \bar{y}, \bar{y}_{t|t}\} \)

\[
i_t = r_t + \pi_{t+1|t} + \sigma (\bar{y}_{t+1|t} - \bar{y}_t) = \sigma d_t - \sigma \rho_y d_{t|t} - \sigma \frac{1}{1 + \mathcal{R}_t \varepsilon} \bar{y}_t + \sigma E \left[ 1 + \left( \frac{\kappa}{\sigma} - \mathcal{R}_{t+1} \varepsilon + \mathcal{R}_t \varepsilon \right) \left( \frac{1}{1 + \mathcal{R}_{t+1} \varepsilon} + \frac{\beta \rho_y}{(1 + \mathcal{R}_{t+1} \varepsilon)(1 + \mathcal{R}_{t+2} \varepsilon)} + \ldots \right) | \mathcal{I}_t \right] \rho_y \bar{y}_{t|t}
\]

In addition, the above expressions for \( \pi_{t+1|t}, \bar{y}_{t+1|t} \) gives an expression for the equilibrium \( M_t \)

\[
M_t = \left[ \begin{array}{cc} 0 & 1 - E \left[ \mathcal{R}_{t+1} \varepsilon \left( \frac{1}{1 + \mathcal{R}_{t+1} \varepsilon} + \frac{\beta \rho_y}{(1 + \mathcal{R}_{t+1} \varepsilon)(1 + \mathcal{R}_{t+2} \varepsilon)} + \ldots \right) | \mathcal{I}_t \right] \\
0 & \kappa E \left[ \frac{1}{1 + \mathcal{R}_{t+1} \varepsilon} + \frac{\beta \rho_y}{(1 + \mathcal{R}_{t+1} \varepsilon)(1 + \mathcal{R}_{t+2} \varepsilon)} + \ldots | \mathcal{I}_t \right] \end{array} \right]
\]

Using this in the expression for \( [H_{\bar{y}, t}, H_{\pi, t}] \) and combining this with the expressions for \( f_{\bar{y}, h, t} \) and \( K_{\bar{y}, t} \) gives a non-linear stochastic difference equation implicitly relating \( \mathcal{R}_t \) to future \( \{\mathcal{R}_{t+k}\}_{k \geq 1} \) where the driving variable
is the relative variance level \( \frac{\sigma^2_{\delta t,t-1}}{\sigma^2_{\delta t-1}} \).

\[
\mathcal{R}_t = \frac{H_{\delta,i,t}}{H_{\delta,i,t}}
\]

\[
\begin{bmatrix}
H_{\delta,\delta,t} \\
H_{\delta,i,t}
\end{bmatrix} = \begin{bmatrix}
\frac{1}{\sigma} \frac{1}{\kappa} \\
\kappa \frac{\kappa}{\sigma} + \beta
\end{bmatrix}
M_t \begin{bmatrix}
\rho_d & 0 \\
0 & \rho_{\bar{y}}
\end{bmatrix}
- \begin{bmatrix}
0 & \frac{1}{\sigma} f^{*}_{\delta,\delta,b,t} \\
0 & \frac{1}{\sigma} f^{*}_{\delta,i,b,t}
\end{bmatrix}
K_{d,t} \begin{bmatrix}
\frac{1}{\sigma} \\
\frac{1}{\sigma} + \beta
\end{bmatrix}
\]

where \( f^{*}_{\delta,\delta,b,t} = \sigma E \left[ 1 + \left( \frac{\kappa}{\sigma} \right) \frac{\mathcal{R}_{t+1} \beta}{1 + \mathcal{R}_{t+1}} - \mathcal{R}_{t+1} \right] \left[ \frac{1}{1 + \mathcal{R}_{t+1}} + \frac{\beta \rho_{\bar{y}}}{(1 + \mathcal{R}_{t+1}) (1 + \mathcal{R}_{t+2})} + \ldots \right] \mathcal{I}_t \]

\[
M_t = \begin{bmatrix}
0 & 1 - E \left[ \mathcal{R}_{t+1} \left( \frac{1}{1 + \mathcal{R}_{t+1}} + \frac{\beta \rho_{\bar{y}}}{(1 + \mathcal{R}_{t+1}) (1 + \mathcal{R}_{t+2})} + \ldots \right) \mathcal{I}_t \right] \\
0 & \kappa E \left[ \frac{1}{1 + \mathcal{R}_{t+1}} + \frac{\beta \rho_{\bar{y}}}{(1 + \mathcal{R}_{t+1}) (1 + \mathcal{R}_{t+2})} + \ldots \right] \mathcal{I}_t
\end{bmatrix}
\]

\[
K_{\delta,\delta,t} = \frac{-1}{\sigma (1 + \mathcal{R}_t)^2} \frac{\sigma^2_{\delta,\delta,t-1}}{\sigma^2_{\delta,\delta,t-1} + 1}
\]

