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Abstract

We study a class of sequential non-revelation mechanisms where hospitals
make simultaneous take-it-or-leave-it o�ers to doctors that either accept or
reject them. We show that the mechanisms in this class are equivalent.
They (weakly) implement the set of stable allocations in subgame perfect
equilibrium. When all preferences are substitutable, the set of equilibria of
the mechanisms in the class forms a lattice. Our results reveal a �rst-mover
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1 Introduction

In this paper, we study markets involving many-to-many relationships that

can be expressed as contracts (see Hat�eld and Milgrom, 2005). Relevant

examples of these markets are the market for part-time workers or the allo-

cation of specialty training slots for junior doctors in the UK. We �nd that

simple mechanisms where agents on one side of the market make take-it-or-

leave-it o�ers to the agents on the other side of the market are a robust way

to implement stable allocations in this setting. We apply our results to the

centralization of school admissions in a realistic many-to-many framework.

This �nding is important. Many-to-many markets with contracts are a chal-

lenge for market design for several reasons. First, the nature of the contrac-

tual process makes these markets particularly complex. Also, centralizing the

allocation of contracts in this context is di�cult because no strategy-proof

mechanism (even for one side of the market) exists that is able to generate

stable allocations.

Many decentralized procedures share a simple structure. The agents on one

side of the market (hospitals) simultaneously make o�ers to the agents on the

other side (doctors) that either accept or reject them. This market structure

is simple enough to promote participation while preventing the coordination

problems that might arise in this setting and often disrupting the decentral-

ized mechanism (see Triossi, 2009, and Romero-Medina and Triossi, 2014).

In this paper, we analyze the class of what we call take-it-or-leave-it o�ers

mechanisms or TOM . This class includes all mechanisms such that in the

�rst stage, hospitals make simultaneous o�ers to doctors, and then groups of

doctors sequentially accept or reject the o�ers. The order in which doctors

choose can be arbitrary and even endogenous to the play, which is history

dependent.

To make the exposition more transparent and to guarantee the comparabil-

ity of our �ndings with previous results, we start by presenting the simplest
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mechanism in the TOM family, the simultaneous acceptance mechanism or

SAM . This procedure has two stages. In the �rst stage, hospitals simultane-

ously o�er contracts to doctors. In the second stage, doctors simultaneously

select from among the o�ers received in the �rst stage.

Although simple, the SAM mimics the decentralized procedures used in labor

markets and college or school admissions. Therefore, our analysis contributes

to identifying the basic forces at work in these settings, and captures the

relevant interactions among hospitals and doctors.

We consider the subgame perfect equilibria (SPE from now on) in pure

strategies of the game induced by the SAM . In this game, doctors have a

unique best response: to accept the favorite set of contracts they are o�ered.

We prove each SPE outcome of the game is a pairwise stable allocation

in this market without assumptions on the preferences of the agents. The

converse is not true. Even when the preferences are substitutable, there are

stable allocations that cannot be achieved as an SPE outcome of the SAM .

This �nding uncovers an important strategic di�erence introduced by the

use of contracts in matching markets. Indeed, Echenique and Oviedo (2006)

�nd that in many-to-many matching markets without contracts and with

substitutable preferences, the set of stable matching coincides with the set

of SPE outcomes of the SAM . The logic of our results is simple: without

contracts, matching markets assign agents to agents. When contracts are

available, each hospital can negotiate the details of the relationship with

its counterparts. Therefore, ceteris paribus, each hospital will o�er only

its preferred contract from among the ones a doctor is willing to accept.

However, we prove that if enough competitive pressure is present, the SAM

implements the set of stable allocations, generalizing the results in Echenique

and Oviedo (2006).

Our �ndings highlight a problem that is both theoretical and conceptual.

Because the set of SPE outcomes can be a strict subset of the set of stable

allocations, the existence of stable allocations does not guarantee the game

3



has an SPE in pure strategies.

To tackle this issue, we start by observing that the sequential game induced

by the SAM is equivalent to a simultaneous game Γ where only hospitals

play, and the outcome is obtained by replacing the doctors with their unique

best response (see Baron and Kalai, 1993). Then we prove an SPE in pure

strategies exists when hospitals have substitutable preferences and doctors

have unilateral substitutable preferences. This result extends the existence

of pairwise stable allocations beyond the case, previously analyzed in the

literature, of substitutable preferences (see Blair, 1988, Pepa Risma, 2015,

and Hat�eld and Kominers, 2017).

We also show that if both sides of the market have substitutable preferences,

the sets of the SPE outcomes of the game constitute a lattice. The lattice

structure re�ects an opposition of interests between the two sides of the

markets, within the equilibrium outcomes. This opposition of interests is

consistent with the one found in the set of stable allocations (see Blair, 1988,

and Pepa Risma, 2015). We also �nd a �rst-mover advantage absent in

the model without contracts. In fact, when the preferences of both sides of

the market are substitutable and satisfy the law of aggregate demand (see

Hat�eld and Milgrom, 2005), the hospital-optimal stable allocation is an

SPE outcome while the doctor-optimal stable allocation might not be an

equilibrium outcome of the game.

After completing the study of the SAM , we extend our �ndings to the entire

TOM class, by proving all games in this class are equivalent. The set of

SPE outcomes of the game induced by the SAM coincides with the set of

SPE outcomes of the game induced by any of the mechanisms within the

TOM class.

To conclude the paper, we consider the possibility of building a centralized

assignment procedure able to result in stable allocations when the prefer-

ences of one side of the market are known and can be interpreted as prior-

ities. This scenario exists, for instance, in school admissions problems. We
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�nd the immediate acceptance mechanism guarantees the implementation of

stable allocations in many-to-many environments with responsive school pri-

orities because the game induced by the mechanism is equivalent to the game

induced by the SAM . If schools' priorities are not responsive, the immedi-

ate acceptance mechanism fails to implement stable allocations. However, if

priorities are at least substitutable, the one shot immediate acceptance mech-

anism yields stable allocations. This result also relies on the equivalence of

the one-shot immediate acceptance mechanism and the SAM .

