Unemployment (Fears), Precautionary Savings, and Aggregate Demand

Wouter J. Den Haan (LSE & CEPR), Pontus Rendahl (University of Cambridge & CEPR), and Markus Riegler (LSE)

January 27, 2014
Overview

- Heterogeneous agents:
 - influence of precautionary savings on employment
 - role of nominal wage rigidity
 - correctly discounting profits
Overview

1 Model
 • interaction between goods and labor market
 • precautionary savings could end up in productive investment

2 Model properties
 • fear of unemployment
 • dampens downturn when nominal wages are not sticky
 • exacerbates downturn when nominal wages are sticky
Model: Key ingredients

1. Search frictions in labor market
2. Heterogeneous agents and incomplete markets
3. (Some) nominal wage stickiness
Individual agent

unemployed and employed agents

- unemployed search for work
- employed get nominal wage W_t
- exogenous job loss probability, ρ_x
- agents can invest in
 - money, $M_{i,t}$
 - firm ownership (equity), $q_{i,t}$
Individual agent

\[
\max \sum \beta^t \left[u(c_{i,t}) + v\left(\frac{M_{i,t}}{P_t} \right) \right]
\]

Budget constraint:

\[
P_t c_{i,t} + J_t q_{i,t} + M_{i,t} = e_{i,t} W_t + (1 - e_{i,t}) U_t + q_{i,t-1} (D_t + (1 - \rho_x) J_t) + M_{i,t-1}
\]

\[q_{i,t} \geq 0\]
First-order conditions

Money:

\[c_{i,t}^{-\nu} = \beta E_t \left[\frac{P_t}{P_{t+1}} c_{i,t+1}^{-\nu} \right] + \zeta_0 \left(\frac{M_{i,t}}{P_t} \right)^{-\zeta_1} \]

Equity, if \(q_{i,t} > 0 \):

\[\frac{J_t}{P_t} = \beta E_t \left[\left(\frac{c_{i,t+1}}{c_{i,t}} \right)^{-\nu} \left(\frac{D_{t+1}}{P_{t+1}} + (1 - \rho_x) \frac{J_{t+1}}{P_{t+1}} \right) \right] \]
Policy functions

- q employed
- q unemployed
- m employed
- m unemployed

Graph showing the relationship between cash on hand and the proportion of employed and unemployed individuals.
Job/Firm creation

Standard free-entry condition:

\[P_t \psi = \pi_{f,t} I_t \]

\[\pi_{f,t} = \phi_o \left(\frac{\nu_t}{1 - n_{t-1}} \right)^{\phi_1 - 1} \]

\[n_t = (1 - \rho_x) n_{t-1} + \phi_o \nu_t^{\phi_1} (1 - n_{t-1})^{1 - \phi_1} \]
Existing firm

\[D_t = P_{tz_t} - W_t \]
Wage setting

\[W_t = \omega_0 z_t^{\omega_1} p_t^{\omega_2} \]

- \(\omega_1 < 1 \): sticky real wages
- \(\omega_2 < 1 \): sticky nominal wages
Equilibrium

- demand for money = (constant) money supply
- demand for firm ownership = number of firms
Correctly dealing with firm value:

\[
\frac{J_t}{P_t} = \mathbb{E}_t \left[MRS_{i,t+1} \left(\frac{D_{t+1}}{P_{t+1}} + (1 - \rho_x) \frac{J_{t+1}}{P_{t+1}} \right) \right]
\]

Which \(MRS_{i,t+1} \) to use?
Firm value

\[
\frac{J_t}{P_t} \approx E_t \left[MRS_{i,t+1} \left(\frac{D_{t+1}}{P_{t+1}} + (1 - \rho_x) \frac{J_{t+1}}{P_{t+1}} \right) \right]
\]

Literature:

- representative agent: \(MRS_{t+1} = \beta \left(\frac{c_{t+1}}{c_t} \right)^{-\nu} \)
- heterogeneous agents:
 - Krusell, Mukoyama, Sahin (2010): two assets and two outcomes for aggregate state \(\implies \) use prices of the two Arrow-Debreu securities
 - dinky "solution": assume risk neutral firm manager, which is inconsistent with risk averse firm owners