If the relative variance \( \frac{\sigma^2_{\delta,\delta,t}}{\sigma^2_{\delta,\delta,t-1}} \) is Markov, then it may be possible to show that the key variable \( \mathcal{R}_t \) should depend only on \( \frac{\sigma^2_{\delta,\delta,t-1}}{\sigma^2_{\delta,\delta,t-1}} \) and \( \frac{\sigma^2_{d,t}}{\sigma^2_{\delta,\delta,t}} \). Likewise, \( f^{*}_{\delta,\delta,b,t} \) would also have this property.

### L Empirical relationship from structural model

In this section, I show that giving private agents an additional signal about \( \pi_t \) and using a special parameterization where \( \rho_d = \rho_{\bar{y}} = \rho \) allows the structural model to produce the same key regression equation as the reduced-form empirical model. In fact, it can be shown that this parameterization allows a VAR(1) representation of the structural model (derivations available upon request). I continue to assume that \( \rho \in [0, \bar{\rho}] \) as in Assumption 1 and that there's a given interest rate rule

\[
i_t = f_d d_t + f_d b d^t_{i,t} + f_{\bar{y}} \bar{y}_t + f_{\bar{y},b} \bar{y}_{t|t}
\]

where I use Assumption 2 and additionally assume that \( f_d > 0, f_d + f_{d,b} > 0 \).

Recall that Appendix B showed that the equilibrium solutions for the output gap and inflation under an interest rate of this form are

\[
\begin{bmatrix}
\bar{y}_t \\
\pi_t
\end{bmatrix} = \begin{bmatrix}
- \frac{1}{\sigma} \Omega (1 - \beta \rho) (f_d + f_{d,b} - \sigma (1 - \rho)) - (1 - \frac{1}{\sigma} f_d) \\
- \frac{1}{\sigma} \Omega (f_d + f_{d,b} - \sigma (1 - \rho)) - \kappa (1 - \frac{1}{\sigma} f_d)
\end{bmatrix} \begin{bmatrix}
d_t
\end{bmatrix}
+ \begin{bmatrix}
- \frac{1}{\sigma} \Omega (1 - \beta \rho) (f_{\bar{y}} + f_{\bar{y},b}) + \frac{1}{\sigma} f_{\bar{y}} \\
- \frac{1}{\sigma} \Omega (f_{\bar{y}} + f_{\bar{y},b}) + \frac{1}{\sigma} f_{\bar{y}}
\end{bmatrix} \begin{bmatrix}
\bar{y}_{t|t}
\end{bmatrix}
+ \begin{bmatrix}
1 - \frac{1}{\sigma} f_d \\
\kappa (1 - \frac{1}{\sigma} f_d)
\end{bmatrix} \begin{bmatrix}
d_t
\end{bmatrix}
\]

where \( \Omega_d = \frac{1}{\Omega_{\bar{y}}} = \frac{\Omega_{\bar{y}}}{(1 - \rho)(1 - \beta \rho) - \frac{\sigma}{\rho}} \)

Imagine now that agents receive another signal which is

\[
s_t = \pi_t + \epsilon_{s,t} = \Gamma_d d_t + \Gamma_{\bar{y}} \bar{y}_t + \Gamma_{d,b} d^t_{i|t} + \Gamma_{\bar{y},b} \bar{y}_{t|t} + \epsilon_{s,t}, \epsilon_{s,t} \sim N \left( 0, \frac{\sigma^2_{s,t-1}}{\sigma^2_{s,t-1}} \right)
\]

where the \( \Gamma \)'s are the coefficients in the solution for \( \pi_t \). Then, the private agents’ belief formation problem can be
written in state-space form as