This paper is rooted in the recent matching literature on sequential mecha-

nisms, both in many-to-many and many-to-one markets. In that sense, our

analysis on the SAM extends previous results on many-to-many matching

markets without contracts in Sotomayor (2004) and Echenique and Oviedo

(2006) to the framework of many-to-many matching markets with contracts.

Our analysis of sequential acceptances also extends the result on Romero-

Medina and Triossi (2014) from the many-to-one to the many-to-many frame-

work (see also Klaus and Kljin, 2016).

Although many-to-many relations are common in bilateral markets, the strate-

gic interaction of agents in decentralized many-to-many markets with con-

tracts has not been fully analyzed. We have already mentioned the specialty

training followed by junior doctors in the UK, where doctors have to arrange

separate medical residencies and training positions with several hospitals

(Roth, 1991) and part-time lecturers. However, we �nd additional exam-

ples in other labor markets, for example, the market for school teachers in

countries such as Argentina, Chile, and Italy. In these countries, teachers can

work simultaneously in more than one school under di�erent labor conditions.

Outside labor markets, we can mention relationships between health insurers

and health care providers and the ones between car producers and auto parts

suppliers as relevant examples of many-to-many markets with contracts.

The many-to-many framework can also be used to model the application

stage of decentralized many-to-one markets. For example, Yenmez (2015)
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models the college admissions problem in the United States as a many-

to-many matching model with contracts where applicants apply to several

colleges and receive several acceptances before investing in reaching a �nal

decision. In this model, students get di�erent acceptance packages with dif-

ferent tuition fees and �nancial aid packages (scholarships, loans, grants, and

work opportunities).

The school admissions problem has been traditionally studied as a many-to-

one problem. However, families may have more than one child, and students

can be admitted in di�erent conditions. In this case, the school admissions

problem becomes an example of a market with contracts that �ts in the scope

of our analysis (see also Hat�eld and Kominers, 2017).

Most of the markets we have mentioned are either totally or partially decen-

tralized. But some of them are centralized using a revelation mechanism as

the admission procedure in many school districts. However, the centralized

procedures in place either ignore or underplay the many-to-many aspect of

these markets. The analysis of decentralized procedures allows us to bet-

ter understand the problem. In particular, we consider the di�erent options

available to the designer in a realistic many-to-many school admissions prob-

lem with contracts. We provide alternative mechanisms to build a centralized

clearing house.

The paper is organized as follows. Section 2 introduces the model and no-

tation. Section 3 presents the SAM and the implementation results for this

mechanism. Section 4 extends our results to the class of TOM . Section 5

studies the possibility of centralizing the TOM family in markets with prior-

ities on one side of the market. Finally, Section 6 concludes. The proofs are

in the appendix.
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2 The Model

In our model, a set of doctors seeks positions at di�erent hospitals. The

(�nite) sets of hospitals and doctors are denoted by H and D, respectively.

The set of agents will be denoted by N = H ∪D. There is a �nite set X of

contracts. Each contract x ∈ X is associated with one doctor xD ∈ D and

one hospital xH ∈ H. We assume each agent can sign multiple contracts. The

null contract is denoted by ∅. An allocation is a set of contracts Y ⊆ X. Let

Y be an allocation and let N ′ ⊆ N . Let YN ′ = {y ∈ Y | {yH , yD} ∩N ′ 6= ∅}
be the set of contracts that belong to Y and involve a member of N ′. With

abuse of notation, for all n ∈ N , we will use Yn instead of Y{n}.

For each h ∈ H, �h is a strict preference relation on {Y ⊆ X | xH = h ∀ x ∈ Y }.
A contract is acceptable if it is strictly preferred to the null contract, and

unacceptable if it is strictly worse than the null contract. The set of contracts

that are acceptable to h is denoted by A (�h) = {x ∈ X | x �h ∅}. A prefer-

ence pro�le �h de�nes a choice function Ch (·). Formally, for each h ∈ H and

Y ⊆ X, we de�ne Ch (Y ), the chosen set in Y , as Ch (Y ) = max�h
{Z ⊆ Yh}.

Let CH (Y ) =
⋃

h∈H Ch (Y ) be the set of contracts chosen from Y by some

hospital. Preference relations are extended to allocations in a natural way:

for all allocations Y, Z, Y �h Z means Yh �h Zh. For each d ∈ Y , �d,

A (�d), Cd, Yd, and CD are de�ned in the same way.

Each choice functions Cn is derived by a strict preference relation �n, for all

n ∈ N ; then it satis�es IRC.1 Thus, for every Y ⊆ X and every z ∈ X \ Y ,

z /∈ Cn (Y ∪ {z}) =⇒ Cn (Y ∪ {z}) = Cn (Y ) .

We de�ne �H= (�h)h∈H , �D= (�d)d∈D and �=
(
(�h)h∈H , (�d)d∈D

)
. The

quadruple M = (H,D,X,�) is called a matching market. We could model

many-to-one matching markets by assuming no doctor �nds an allocation

1Sönmez and Aygün (2013) present a detailed analysis of this condition and its impli-
cations.
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where she signs more than one contract to be acceptable. Formally, (H,D,X,�)

is a many-to-one matching market if, for all allocations Y and for d ∈ D such

that |Yd| > 1, we have ∅ �d Y .

We then de�ne two partial orders �HB and �DB on the set of allocations,

that are usually called Blair's orders.

De�nition 1 Let Y and Z be allocations.

(i) The allocation Y is preferred to the allocation Z according to Blair's

partial order for hospitals, or Y �HB Z if Ch (Yh ∪ Zh) = Yh for all h ∈ H.

(ii) The allocation Y is preferred to the allocation Z according to Blair's

partial order for doctors, or Y �DB Z if Cd (Yd ∪ Zd) = Yd for all d ∈ D.

