What Shifts the Beveridge Curve?

Recruitment Effort and Financial Shocks

Alessandro Gavazza
London School of Economics & New York University

Simon Mongey
New York University

Gianluca Violante
New York University

AEA Meetings – Philadelphia, January 3rd, 2014
Fact: shift in the Beveridge Curve
The Beveridge Curve

• Pairs \((u, v)\) consistent with stationary equilibrium in labor market

\[
\delta (1 - u) = Av^\alpha u^{1-\alpha}
\]

separations \quad \text{hires}
The Beveridge Curve

• Pairs \((u, v)\) consistent with stationary equilibrium in labor market

\[
\delta(1 - u) = \underbrace{Av^\alpha u^{1-\alpha}}_{\text{separations}} \quad \underbrace{A}_{\text{hires}}
\]

• Spike in separation rate \(\delta\) was short-lived
The Beveridge Curve

- Pairs \((u, v)\) consistent with stationary equilibrium in labor market

\[\delta(1 - u) = A v^{\alpha} u^{1-\alpha} \]

separations \hspace{1cm} hires

- Spike in separation rate \(\delta\) was short-lived

- Shift in the BC ↔ persistent fall in aggregate matching efficiency \(A\)
 1. Mismatch ↑
 2. Worker’s search effort ↓
 3. Firm’s recruitment effort ↓
Firm’s recruitment effort

\[n_{i,t+1} - n_{it} = (qt \cdot e_{it}) \cdot v_{it} \]

- \(v \): open positions ready to be staffed and costly to create

- \(e \in (0, 1) \): probability of filling an open position –an outcome of costly recruitment activities
 - advertisement, networking, screening, outsourcing, onboarding
Firm’s recruitment effort

\[n_{i,t+1} - n_{it} = (q_t \cdot e_{it}) \cdot v_{it} \]

- \(v \): open positions ready to be staffed and costly to create
- \(e \in (0, 1) \): probability of filling an open position – an outcome of costly recruitment activities
 - advertisement, networking, screening, outsourcing, onboarding
- Generalized matching function (Davis-Haltiwanger-Faberman)

\[h_t = \left(\int e_{it} v_{it} di \right)^{\alpha} u_t^{1-\alpha} = A_t \cdot v_t^\alpha u_t^{1-\alpha} \]

\[A_t = \left[\int e_{it} \left(\frac{v_{it}}{v_t} \right) di \right]^{\alpha} \]
Mechanism

• “Fact”: bulk of job creation & recruitment effort is in young firms

![Graph showing jobs created by old and young firms from 1999 to 2012. The graph indicates a decline in jobs created by old firms and an increase in jobs created by young firms between 2008 and 2012.]

Gavazza-Mongey-Violante, "What Shifts the Beveridge Curve?"
Mechanism

- “Fact”: bulk of job creation & recruitment effort is in young firms

 - Indirect evidence: job-filling rate is steeply increasing with growth rate & young firms grow fastest
Mechanism

• “Fact”: bulk of job creation & recruitment effort is in young firms
 ▶ Indirect evidence: job-filling rate is steeply increasing with growth rate & young firms grow fastest

• Financial shock: hits start-ups and young firms the most and curbs their growth
 ▶ Reduces recruitment effort \(e_i \) at young firms
 ▶ Shifts distribution of \(v_i \) towards older firms with lower effort

• Aggregate matching efficiency \(A = \int e_i \left(\frac{v_i}{v} \right) di \) falls
Mechanism

• “Fact”: bulk of job creation & recruitment effort is in young firms

 ▶ Indirect evidence: job-filling rate is steeply increasing with growth rate & young firms grow fastest

• Financial shock: hits start-ups and young firms the most and curbs their growth

 ▶ Reduces recruitment effort e_i at young firms

 ▶ Shifts distribution of v_i towards older firms with lower effort

• Aggregate matching efficiency $A = \int e_i \left(\frac{v_i}{v} \right) di$ falls

• TFP shock more neutral across firms, so less of an impact on A
Consistency with micro-level evidence

Fact (DHF): job-filling rate \(f_{it} = q_t e_{it} \) increasing in growth rate \(g_{it} \)
Consistency with micro-level evidence

Fact (DHF): job-filling rate \((f_{it} = q_t e_{it})\) increasing in growth rate \((g_{it})\)

\[
\log f_{it} = -4.2 + 0.82 \log g_{it}
\]
Firm’s problem

- Problem of hiring incumbent or entrant (after paying entry cost)

\[v(n, z) = \max_{n', v, e} z \int F(n') - w(n', z) n' - \chi - \kappa(n, v) - c(e) + \beta \mathbb{E}[v(n', z')] \]

s.t.
\[n' = n + q e \cdot v \]
\[n' \geq n, \quad v \geq 0, \quad e \in [0, 1] \]
\[z' \sim G(z', z) \]
Firm’s problem

- Problem of hiring incumbent or entrant (after paying entry cost)

\[
v(n, z) = \max_{n', v, e} zF(n') - w(n', z) n' - \chi - \kappa(n, v) - c(e) + \beta \mathbb{E}[v(n', z')]
\]

\[
s.t.
\]
\[
n' = n + qe \cdot v
\]
\[
n' \geq n, \quad v \geq 0, \quad e \in [0, 1]
\]
\[
z' \sim G(z', z)
\]

- Two-stage problem:

1. Stage I: Choose target employment level \(n'\)
2. Stage II: Choose positions to open \(v\), and recruitment effort \(e\)
Firm’s problem: stage II

How to best achieve target employment n' through (e, v)

\[
\min_{e,v} \kappa(n, v) + c(e)
\]

s.t.