\[
\begin{bmatrix}
    d_t \\
    \bar{y}_t
\end{bmatrix} = \rho
\begin{bmatrix}
    d_{t-1} \\
    \bar{y}_{t-1}
\end{bmatrix} + [\epsilon_{d,t} \epsilon_{\bar{y},t}] ,
\begin{bmatrix}
    \epsilon_{d,t} \\
    \epsilon_{\bar{y},t}
\end{bmatrix} \sim N(0, \Sigma_{d,\bar{y},t-1})
\text{ where } \Sigma_{d,\bar{y},t-1} \equiv
\begin{bmatrix}
    \sigma_{d,t-1}^2 & 0 \\
    0 & \sigma_{\bar{y},t-1}^2
\end{bmatrix}
\]

\[
\begin{bmatrix}
    i_t \\
    s_t
\end{bmatrix} =
\begin{bmatrix}
    f_d & f_{\bar{y}} \\
    \Gamma_d & \Gamma_{\bar{y}}
\end{bmatrix}
\begin{bmatrix}
    d_t \\
    \bar{y}_t
\end{bmatrix}
+ [f_{d,b} f_{\bar{y},b} ]
\begin{bmatrix}
    d_{t-1} \\
    \bar{y}_{t-1}
\end{bmatrix}
+ [0 1] \epsilon_{s,t}
\]

Again, I conjecture a form of beliefs and write the system in innovations as in Section 2.3 to deal with the circularity issue of both \( i_t \) and \( s_{jt} \) being a function of the beliefs. The conjecture is

\[
\begin{bmatrix}
    d_{t|t} \\
    \bar{y}_{t|t}
\end{bmatrix} = \rho
\begin{bmatrix}
    d_{t-1} \\
    \bar{y}_{t-1}
\end{bmatrix} + K_t \left( \begin{bmatrix}
    i_t \\
    s_{jt}
\end{bmatrix} - [f_d f_{\bar{y}} ]
\begin{bmatrix}
    d_{t-1} \\
    \bar{y}_{t-1}
\end{bmatrix} - [f_{d,b} f_{\bar{y},b} ]
\begin{bmatrix}
    d_{t|t} \\
    \bar{y}_{t|t}
\end{bmatrix}\right)
\]

\[
= \rho
\begin{bmatrix}
    d_{t-1} \\
    \bar{y}_{t-1}
\end{bmatrix} + K_t \left( f_{d,b} f_{\bar{y},b} \right)
\begin{bmatrix}
    \Gamma_d & \Gamma_{\bar{y}} \\
    \Gamma_{d,b} & \Gamma_{\bar{y},b}
\end{bmatrix}
\begin{bmatrix}
    i_t \\
    s_{jt}
\end{bmatrix} + [0 \epsilon_{s,t}]
\]

Then, writing the system in expectational errors defined as \( x_{t|t}^{err} \equiv x_t - E[ x_t | I_t \setminus \{ i_t, s_{jt} \} ] \) yields

\[
\begin{bmatrix}
    d_{t|t}^{err} \\
    \bar{y}_{t|t}^{err}
\end{bmatrix} = \epsilon_{d,t}
\begin{bmatrix}
    \epsilon_{\bar{y},t}
\end{bmatrix}
\]

\[
\begin{bmatrix}
    i_t^{surp} \\
    s_t^{surp}
\end{bmatrix} = \left( I + \left[ f_{d,b} f_{\bar{y},b} \right] K_t \right)
\begin{bmatrix}
    f_d & f_{\bar{y}} \n\\
    \Gamma_d & \Gamma_{\bar{y}}
\end{bmatrix}
\begin{bmatrix}
    d_{t|t}^{err} \\
    \bar{y}_{t|t}^{err}
\end{bmatrix} + [0 \epsilon_{s,t}]
\]

Then, beliefs are

\[
\begin{bmatrix}
    d_{t|t}^{err} \\
    \bar{y}_{t|t}^{err}
\end{bmatrix} = E \left[ \begin{bmatrix}
    d_{t|t}^{err} \\
    \bar{y}_{t|t}^{err}
\end{bmatrix} | I_t \setminus \{ i_t, s_{jt} \}, i_t^{surp}, s_t^{surp} \right] = \Sigma_{t|t|t-1} \begin{bmatrix}
    f_d & f_{\bar{y}} \n\\
    \Gamma_d & \Gamma_{\bar{y}}
\end{bmatrix} \left( I + \left[ f_{d,b} f_{\bar{y},b} \right] K_t \right)
\begin{bmatrix}
    i_t^{surp} \\
    s_t^{surp}
\end{bmatrix}
\]