We assume each doctor can sign at most one contract with the same hospi-

tal, and vice versa. This assumption is called the �unitarity assumption� (see

Kominers, 2012) and it is common in the literature (but see Pepa Risma,

2015, and Hat�eld and Kominers, 2017). We model the unitarity assump-

tion (UA) by assuming the allocations where an agent n ∈ N signs more

than one contract with the same counterpart are not acceptable to n. For-

mally, we assume that if Y ⊆ X is an allocation, and there exist y, z ∈ Yh,

y 6= z for some h ∈ H (resp. y, z ∈ Yd y 6= z for some d ∈ D) with yD = zD

(resp. yH = zH), then ∅ �h Y (resp. ∅ �d Y ).

2.1 Stability and substitutability

Stability is a key concept in market design. Gale and Shapley �rst intro-

duced it in their 1962 seminal paper. Theoretical and empirical �ndings

suggest markets that achieve stable outcomes are more successful than mar-

kets that do not achieve stable outcomes (see Roth and Sotomayor, 1990,

and Abdulkadiro§lu and Sönmez, 2013).

Stable allocations are identi�ed by two requirements. The �rst requirement

is individual rationality. An allocation is individually rational if no agent

wants to unilaterally cancel any of the assigned contracts.
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De�nition 2 An allocation Y is individually rational for agent n ∈ N if

Cn (Y ) = Y n.

The second requirement is that the allocation must not be �blocked.� Intu-

itively, a coalition blocks an allocation when the members of the coalition

can pro�tably renegotiate the contracts of the allocations.

A coalition of agents can block a given allocation in a variety of forms.

De�nition 3 Let Y be an allocation for matching market M . A set of agents

N ′ = H ′ ∪D′, where H ′ ⊆ H and D′ ⊆ D:

• Pairwise blocks Y if H ′ = {h}, D′ = {d} and x ∈ X \ Y exists such

that xD = d, xH = h and x ∈ Ch (Y ∪ {x}) ∩ Cd (Y ∪ {x}).

• Blocks (Hat�eld and Kominers, 2017) Y if a set of contracts Z 6= ∅
exists such that

(i) Z ∩ Y = ∅;
(ii) ZN ′ = N ′;

(ii) for all j ∈ N ′, Zj ⊆ Cj (Z ∪ Y ).

• Strongly blocks (Hat�eld and Kominers, 2017) Y if a set of contracts

Z 6= ∅ exists such that

(i) Z ∩ Y = ∅;
(ii) ZN ′ = N ′;

(ii) for all j ∈ N ′, an individually rational Tj ⊇ Zj exists such that

Tj �j Yj.

The previous blocking conditions imply the following stability concepts.

De�nition 4 Let Y be an allocation for matching market M .

• Y is pairwise stable if it is individually rational and no coalition exists

that pairwise blocks it. The set of pairwise stable allocations is denoted

by PS (M).

9



• Y is stable if it is individually rational and no coalition exists that blocks

it. The set of stable allocations is denoted by S (M).

• Y is strongly stable if it is individually rational and no coalition exists

that strongly blocks it. The set of strongly stable allocations is denoted

by SS (M).

As we move from pairwise stable allocation to strongly stable allocation, the

set of potential blocking coalitions enlarges. Therefore, the set of surviving

allocations shrinks. Thus, we have SS (M) ⊆ S (M) ⊆ PS (M).2

The set of pairwise stable, stable, and strongly stable allocations may be

empty. The literature has focused on preference restrictions that guarantee

the existence of stable allocations by avoiding complementarities among con-

tracts. Substitutability is a key condition for the existence of stable alloca-

tions. Next, we formally de�ne substitutable preferences, and we present the

concepts of unilateral and strong substitutability. Unilateral substitutability

guarantees the existence of stable allocations in many-to-one matching mar-

kets at the time that allows some complementarities among the agents (see

Hat�eld and Kojima, 2010 and Sönmez and Switzer, 2013).3 The condition of

strong substitutability is a strengthening of substitutability and was de�ned

by Echenique and Oviedo (2006) and studied in Klaus and Waltz (2009) and

Hat�eld and Kominers (2017) in the case of matching with contracts.

Next, we present formally the di�erent concepts of substitutability from the

weakest to the strongest.

De�nition 5 The preferences of hospital h, �h are unilaterally substitutable

if there does not exist contracts x, z ∈ X and a set of contracts Y ⊆ X such

2Klaus and Waltz (2009) present alternative stability concepts. They introduce weak
setwise stable allocations, setwise stable allocations, and strongly setwise stable allocations.
Hat�eld and Kominers (2017) establish connections between these conditions and the
concepts of stable and strongly stable allocations.

3Hat�eld and Kojima (2010) also present the weaker concept of bilateral substitutable
preferences.
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that zD /∈ YD, z /∈ Ch (Y ∪ {z}) and z ∈ Ch (Y ∪ {x, z}).

The preferences of hospital h are unilaterally substitutable if, whenever h

rejects the contract z and that is the only contract with zD available, it still

rejects the contract z when the choice set expands. Unilateral substitutable

preferences are de�ned in the same way for doctors.

De�nition 6 The preferences of hospital h, �h are substitutable if there

do not exist contracts x, z ∈ X and a set of contracts Y ⊆ X such that

z /∈ Ch (Y ∪ {z}) and z ∈ Ch (Y ∪ {x, z}).

The preferences of hospital h are substitutable if the addition of a contract

to the choice set never induces a hospital to accept a contract it previously

rejected. Substitutable preferences are de�ned in the same way for doctors.

De�nition 7 The preferences of hospital h, �h are strongly substitutable

if, for all set of contracts Y, Z ⊆ X such that Ch (Y ) �h Ch (Z), we have

Z ∩ Ch (Y ) ⊆ Ch (Z).

The preferences of hospital h are strongly substitutable if, whenever h chooses

a contract y from a set of contracts Y and y ∈ Z, where Ch (Y ) is a better

set than Ch (Z), then h chooses y from Z as well. Strongly substitutable

preferences are de�ned in the same way for doctors.