\[
n' = n + qev \quad (\lambda)
\]
Firm’s problem: stage II

How to best achieve target employment \(n' \) through \((e,v)\)

\[
\min_{e,v} \quad \kappa(n,v) + c(e)
\]

\[s.t.
\]

\[n' = n + qev \quad (\lambda)
\]

\[FOC'(e) : \quad c_e(e) = \lambda \cdot qv
\]

\[FOC'(v) : \quad \kappa_v(n,v) = \lambda \cdot qe
\]

Combining FOCs:

\[
\frac{c_e(e)e^2}{\kappa_v(n,v)} = \frac{n' - n}{q}
\]
Reverse engineering

\[
\frac{c_e(e)e^2}{\kappa_v(n,v)} = \frac{n' - n}{q}
\]
Reverse engineering

\[
\frac{c_e(e) e^2}{\kappa_y(n, v)} = \frac{n' - n}{q}
\]

Assume functional forms:

(i) \[c(e) = c_0 \cdot \frac{e^\gamma}{\gamma} \quad \rightarrow \text{problem convex at solution also if } \gamma < 1 \]

(ii) \[\kappa(n, v) = \kappa_0 \cdot \frac{v}{n} \]
Reverse engineering

\[
\frac{c_e(e)e^2}{\kappa_v(n,v)} = \frac{n' - n}{q}
\]

Assume functional forms:

\((i)\) \quad c(e) = c_0 \cdot \frac{e^\gamma}{\gamma} \quad \rightarrow \text{problem convex at solution also if } \gamma < 1

\((ii)\) \quad \kappa(n,v) = \kappa_0 \cdot \frac{v}{n}

\[
e = \left(\frac{\kappa_0}{c_0 \cdot q} \right)^{\frac{1}{1+\gamma}} \left(\frac{n' - n}{n} \right)^{\frac{1}{1+\gamma}}
\]

Hence: \(\log f_{it} \equiv \log(q_t e_{it}) = \text{const} + \frac{1}{1 + \gamma} \cdot \log g_{it} \quad \rightarrow \quad \gamma = 0.2 \)
Consistency with micro-level evidence II

Fact (DHF): vacancy rate \(\frac{v_{it}}{n_{it}} \) increasing with growth rate \(g_{it} \)
Consistency with micro-level evidence II

Fact (DHF): vacancy rate \(\frac{v_{it}}{n_{it}} \) increasing with growth rate \(g_{it} \)

Model: \[\log \left(\frac{v_{it}}{n_{it}} \right) = \text{const.} + \frac{\gamma}{1 + \frac{\gamma}{y}} \log g_{it} \]

\[\frac{0.2}{1.2} = 0.17 \]
Discussion of cost structure

\[
\min_{e,v} \kappa(n, v) + c(e, v)
\]

\[
s.t.
\]

\[
n' = n + qev
\]

1. \(\kappa(n, v) = \kappa_0 \left(\frac{v}{n} \right) \quad c(e, v) = c_0 \left(\frac{e^\gamma}{\gamma} \right)\)

• Cost of expanding rising in \(g\), effort cost independent of \(v\)
Discussion of cost structure

\[
\begin{align*}
\min_{e,v} & \quad \kappa(n, v) + c(e, v) \\
\text{s.t.} & \quad n' = n + qev
\end{align*}
\]

1. \(\kappa(n, v) = \kappa_0 \left(\frac{v}{n} \right)\) \(\quad c(e, v) = c_0 \left(\frac{e\gamma}{\gamma} \right)\)

 • Cost of expanding rising in \(g\), effort cost independent of \(v\)

2. \(\kappa(n, v) = \kappa_0 \left(\frac{v}{n} \right) v\) \(\quad c(e, v) = c_0 \left(\frac{e\gamma}{\gamma} \right) v\)

 • Cost (per \(v\)) of expanding rising in \(g\), effort cost linear in \(v\)
Discussion of cost structure

\[
\min_{e,v} \kappa(n,v) + c(e,v)
\]
\[
s.t.
\]
\[
n' = n + qev
\]

1. \(\kappa(n,v) = \kappa_0 \left(\frac{v}{n} \right) \quad c(e,v) = c_0 \left(\frac{e^\gamma}{\gamma} \right)\)

 • Cost of expanding rising in \(g\), effort cost independent of \(v\)

2. \(\kappa(n,v) = \kappa_0 \left(\frac{v}{n} \right) v \quad c(e,v) = c_0 \left(\frac{e^\gamma}{\gamma} \right) v\)

 • Cost (per \(v\)) of expanding rising in \(g\), effort cost linear in \(v\)

Difference: employment dynamics \((n' - n)\) more sluggish under (2)
Relation to Kaas-Kircher

- Kaas-Kircher (2011 version)
 - Wage-posting with directed search, and DRS technology
 - Model’s job-filling rate flat with respect to growth rate
 - $\kappa(n, v) = \kappa_0 v^2$ (independent of n)
Relation to Kaas-Kircher

- Kaas-Kircher (2011 version)
 - Wage-posting with directed search, and DRS technology
 - Model’s job-filling rate flat with respect to growth rate
 - \(\kappa(n, v) = \kappa_0 v^2 \) (independent of \(n \))

- Kaas-Kircher (new version)
 - Model’s job-filling rate increasing with respect to growth rate
 - Now: \(\kappa(n, v) = \kappa_0 \left(\frac{v}{n} \right)^\gamma v \)

- Lesson: key is cost structure, not how firms attract labor (\(w \) vs \(e \))
Policy functions

\[e(n,z) \]

\[v(n,z) \]

\[n'(n,z) \]

Gavazza-Mongey-Violante, "What Shifts the Beveridge Curve?"