where \( \Sigma_{t|t|t-1} = \left( I + \left[ f_{d,b} f_{\bar{y},b} \right] K_t \right)
\begin{bmatrix}
    f_d & f_{\bar{y}} \n\\
    \Gamma_d & \Gamma_{\bar{y}}
\end{bmatrix} \Sigma_{t|t|t-1} \begin{bmatrix}
    f_d & f_{\bar{y}} \\
    \Gamma_d & \Gamma_{\bar{y}}
\end{bmatrix} + \begin{bmatrix} 0 & 0 \\
0 & \sigma_{s,t-1}^2
\end{bmatrix} \left( I + \left[ f_{d,b} f_{\bar{y},b} \right] K_t \right)\]

and

\[
\begin{bmatrix}
    d_{t|t} \\
    \bar{y}_{t|t}
\end{bmatrix} = \rho
\begin{bmatrix}
    d_{t-1} \\
    \bar{y}_{t-1}
\end{bmatrix} + \Sigma_{d}\begin{bmatrix}
    f_d & f_{\bar{y}} \\
    \Gamma_d & \Gamma_{\bar{y}}
\end{bmatrix} \begin{bmatrix}
    d_{t|t}^{err} \\
    \bar{y}_{t|t}^{err}
\end{bmatrix} + \begin{bmatrix} 0 & 0 \\
0 & \sigma_{s,t-1}^2
\end{bmatrix}^{-1}
\]

This matches the conjecture above with

\[
K_t \equiv \begin{bmatrix}
    K_{d,d}^t & K_{d,\bar{y}}^t \\
    K_{\bar{y},d}^t & K_{\bar{y},\bar{y}}^t
\end{bmatrix}
\]

\[
= \Sigma_{d}\begin{bmatrix}
    f_d & f_{\bar{y}} \\
    \Gamma_d & \Gamma_{\bar{y}}
\end{bmatrix} \begin{bmatrix}
    f_d & f_{\bar{y}} \\
    \Gamma_d & \Gamma_{\bar{y}}
\end{bmatrix}^{-1} + \begin{bmatrix} 0 & \sigma_{s,t-1}^2 \\
0 & \sigma_{s,t-1}^2
\end{bmatrix}^{-1}
\]

since

\[
\begin{bmatrix}
    \Gamma_d & \Gamma_{\bar{y}}
\end{bmatrix} = \left[ \kappa \Gamma_{d} \left( \begin{bmatrix}
    f_d & f_{\bar{y}} \\
    \Gamma_d & \Gamma_{\bar{y}}
\end{bmatrix} + \begin{bmatrix} 0 & \sigma_{s,t-1}^2 \\
0 & \sigma_{s,t-1}^2
\end{bmatrix}^{-1}
\right) \right]^{-1}
\]

\[
= \left[ \frac{\kappa^2 \left( -\frac{1}{2} f_d \right) \sigma_{d,t-1}^2 + f_d \sigma_{s,t-1}^2}{\kappa^2 \left( \frac{1}{2} f_d \right) \sigma_{d,t-1}^2 + f_d \sigma_{s,t-1}^2} \right]
\]
Then, using the fact that \( f_y < 0 < f_d \), I obtain the following properties for fixed interest rate rule coefficients

\[
K^i_{y,t} < 0 < K^d_{y,t}, K^s_{y,t}, \quad f_d K^i_{d,t} + f_y K^i_{y,t} = 1, \quad f_d K^s_{d,t} + f_y K^s_{y,t} = 0
\]

Then, I can write forecast revisions and the lagged nowcast error as the following

\[
\pi_{t|t} - \pi_{t|t-1} = -\frac{\kappa}{\sigma} \left[ f_d + f_d, b - \sigma (1 - \rho) f_y + f_y, b \right] \rho \left( \left[ t_{t-1} \right] - \left[ \hat{y}_{t-1|t-1} \right] \right)
\]

\[
-\frac{\kappa}{\sigma} \left[ f_d + f_d, b - \sigma (1 - \rho) f_y + f_y, b \right] K_t \left[ \left[ f_d \quad f_y \right] \Gamma_d \left[ \hat{y}_{y,t} \right] \right]
\]