In the paper, we also employ an additional condition called the �law of ag-

gregate demand.�

De�nition 8 Let n ∈ N . The preferences of agent n, �n satisfy the law of

aggregate demand if, for all Z ⊆ Y ⊆ X, |Cn (Z)| ≤ |Cn (Y )|.

If the preferences of an agent satisfy the law of aggregate demand and new

contracts become available, the agent will choose a (weakly) larger number

of contracts.
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2.2 Subgame perfect implementation

An extensive-form matching mechanism is an array G = (N,X, I, S, g),

where N is the set of players, I is the set of histories, and S is the strategy

space. More precisely, S =
∏

n∈N Sn, where Sn =
∏

i∈I S
i
n for all n ∈ N . Set

Si =
∏

n∈N Si
n. Histories and strategies are linked by the following property:

Si = {si | (i, si) ∈ I}. An initial history i0 ∈ I exists, and every history i ∈ I

is represented by a �nite sequence (i0, s1, ..., sr−1) = ir. If ir+1 = (ir, sr) ,

history ir−1 precedes history ir and that history ir precedes history ir+1.

The set W = {w ∈ I | there is no i ∈ I proceeding w} is the set of terminal

histories. Given the initial history, every strategy pro�le s ∈ S de�nes a

unique terminal history ws. The outcome function g : W → X speci�es

an outcome allocation for each terminal history, and hence for each strategy

pro�le s. With abuse of notation, we use g (s) to denote g (ws). Given �,
(G,�) constitutes an extensive-form game. Every i ∈ I \ W identi�es a

subgame G (i) = (N, I (i) , S (i) , gi,�), where i is the initial history, I (i) =

{i′ ∈ I | i′ precedes i} and S (i) =
∏

i′∈I(i) S
i′ . Let s ∈ S (i). Given the initial

history i, strategy s speci�es a unique terminal history, ws. The outcome

function is de�ned by gi (s) = g (ws). Given s ∈ S and i ∈ I, let s (i) ∈ S (i)

be the strategy prescribed by s once i is reached. Formally, if s =
(
si
′)

i′∈I ,

then s (i) =
(
si
′)

i′∈I(i)
. With abuse of notation, we will identify a subgame

G (i) with its initial history i.

An SPE is a strategy pro�le that induces a Nash equilibrium in every

subgame. Formally, s∗ is an SPE if for all i ∈ I and for all n ∈ N :

gi (s∗ (i)) �n gi
(
s′n, s

∗
−n (i)

)
for all s′n ∈ Sn (i). An allocation g (s∗) is called

an SPE outcome of (G,�) , and the set of SPE outcomes of (G,�) is

denoted by SPE (G,�). Let M be a set of matching markets, and let

Φ : M � X be a correspondence. An extensive-form matching mecha-

nism G implements Φ in SPE if, for all M ∈ M, SPE (G,�) = Φ (M),

which is if every SPE outcome of (Γ,�) belongs to Φ (H,D,X,�) and for

all contracts x ∈ Φ (M) , an SPE of (G,�) exists yielding x as outcome.
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An extensive-form matching mechanism G weakly implements Φ in SPE

if, for all M ∈ M, SPE (G,�) 6= ∅ and SPE (G,�) ∈ Φ (M), which is if

every SPE outcome of (G,�) belongs to Φ (M). Throughout the paper, we

consider only equilibria in pure strategies.

3 Simultaneous Acceptance Mechanism

In this section, we analyze the simultaneous acceptance mechanism.

The SAM is a natural extension of the mechanism studied in Sotomayor

(2004) and Echenique and Oviedo (2006) to many-to-many matching mar-

kets with contracts. The game has two stages. In the �rst stage, hospitals

simultaneously o�er contracts to doctors. In the second and �nal stage si-

multaneously, each doctor chooses from among the o�ers she receives, if any.

The contracts accepted in the second stage are enforced as an outcome of

the mechanism.

The SAM is described by the following procedure:

1. O�ers. Each hospital h o�ers contracts to some doctors. Let X1 (h) ⊆
Xh be the set of contracts o�ered by hospital h. If h does not make

any o�er, then X1 (h) = ∅. For all d ∈ D, let X1 (d) =
(⋃

h∈H X1(h)
)
d

be the set of o�ers received by doctor d.

2. Choice. Each doctor selects a set of contracts from among the ones

she was o�ered. Let X2(d) ⊆ X1 (d) be the set of o�ers d selects.

In the �rst stage of the game, the strategy set of hospital h is 2Xh .4 Ev-

ery subgame i ∈ I \ ({i0} ∪W ) where doctors have to play is completely

characterized by sets of contracts proposed by each hospital. Formally,

i ∈ I \ ({i0} ∪W ) is characterized by {X i
1 (h)}h∈H , where X i

1 (h) is the set

of contracts that hospital proposed in the history preceding z. Let X i
2 (d)

4Let Y be a set. By 2Y = {Z | Z ⊆ Y } , we denote the set of all of its subsets.
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be the choice of doctor d at i. For all i ∈ I \ ({i0} ∪W ) and every doctor

d ∈ D, let X i
1 (d) =

(⋃
h∈H X i

1(h)
)
d
be the set of o�ers doctor d receives in

this subgame. We will use {X i
2 (d)}d∈D to denote the pro�le of strategies of

the doctors at subgame i ∈ I \ (i0 ∪W ).

A strategy is given by s =

(
(X1 (h))h∈H , (X i

2 (d))
i∈I\({i0}∪W)
d∈D

)
.

3.1 Results

We �rst characterize doctors' optimal behavior. At the second stage of the

game, doctors have a unique best response, namely, to accept the best set of

contracts from among the ones being o�ered. Formally:

Lemma 1 Consider the game induced by the SAM when preferences are

�. Then doctors have a unique best response: X∗i2 (d) = Cd (X i
1 (d)) for all

d ∈ D and all i ∈ I \ ({i0} ∪W ).

First, we show that any SPE of the game is pairwise stable regardless of the

agents' preferences.

Proposition 1 All SPE outcomes of the game induced by the SAM are

pairwise stable allocations.