This paper: Get \(J(\cdot) \) by imposing equilibrium
Solving for firm value

\[J_t = J(s_t) \]

- solve for \(J(s_t) \) by imposing equilibrium

\[\int_i q_{i,t} di = n_t \]

- LHS: demand for firm ownership from individual problem
- RHS: supply of firm ownership comes from free-entry condition
State variables

- Individual state variables
 - cash on hand: $q_{t-1} (D_t + (1 - \rho_x) J_t) + M_{i,t-1}$
 - employment status

- Aggregate state variables
 - aggregate productivity
 - number of firms = equity shares
Precautionary savings

How to get precautionary savings in a model?

- typically done through $\Delta \beta$
- this paper through Δunemployment
Typical precautionary savings story

Households want to save more

- \implies demand for consumption \downarrow & prices do not adjust
- \implies demand for labor \downarrow, etc.

Where do savings end up?

- typically not allowed to end up in investment because
 - there is no physical investment
 - or incorrect discounting of firm profits
Precautionary savings in this paper

We do have something like the standard channel:

- unemployment $\uparrow \implies$ demand for money \uparrow
- $\implies P_t \downarrow \implies$ real profits \downarrow (because of sticky nominal wages)
- \implies firm/job creation \downarrow

- but in this paper !!!
Precautionary savings in this paper

We do have something like the standard channel:

• unemployment ↑ ⟷ demand for money ↑
• $P_t \downarrow \rightarrow$ real profits ↓ (because of sticky nominal wages)
• \rightarrow firm/job creation ↓

• but in this paper !!!
• precautionary savings could end up in productive investment since $MRS_{i,t} \uparrow$ when precautionary savings ↑
Precautionary savings and productive investment

- This paper: investment in firm/job creation *could* ↑ when precautionary savings ↑

Reasons why it *could* ↓:

- agents less willing to hold firm equity when profits ↓
- agents less willing to hold risky assets when unemployment ↑
Model properties

1. Model 1: no nominal wage stickiness
 \[W_t = \omega_0 z_t^{0.3} P_t \]
 Precautionary savings *dampen* downturn

2. Model 2: with nominal wage stickiness
 \[W_t = \omega_0 z_t^{0.3} P_t^{0.85} \]
 Precautionary savings *worsen* downturn
No nominal wage stickiness

- productivity \downarrow
- \implies profits \downarrow \implies firm value \downarrow \implies unemployment \uparrow
- \implies precautionary savings \uparrow
 - \implies demand for firm ownership may \uparrow \implies unemployment \downarrow
 - \implies demand for money \uparrow \implies $P \downarrow \not\Rightarrow \Delta$ profits since nominal wages adjust
No nominal wage stickiness

Productivity z
No nominal wage stickiness

Precautionary demand for \mathcal{M} makes price procyclical!
No nominal wage stickiness

Precautionary savings has small upward effect on firm value for low z.
No nominal wage stickiness

Precautionary savings has small upward effect on employment for low z.
With nominal wage stickiness

- productivity ↓
- \(\rightarrow \) profits ↓ \(\rightarrow \) firm value ↓ \(\rightarrow \) unemployment ↑
- \(\rightarrow \) precautionary savings ↑
 - \(\rightarrow \) demand for firm ownership may ↑ \(\rightarrow \) unemployment ↓
 - \(\rightarrow \) demand for money ↑ \(\rightarrow \) \(P \) ↓ \(\rightarrow \) profits ↓ \(\rightarrow \) unemployment ↑ \(\rightarrow \) downward spiral
With nominal wage stickiness

Precautionary demand for M makes price procyclical!
With nominal wage stickiness

Firm value strongly reduced in a downturn
With nominal wage stickiness

Employment strongly reduced in a downturn
Role of nominal wage stickiness

Change from boom to recession for representative agent (red) vs heterogeneous agents (blue)