\[
\pi_{t+h|t} - \pi_{t+h|t-1} = -\frac{\kappa}{\sigma} \left[ f_d + f_d, b - \sigma (1 - \rho) f_y + f_y, b \right] \left( \left[ \pi_{t+h|t} \right] - \left[ \hat{y}_{t+h|t-1} \right] \right)
\]

\[
\pi_{t-1} - \pi_{t-1|t-1} = \kappa \left( 1 - \frac{1}{\sigma} f_d \right) - \frac{\kappa}{\sigma} f_y \left( \left[ \pi_{t-1} \right] - \left[ \hat{y}_{t-1|t-1} \right] \right)
\]

where

\[
\left[ \left[ d_{t-1} \right] - \left[ \hat{y}_{t-1|t-1} \right] \right] = \left[ \left[ f_d \quad \frac{1}{\sigma} f_y \right] \Gamma_d \left[ \hat{y}_{y,t} \right] \right]
\]

\[
\left[ \left[ f_d \quad f_y \quad 0 \quad \Gamma_d \quad \Gamma_y \quad 0 \right] \right] = \left( I + \left[ \left[ f_d, b \quad f_y, b \right] \Gamma_d \left[ \hat{y}_{y,t} \right] \right] K_t \right)^{-1} \left[ \left[ i_t^{\text{surp}} \quad s_t^{\text{surp}} \right] \right]
\]

This allows me to write forecast revisions as linear in the lagged nowcast error, the interest rate surprise, and other inflation news.

\[
\pi_{t|t} - \pi_{t|t-1} = -\frac{1}{\sigma} \rho \Omega \left[ f_d + f_d, b - \sigma (1 - \rho) - f_d \frac{f_y + f_y, b}{f_y} \right] \left( \pi_{t-1} - \pi_{t-1|t-1} \right)
\]

\[
-\frac{\kappa}{\sigma} \left[ f_d + f_d, b - \sigma (1 - \rho) f_y + f_y, b \right] \left( K^i_{y,t} \left[ \left[ f_d \quad f_y \right] \Gamma_d \left[ \hat{y}_{y,t} \right] \right] K_t \right)^{-1} \left[ \left[ i_t^{\text{surp}} \quad s_t^{\text{surp}} \right] \right]
\]

where

\[
i_t^{\text{surp}} = i_t - E \left[ \left[ i_t|I_t \right] \right] \left[ i_t, s_t \right]
\]

\[
s_t^{\text{surp}} = \pi_t - \pi_{t|t-1} + \frac{1}{\sigma} \Omega \left[ f_d + f_d, b - \sigma (1 - \rho) - f_d \frac{f_y + f_y, b}{f_y} \right] \left( \pi_{t-1} - \pi_{t-1|t-1} \right) + \epsilon_{s,t}
\]

Further algebraic manipulation yields a relationship of the same form given by the above empirical model

\[
\pi_{t+h|t} - \pi_{t+h|t-1} = \rho^h K^i_t \left( i_t - E \left[ \left[ i_t|I_t \right] \left[ i_t, s_t \right] \right] \right) + \rho^h K^s_t \left( \pi_t - \pi_{t|t-1} \right)
\]

\[
+ \rho^{h+1} K^{NE} \left( 1 - K^i_t \right) \left( \pi_{t-1} - \pi_{t-1|t-1} \right) + \rho^h K^e_t \epsilon_{s,t}
\]

where

\[
K^{NE} = -\frac{1}{\sigma} \Omega \left[ f_d + f_d, b - \sigma (1 - \rho) - f_d \frac{f_y + f_y, b}{f_y} \right] \] does not depend on variances
When I additionally assume that \( f_d < \sigma \) and \( f_d + f_{d,b} \leq \sigma(1 - \rho) \), this is sufficient (but not always necessary) to obtain the following properties:

1. \( K_i^t \) may be positive, \( K_s^t \geq 0 \), \( K^{NE} \geq 0 \)

2. \( K_i^t \) increases with \( \sigma_{s,t-1}^2 \) for \( \sigma_{s,t-1}^2 \) large enough, \( K_i^t \) decreases with \( \sigma_{y,t-1}^2 \) and increases with \( \sigma_{d,t-1}^2 \)

3. \( K_s^t \) decreases with \( \sigma_{s,t-1}^2 \), \( K_s^t \) increases with \( \sigma_{y,t-1}^2 \) and \( \sigma_{d,t-1}^2 \)