If all agents have substitutable preferences, the set of pairwise stable alloca-

tions coincides with the set of stable allocations (see Hat�eld and Kominers,

2017). If one side of the market has strongly substitutable preferences and

the other side of the market has substitutable preferences, the set of pairwise

stable allocations coincides with the set of strongly stable allocations (see

Hat�eld and Kominers, 2017). Therefore, our results partially extend the

�ndings of Echenique and Oviedo (2006) to the framework of matching with

contracts.
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Corollary 1 (i) If �H and �D are substitutable, all the SPE outcomes of

the game induced by the SAM are stable allocations.

(ii) If �H (resp. �D) are strongly substitutable and �D (resp. �H) are

substitutable, all the SPE outcomes of the game induced by the SAM

are strongly stable allocations.

Proof. The �rst claim follows from our Proposition 1 and Proposition 2 in

Hat�eld and Kominers (2017).

The second claim follows from our Proposition 1 and Theorem 3 in Hat�eld

and Kominers (2017).

In the case of non-substitutable preferences, we can �nd SPE outcomes that

are pairwise stable, but not stable as the following example shows.

Example 1 Let us assume H = {h1, h2} and D = {d1, d2}. Let xr and x̃r

denote contracts between d1 and hr, r = 1, 2. Let zr and z̃r denote contracts

between d2 and hr, r = 1, 2. Assume the preferences of the agents are the

following:

�hr : {xr, zr} , {x̃r} , {z̃r} , {xr} , {zr} , r = 1, 2;

�d1 : {x1} , {x̃2} , {x̃1} , {x2} ;

�d2 : {z1} , {z̃1} , {z̃2} , {z2} .
The preferences of the hospitals are not substitutable. The SAM yields

{x̃2, z̃1} as SPE outcome, which is pairwise stable but not stable.

3.1.1 Markets with and without contracts

We can de�ne a many-to-many matching market without contracts as a mar-

ket where |Xh ∩Xd| = 1 for all h ∈ H and d ∈ D. Echenique and Oviedo

(2006) analyze the SAM in this framework (see also Sotomayor, 2004). With-

out contracts, the SAM implements the set of stable allocations in SPE

when both sides of the market have substitutable preferences (Echenique
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and Oviedo, 2006, Theorem 7.1). In addition, if one side of the market has

strongly substitutable preferences, the SAM implements the set of strongly

stable allocations in SPE (Echenique and Oviedo, 2006, Theorem 7.2).

Both results rely on the fact that, in the model without contracts, hospitals

only choose whom to make the o�er to. Contracts introduce new strategic

considerations. With contracts, hospitals can also renegotiate the terms of

the collaboration with the doctors. Intuitively, a hospital can always o�er a

doctor the worst conditions (e.g., the lowest salary) she is willing to accept.

Therefore, hospitals bene�t from a �rst-mover advantage. The following

example shows the set of SPE allocations of the game induced by SAM

does not include all stable allocations.

Example 2 Let us assume H = {h} and D = {d}. Let xi, x
′
i, x̃ denote con-

tracts between hospital h and doctor d. Assume the preferences of the agents

are the following:

�d: {x} , {x′} , {x̃} ;

�h: {x̃} , {x′} , {x}.
We can assume that, for example, xi, x

′
i and x̃ are contracts that pay a salary

of $200,000, $175,000, and $150,000 a year, respectively, and all other con-

tract terms are identical.

In Example 2, the hospital prefers to pay less and the doctor prefers to be

paid more. Only the $150,000 contract is an SPE outcome of the SAM

mechanism where the hospital makes the o�er. Only the $200,000 contract

is an SPE outcome of the SAM mechanism where the doctor makes the

o�er.5 The set of SPE allocations depends on who is making the o�ers.

Therefore, Example 2 highlights another di�erence that emerges from the

5One might conjecture the set of stable allocations is the union of the SPE outcomes
of the game where hospitals make o�ers and of SPE outcomes of the game where doctors
make o�ers. This conjecture is not true. Notice that in Example 2, the $175,000 contract
is not an SPE outcome of any of the two games.
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use of contracts. When no contracts exist, the set of SPE allocations is

independent of who makes the o�ers.

Notice that in Example 2, the contracts where the doctor is paid $175,000 and

$200,000 are unilaterally renegotiable by hospital h, when making the o�ers.

Unilateral renegotiation of contracts undoubtedly plays a role in shaping

the set of SPE outcomes. Still, this property does not fully characterize

implementable allocations. Indeed, allocations exist that can be unilaterally

renegotiated by a hospital and are SPE outcomes as shown by the following

example.

Example 3 Let us assume H = {h1, h2} and D = {d1, d2}. Let x1 and x̃1

denote contracts between h1 and d1. Let x2 denote a contract between h2 and

d1. Let z denote a contract between h2 and d2. Assume the preferences of

the agents are the following:

�h1 : {x̃1} , {x1} ;

�h2 : {x2} , {z2} ;

�d1 : {x1} , {x2} , {x̃1} ;

�d2 : {z2} .
A unique stable allocation {x1, z2} exists. The allocation could be unilaterally

renegotiated by hospital h1 by o�ering x̃1 instead of x1. However, the strate-

gies X1 (h1) = {x1, x̃1}, X1 (h2) = {x2, z2} jointly with the fact that a doctor

selects the best set of contracts among the ones she was o�ered are an SPE

yielding {x1, z2} as an outcome of the game induced by SAM .

Examples 2 and 3 highlight the di�erences that emerge from the use of con-

tracts. These di�erences lie in the structure both of the market and of the

mechanism. Each hospital has to negotiate the nature of the relationship

with the doctors, and the mechanism provides the hospitals with a �rst-

mover advantage. In this case, the threat of other hospitals' countero�ers

helps in increasing competition and sustaining stable outcomes as shown in
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Example 3.6 The idea that the potential entry of new competitors helps

in sustaining e�cient outcomes is not new to economics, and bears relation

to the concept of contestable markets (see Baumol et al., 1982). We thus

provide the following de�nition.

De�nition 9 The market (H,D,X,�) satis�es contestability if, for any

individually rational allocation Y , such that there exist x ∈ X \ Y and

y ∈ Y such that x ∈ Ch (Y ∪ {x}) ∩ Cd (Y \ {y} ∪ {x}), where h = xH ,

d = xD, then there exists a contract x′ ∈ Xd, x′ ∈ Cd (Y \ {y} ∪ {x, x′}),
x /∈ Cd (Y \ {y} ∪ {x, x′}), x′ /∈ Cd (Y ∪ {x, x′}).

The essence of the contestability condition is the existence of the threat of a

deviation that introduces a potential competitive pressure and allows for full

implementability of the set of stable allocations.

Proposition 2 Assume the market satis�es contestability, and the prefer-

ences of the agents are substitutable; then every stable allocation is an SPE

outcome of the game induced by the SAM . Therefore, under contestability,

the SAM implements the set of stable allocations in SPE.

In the absence of contracts, each allocation is an agreement only on the iden-

tities of the counterparts. Thus, the contestability condition holds emptily,

and Proposition 2 extends Theorems 7.1 and 7.2 in Echenique and Oviedo

(2006).

Alcalde et al. (1998) prove the implementability of stable allocations in

SPE in a many-to-one matching model with money a la Kelso and Crawford

(1982). They use a mechanism that is very similar to the SAM . Their model

satis�es contestability, because they assume that at least two �rms exist,

each �rm �nds every worker acceptable, and �rms can make arbitrarily high

6Hat�eld and Kominers (2017) prove the theoretical possibility of implementing the set
of stable allocations in NE, although employing Maskin mechanisms.
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o�ers. These assumptions allow them to sustain SPE, preventing unilateral

deviation with the threat of a su�ciently high o�er. We cannot extend these

assumptions in our framework, because the set of contracts is �nite, and

we do not assume contracts between every �rm and worker are feasible or

acceptable. Therefore, the contestability condition is more demanding in our

framework.

3.1.2 Equilibrium existence

In general, as Example 2 shows, not every stable allocation is an SPE out-

come of the game induced by SAM . Therefore, the existence of stable allo-

cations is not able to guarantee the existence of an SPE in pure strategies

of the game induced by SAM .

We will prove the existence of equilibria directly, without relying on previous

existence results, by using a lattice theoretical argument. To simplify the

analysis, considering the normal form game Γ, where the set of the players is

H, the strategy space of the hospital h is Sh = 2Xh , and the outcome function

is g
(
(Sh)h∈H

)
= CD

(⋃
h∈H Sh

)
, Γ =

(
H,�H ,

(
2Xh
)
h∈H , g

)
is useful. Thus,

from Lemma 1, it follows directly that a one-to-one correspondence exists

between the NE of Γ and the SPE of the game induced by the SAM .

Lemma 2 The strategy pro�le

(
(S∗h)h∈H , (S∗id )

i∈I\({i0}∪W)
d∈D

)
is an equilib-

rium of the game induced by the SAM if and only if (S∗h)h∈H is a Nash

equilibrium of Γ.

Let S−h be a strategy pro�le for all the hospitals but h. Let Fh (S−h) ={
x ∈ Xh | x ∈ CD

(⋃
h′ 6=h Sh′ ∪ {x}

)}
be the set of contracts that would be

accepted if they were o�ered by h, when the other hospitals o�er contracts

in
⋃

h′ 6=h Sh′ . Let Rh (Sh, Sh−h) =
{
x ∈ Xh | x /∈ CD

(⋃
h′∈H Sh′ ∪ {x}

)}
be

the set of contracts of agent h that would be rejected if they were of-

fered by h jointly with the contracts in
⋃

h′∈H Sh′ . Notice Fh (S−h) = Xh \
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Rh (∅, Sh−h). Let us de�ne brh (S−h) = Ch (Fh (S−h)) and BRh (S−h) =

brh (S−h)∪Rh (brh (S−h) , S−h). Finally, setBRH

(
(Sh)h∈H

)
= (BRh (S−h))h∈H .

We �rst characterize the structure of the best response correspondence of

game Γ, by proving brh (S−h) = Ch (Fh (S−h)) and BRh (S−h) = brh (S−h) ∪
Rh (brh (S−h) , S−h) are the minimal and the maximal best response, respec-

tively.

Lemma 3 Let (�d)d∈D be a pro�le of preferences for doctors. Then Yh is a

best response to S−h in Γ if and only if

brh (S−h) ⊆ Yh ⊆ BRh (S−h) .

The result on Lemma 3 characterizes the hospitals best responses in game Γ

when the SAM is used.

The next step is to prove the existence of equilibrium when hospitals have

substitutable preferences and doctors have unilateral substitutable prefer-

ences. The strategy of proof is to provide an increasing selection of the best

response correspondence and apply the Tarski's Fixed Point Theorem. First,

we order the strategy space using the product of the natural set order, ⊆.
Because the minimal best response function brh (·) is non-increasing, a nat-

ural choice would be the maximal best response BRh (·). However, BRh (·)
is not increasing as the following example shows.

Example 4 Let us assume H = {h1, h2} and D = {d1, d2}. Let xi, x
′
i denote

contracts between hospital hi and doctor d1, for r = 1, 2. Let yi denote con-

tracts between hospital hi and doctor d2, for r = 1, 2. Assume the preferences

of the agents are the following:

�d1 : {x′1, x2} , {x1, x
′
2} , {x1, x2} , {x′1, x′2} , {x′1} ,{x1} , {x′2} , {x2};

�d2 : {y1} , {y2};
�h1 : {y1, x1} , {y1, x

′
1} , {x1} , {x′1} {y1};

�h2 : {y2} , {x′1} , {y1}.
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Notice �x is unilaterally substitutable but not substitutable, because x1 ∈
Cx ({x1, x

′
1, x
′
2}) but x1 /∈ Cx ({x1, x

′
1}).