M Empirical robustness checks

Table 7: Baseline effect of federal funds rate surprises on inflation forecasts controlling for news about real output growth

|                | \( \pi_{t+h|t} \)     |
|----------------|-----------------------|
| \( \pi_{t+h|t-1} \) | 1.043*** 0.976* 0.977*** 1.024*** |
| \( i_t - \bar{i}_{t|t-1} \) | 0.274 0.141 0.231* 0.144 |
| \( \pi_t - \bar{\pi}_{t|t-1} \) | 0.100** 0.016 0.027 0.036 |
| \( \pi_{t-1} - \bar{\pi}_{t-1|t-1} \) | 0.218*** 0.150*** 0.074*** 0.102*** |
| \( y_t - \bar{y}_{t|t-1} \) | 0.004 0.004 0.01 0.013 |
| \( y_{t-1} - \bar{y}_{t-1|t-1} \) | 0.029 0.01 0.006 0.003 |
| Constant       | -0.094 -0.001 0.024 -0.096 |
| Adjusted R\(^2\) | 0.885 0.927 0.952 0.949 |

Notes: The sample is quarterly data from 1989:Q1 to 2011:Q1 with 1992:Q1 dropped due to the switch in the SPF from the GNP to GDP deflator making the lagged forecast unavailable in that period. ***/**/** Statistically significant at 1, 5, and 10 percent, respectively.
Table 8: Effect of federal funds rate surprises on inflation forecasts controlling for news about real output growth with a high vs low prior uncertainty interaction

| Dependent variable: $\pi_{t+h|t}$ | $h = 0$ | 1 | 2 | 3 |
|-----------------------------------|--------|---|---|---|
| $\pi_{t+h|t-1}$ 1.042*** | 0.971*** | 0.971*** | 1.007*** |
|                      | (0.06) | (0.06) | (0.04) | (0.04) |
| $i_t - i_{t|t-1} \times \text{Std}^y_t$ low | -0.155 | 0.011 | 0.059 | 0.259 |
|                      | (0.33) | (0.29) | (0.18) | (0.18) |
| $i_t - i_{t|t-1} \times \text{Std}^y_t$ high | 1.171** | 0.743** | 0.735*** | -0.035 |
|                      | (0.44) | (0.29) | (0.23) | (0.26) |
| $\pi_t - \pi_{t|t-1} \times \text{Std}^\pi_t$ low | 0.047 | -0.039 | -0.008 | 0.039 |
|                      | (0.09) | (0.06) | (0.04) | (0.05) |
| $\pi_t - \pi_{t|t-1} \times \text{Std}^\pi_t$ high | 0.186** | -0.005 | 0.035 | -0.07 |
|                      | (0.08) | (0.06) | (0.06) | (0.05) |
| $\pi_{t-1} - \pi_{t-1|t-1} \times \text{Std}^\pi_t$ low | 0.272*** | 0.207*** | 0.098** | 0.109** |
|                      | (0.08) | (0.06) | (0.04) | (0.05) |
| $\pi_{t-1} - \pi_{t-1|t-1} \times \text{Std}^\pi_t$ high | 0.112 | 0.082 | 0.086 | 0.170** |
|                      | (0.09) | (0.06) | (0.07) | (0.08) |
| $y_t - y_{t|t-1} \times \text{Std}^y_t$ low | 0.271** | 0.109 | 0.099* | 0.01 |
|                      | (0.11) | (0.07) | (0.05) | (0.07) |
| $y_t - y_{t|t-1} \times \text{Std}^y_t$ high | -0.008 | 0.023 | 0.024* | 0.017 |
|                      | (0.03) | (0.03) | (0.01) | (0.02) |
| $y_{t-1} - y_{t-1|t-1} \times \text{Std}^y_t$ low | 0.02 | -0.052* | 0.004 | -0.014 |
|                      | (0.04) | (0.03) | (0.02) | (0.02) |
| $y_{t-1} - y_{t-1|t-1} \times \text{Std}^y_t$ high | 0.088 | 0.01 | -0.006 | -0.005 |
|                      | (0.06) | (0.04) | (0.03) | (0.03) |
| $\text{Std}^\pi_t$ high | -0.014 | -0.021 | 0.01 | -0.025 |
|                      | (0.04) | (0.03) | (0.02) | (0.02) |
| Constant | -0.211 | -0.004 | 0.019 | -0.045 |
|                      | (0.17) | (0.15) | (0.10) | (0.11) |