Now consider the following strategies for hospital h2, Sh2 = {∅} and S ′h2
=

{x′2}. We have Fh1 (Sh2) = {y1, x1, x
′
1} and BRh1 (Sh2) = {x1, x

′
1, y}. We

have Fh1

(
S ′h2

)
= {y, x1, x

′
1} and BRh1

(
S ′h2

)
= {x1, y}. Then BRh1

(
S ′h2

)
⊆

BRh1 (Sh2), but Sh2 ⊆ S ′h2
. It follows that BRh1 (·) is not monotonic.

AlthoughBRH (·) is not increasing, in general, it can be shown thatBrh (S−h) =

brh (S−h) ∪ (Xh \ Fh (S−h)) is an increasing selection of the best response

correspondence when �H are substitutable and �D are unilaterally substi-

tutable. This �nding allows us to prove the following result.

Proposition 3 Assume �H are substitutable and �D are unilaterally sub-

stitutable. Then the game induced by the SAM has a SPE. Therefore, the

SAM mechanisms weakly implement the set of pairwise stable allocations in

SPE.

Proposition 3 also provides a new existence result for stable allocations in

many-to-many matching markets with contracts, which extends Hat�eld and

Kominers (2017).

Corollary 2 Assume �H are substitutable and �D are unilateral substi-

tutable. Then the set of pairwise stable allocations is non-empty.

Consider the two following algorithms:

ho Algorithm

Step 0:

(X0)h = ∅ for all h ∈ H;

Step r ≥ 1:

(Xr+1)h = Brh
(
(Xr)−h

)
for all h ∈ H.

Set Xho =
⋃

h∈H (Xr̄)h, where r̄ = min {r | (Xr)h = (Xr+1)h for all h ∈ H}.
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hp Algorithm

Step 0:

(X0)h = Xh for all h ∈ H;

Step r ≥ 1:

(Xr+1)h = Brh
(
(Xr)−h

)
for all h ∈ H.

Set Xhp =
⋃

h∈H (Xr̄)h, where r̄ = min {r | (Xr)h = (Xr+1)h for all h ∈ H}.

The monotonicity of the operator Brh (·) used to prove Proposition 3 implies

both algorithms stop in a �nite number of steps at pairwise stable allocations.

Notice that if the agents on one side of the market have unilateral substi-

tutable preferences, pairwise stability and stability are not equivalent, as

shown by the following example.

Example 5 Let us assume H = {h} and D = {d1, d2, d3}. Let xr be a

contract between h and d1, let yr be a contract between h and d2, and let zr

be a contract between h and d3, for r = 1, 2. Assume the preferences of the

agents are the following:

�h: {x1, y1, z1} , {x2, y1, z2} , {x2, y1, z1} , {x2, y1, z2}, {x1, y1, z1} , {x2, y1, z2} ,

{x2, y1, z1}, {x2,y1,z2} , {x2, y1} , {x1, y1} , {y1, z2} , {y1, z1} ,

{y1} , {x1} , {x2} , {z1} , {z2} ;

�d1 : {x1} , {x2};
�d2 : {y1} , {y2} ;
�d3 : {z1} , {z2}.
Preferences �h are unilateral substitutable but not substitutable, because z1 /∈
Ch ({y1, z1, z2}) but z1 ∈ Ch ({x1, x2, y1, z1, z2}). The allocation Y = {y1, x2, z2}
is pairwise stable but not stable, because it is blocked by N ′ = {h, d1, d3}
through Z = {x1, z1}.

When one side of the market has unilateral substitutable preferences, the

set of pairwise stable allocations might not be a lattice. Moreover, under

the same assumptions, the set of SPE is not even a lattice with respect to
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the joint preferences of the agents or Blair's order (see Blair, 1988), as can

be seen in the following example that we borrow from Hat�eld and Kojima

(2010).

Example 6 Let us assume H = {h} and D = {d1, d2}. Let x1, x2, x3 denote

the contracts between d1 and h, and let y1, y2, y3 denote the contracts between

d2 and h. Assume the preferences of the agents are the following:

�h: {x1, y3} , {x3, y1} ,{x2, y2} , {x3, y3} , {x3, y2} , {x2, y3} ,{x2, y1} , {x1, y2},

{x1, y1} , {x3} ,{y3} , {x2} , {y2} , {x1} , {y1};
�d1 : {x2} , {x1} , {x3};
�d2 : {y2} , {y1} , {y3}.
This market contains three pairwise stable allocations, X1 = {x2, y2}, X2 =

{x3, y1} , and X3 = {x1, y3} , that are also SPE outcomes. However, as

observed in Hat�eld and Kojima (2010), {X1, X2, X3} is not a lattice with

respect to the order induced by �D and not even with respect to the Blair's

order.

3.1.3 The structure of the set of SPE outcomes

In this section, we restrict our attention to markets where the preferences of

both sides of the market are substitutable. We �rst prove that, under this

assumption, the maximal best response BRh (·) is increasing.

Lemma 4 Assume �H and �D are substitutable. Then the maximal best

response function BRh (·) is increasing: if Sh ⊆ S ′h for all h ∈ H, then

BRh (S−h) ⊆ BRh

(
S ′−h

)
for all h ∈ H.

Lemma 4 implies the set of �xed points of BRH (·) is a non-empty lattice.

To apply this result to our environment, we prove all SPE outcomes of the

game induced by the SAM are generated by the set of �xed points of the

maximal best response.
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Lemma 5 Assume �H and �D are substitutable. The allocation Y is an

NE outcome of Γ if and only if a strategy pro�le (Sh)h∈H exists such that

BRH

(
(Sh)h∈H

)
= (Sh)h∈H and CD

(⋃
h∈H Sh

)
= Y .

Lemma 5 does not extend to every selection of the best response correspon-

dence; for instance, it does not extend to the minimal best response, as shown

by the following example.

Example 7 Consider Example 3. The unique stable allocation {x1, z2} is

not a �xed point of the minimal best response, (brh (·))h∈H , because brh ({z2}) =

x̃1. Thus, {x1, z2} cannot be obtained from a �xed point of the minimal best

response.