<table>
<thead>
<tr>
<th>Adjusted R$^2$</th>
<th>0.89</th>
<th>0.933</th>
<th>0.962</th>
<th>0.951</th>
</tr>
</thead>
<tbody>
<tr>
<td>N</td>
<td>59</td>
<td>59</td>
<td>59</td>
<td>59</td>
</tr>
</tbody>
</table>

Notes: The sample is quarterly data from 1989:Q1 to 2011:Q1 with 1992:Q1 dropped due to the switch in the SPF from the GNP to GDP deflator making the lagged forecast unavailable in that period. ***/***/** Statistical significance at 1, 5, and 10 percent, respectively.
Table 9: Baseline effect of federal funds rate surprises on inflation forecasts controlling for news about unemployment

<table>
<thead>
<tr>
<th></th>
<th>( h = )</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>( \hat{\pi}_{t+h</td>
<td>t-1} )</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>1.031***</td>
<td>0.967***</td>
<td>0.967***</td>
<td>1.016***</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(0.05)</td>
<td>(0.05)</td>
<td>(0.03)</td>
<td>(0.03)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0.251</td>
<td>0.082</td>
<td>0.134</td>
<td>0.141</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(0.21)</td>
<td>(0.16)</td>
<td>(0.13)</td>
<td>(0.12)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0.094**</td>
<td>0.006</td>
<td>0.009</td>
<td>0.026</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(0.04)</td>
<td>(0.03)</td>
<td>(0.02)</td>
<td>(0.02)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0.202***</td>
<td>0.148***</td>
<td>0.075***</td>
<td>0.101***</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(0.06)</td>
<td>(0.04)</td>
<td>(0.02)</td>
<td>(0.03)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>-0.076</td>
<td>-0.089</td>
<td>-0.108</td>
<td>-0.075</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(0.24)</td>
<td>(0.14)</td>
<td>(0.08)</td>
<td>(0.10)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>-0.196</td>
<td>-0.147</td>
<td>-0.289*</td>
<td>-0.026</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(0.33)</td>
<td>(0.20)</td>
<td>(0.15)</td>
<td>(0.18)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>-0.066</td>
<td>0.011</td>
<td>0.031</td>
<td>-0.082</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(0.11)</td>
<td>(0.10)</td>
<td>(0.06)</td>
<td>(0.07)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0.884</td>
<td>0.929</td>
<td>0.957</td>
<td>0.948</td>
</tr>
<tr>
<td></td>
<td></td>
<td>88</td>
<td>88</td>
<td>88</td>
<td>88</td>
</tr>
</tbody>
</table>

Notes: The sample is quarterly data from 1989:Q1 to 2011:Q1 with 1992:Q1 dropped due to the switch in the SPF from the GNP to GDP deflator making the lagged forecast unavailable in that period. ***/**/*** Statistically significant at 1, 5, and 10 percent, respectively.
Table 10: Effect of federal funds rate surprises on inflation forecasts controlling for news about unemployment with a high vs low prior uncertainty interaction

<table>
<thead>
<tr>
<th></th>
<th>$h = 0$</th>
<th>$h = 1$</th>
<th>$h = 2$</th>
<th>$h = 3$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dependent variable: $\pi_{t+h</td>
<td>t}$</td>
<td>1.065***</td>
<td>0.976***</td>
<td>0.964***</td>
</tr>
<tr>
<td></td>
<td>(0.06)</td>
<td>(0.07)</td>
<td>(0.04)</td>
<td>(0.04)</td>
</tr>
<tr>
<td>$i_t - \bar{i}_{t</td>
<td>t-1} \times \text{Std}_{t-1}$ low</td>
<td>-0.063</td>
<td>-0.012</td>
<td>0.006</td>
</tr>
<tr>
<td></td>
<td>(0.32)</td>
<td>(0.29)</td>
<td>(0.17)</td>
<td>(0.16)</td>
</tr>
<tr>
<td>$i_t - \bar{i}_{t</td>
<td>t-1} \times \text{Std}_{t-1}$ high</td>
<td>1.414***</td>
<td>0.567*</td>
<td>0.373*</td>
</tr>
<tr>
<td></td>
<td>(0.44)</td>
<td>(0.32)</td>
<td>(0.21)</td>
<td>(0.25)</td>
</tr>
<tr>
<td>$\pi_t - \pi_{t</td>
<td>t-1} \times \text{Std}_{t-1}$ low</td>
<td>0.06</td>
<td>-0.059</td>
<td>-0.029</td>
</tr>
<tr>
<td></td>
<td>(0.07)</td>
<td>(0.04)</td>
<td>(0.04)</td>
<td>(0.05)</td>
</tr>
<tr>
<td>$\pi_t - \pi_{t</td>
<td>t-1} \times \text{Std}_{t-1}$ high</td>
<td>0.198**</td>
<td>0.032</td>
<td>-0.002</td>
</tr>
<tr>
<td></td>
<td>(0.08)</td>
<td>(0.05)</td>
<td>(0.06)</td>
<td>(0.05)</td>
</tr>
<tr>
<td>$\pi_{t-1} - \pi_{t</td>
<td>t-1} \times \text{Std}_{t-1}$ low</td>
<td>0.234***</td>
<td>0.194***</td>
<td>0.095***</td>
</tr>
<tr>
<td></td>
<td>(0.06)</td>
<td>(0.04)</td>
<td>(0.03)</td>
<td>(0.04)</td>
</tr>
<tr>
<td>$\pi_{t-1} - \pi_{t</td>
<td>t-1} \times \text{Std}_{t-1}$ high</td>
<td>0.076</td>
<td>0.08</td>
<td>0.073</td>
</tr>
<tr>
<td></td>
<td>(0.08)</td>
<td>(0.06)</td>
<td>(0.06)</td>
<td>(0.07)</td>
</tr>
<tr>
<td>$U_t - \bar{U}_{t</td>
<td>t-1} \times \text{Std}_{t-1}$ low</td>
<td>-0.711***</td>
<td>-0.462***</td>
<td>-0.290**</td>
</tr>
<tr>
<td></td>
<td>(0.26)</td>
<td>(0.16)</td>
<td>(0.13)</td>
<td>(0.19)</td>
</tr>
<tr>
<td>$U_t - \bar{U}_{t</td>
<td>t-1} \times \text{Std}_{t-1}$ high</td>
<td>0.653***</td>
<td>0.257</td>
<td>-0.007</td>
</tr>
<tr>
<td></td>
<td>(0.19)</td>
<td>(0.21)</td>
<td>(0.10)</td>
<td>(0.16)</td>
</tr>
<tr>
<td>$U_{t-1} - \bar{U}_{t</td>
<td>t-1} \times \text{Std}_{t-1}$ low</td>
<td>0.432</td>
<td>0.401</td>
<td>0.143</td>
</tr>
<tr>
<td></td>
<td>(0.82)</td>
<td>(0.63)</td>
<td>(0.42)</td>
<td>(0.49)</td>
</tr>
<tr>
<td>$U_{t-1} - \bar{U}_{t</td>
<td>t-1} \times \text{Std}_{t-1}$ high</td>
<td>-0.682*</td>
<td>-0.561**</td>
<td>-0.519***</td>
</tr>
<tr>
<td></td>
<td>(0.37)</td>
<td>(0.25)</td>
<td>(0.18)</td>
<td>(0.23)</td>
</tr>
<tr>
<td>$\text{Std}_{t}^{\pi}$ high</td>
<td>0.274***</td>
<td>0.111*</td>
<td>0.089**</td>
<td>0.011</td>
</tr>
<tr>
<td></td>
<td>(0.10)</td>
<td>(0.06)</td>
<td>(0.04)</td>
<td>(0.07)</td>
</tr>
<tr>
<td>Constant</td>
<td>-0.252*</td>
<td>-0.036</td>
<td>0.01</td>
<td>-0.06</td>
</tr>
<tr>
<td></td>
<td>(0.14)</td>
<td>(0.14)</td>
<td>(0.09)</td>
<td>(0.11)</td>
</tr>
</tbody>
</table>

Notes: The sample is quarterly data from 1989:Q1 to 2011:Q1 with 1992:Q1 dropped due to the switch in the SPF from the GNP to GDP deflator making the lagged forecast unavailable in that period. ***/**/** Statistically significant at 1, 5, and 10 percent, respectively.