Lemma 5 shows the structure of the �xed points of BRH (·) re�ects the

structure of the set of SPE outcomes and allows us to prove the set of SPE

outcomes of the SAM mechanism is a lattice according to Blair's orders.

Furthermore, an opposition of interests within the set of SPE allocations

emerges. Given two SPE outcomes Y and Z, if Y dominates Z, according

to hospitals' Blair's order, Z dominates Y according to doctors' Blair's order.

Proposition 4 Let us assume �H and �D are substitutable.

(i) The set of SPE of the game induced by the SAM is a non-empty lattice

with Blair's orders �HB and �DB.

(ii) Let Y, Z be SPE outcomes. Then Y �HB Z if and only if Z �DB Y .

As in the case of Proposition 3, Proposition 4 also provides the following

algorithms to compute pairwise stable allocations.

HO Algorithm

Step 0:

(X0)h = ∅ for all h ∈ H;
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Step r ≥ 1:

(Xr+1)h = BRh

(
(Xr)−h

)
for all h ∈ H.

Set XHO =
⋃

h∈H (Xr̄)h, where r̄ = min {r | (Xr)h = (Xr+1)h for all h ∈ H}.

HP Algorithm

Step 0:

(X0)h = Xh for all h ∈ H;

Step r ≥ 1:

(Xr+1)h = BRh

(
(Xr)−h

)
for all h ∈ H.

Set XHP =
⋃

h∈H (Xr̄)h, where r̄ = min {r | (Xr)h = (Xr+1)h for all h ∈ H}.

Lemmas 4 and 5 imply the outcome of the HO algorithm coincides with

the best (resp. worst) SPE outcome for hospitals (resp. doctors), and the

HP algorithm coincides with the worst (resp. best) SPE outcome for hos-

pitals (resp. doctors).7 A DO algorithm and a DP algorithm can be de�ned

symmetrically considering the game where the doctors make the o�ers. Fu-

ture research should compare the e�ciency of these algorithms and of the

cumulative o�er mechanism (see Hat�eld and Kominers, 2017).

The existence of contracts provides hospitals with a �rst-mover advantage as

shown in Example 2. This e�ect shrinks the set of SPE allocations through

unilateral deviations, and hurts doctors more than hospitals. Indeed, al-

though the doctor-optimal stable allocation can be excluded from the set of

SPE outcomes, as we have seen in Example 2, the hospital-optimal stable

allocation is always an SPE outcome.

Proposition 5 Assume �D are substitutable and �H are substitutable and

satisfy the law of aggregate demand. Then the hospital-optimal stable alloca-

tion is an SPE outcome.

7The same result does not hold with the ho and the hp algorithm, because, in general,
the set of �xed points of (Brh (·))h∈H does not coincide with the set of NE outcomes of
the game Γ.
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Consider a many-to-one situation where each hospital can hire at most one

doctor. If �D does not satisfy the law of aggregate demand, the hospital-

optimal stable allocation is not strategy-proof for hospitals (see Hat�eld and

Milgrom, 2005). However, Proposition 5 implies that it is an NE outcome

of the SAM .

When preferences are substitutable and the preferences of hospitals satisfy

the law of aggregate demand, the outcome of the HO algorithm coincide with

the hospital-optimal stable allocation. When no contracts exist, the SAM

fully implements the set of stable allocations (see Echenique and Oviedo,

2006), and the outcome of the HP algorithm coincides with the doctor-

optimal stable allocation.

4 Take-It-Or-Leave-It O�ers Mechanisms

We now introduce the class of take-it-or-leave-it o�ers mechanisms.

This class extends the SAM by relaxing the assumption that the agents

accept the proposals they receive simultaneously. The TOM are such that,

in a �rst stage, hospitals make simultaneous o�ers to doctors. Then groups

of doctors sequentially accept or reject the o�ers they received. Doctors in

the same group choose simultaneously. The order of choice can be arbitrary

and/or endogenous to the play, which is history dependent. The contracts

accepted in the choice stage are enforced as an outcome of the mechanism.

The take-it-or-leave-it o�ers mechanisms are described by the following

procedure:

O�ers. Each hospital h o�ers contracts to some doctors. Let X1 (h) ⊆ Xh

be the set of contracts o�ered by hospital h. If h does not make any

o�er, then X1 (h) = ∅. For all d ∈ D, let X1 (d) =
(⋃

h∈H X1(h)
)
d
, be

the set of o�ers received by doctor d.

Choice. At node i ∈ I, a subset of doctors Di ⊆ D that did not choose
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before selects a set of contracts from among the ones she was o�ered.

Let X i
2(d) ⊆ X1 (d) be the set of o�ers selected by doctor d ∈ Di. The

procedure follows until all doctors have chosen.

Formally, a TOM is an extensive-form mechanism T = (N,X, I, S, g) with

the following characteristics. At the initial history i0, Si0 =
∏

h∈H 2Xh .8 Let

i be a successor of i0, i =
(
i0, (X i

1 (h))h∈H
)
and let X i

1 (d) =
(⋃

h∈H X i
1(h)

)
d
.

For any non-initial or terminal node i ∈ I \ ({i0} ∪W ), there exists Di ⊆ D

such that, if i′ proceeds i, then Di′ ∩ Di = ∅ and
⋃

i∈I\({i0}∪W ) D
i = D.

For all i ∈ I \ ({i0} ∪W ), let i1 (i) be the unique successor of i0 preceding

i. At each i ∈ I \ ({i0} ∪W ) , the strategy space is
∏

d∈Di 2Xi(d), where

X i (d) = X
i1(i)
2 (d).

Notice that in a TOM, the strategy space of a doctor d depends only on

the o�er she receives at Stage 0. In her turn, every doctor has a strictly

dominant strategy, which is to accept the best o�ers that she receives. Let

T be a TOM, and consider the game induced by T when preferences are �.

Lemma 6 Doctors have a unique best response X∗i2 (d) = Cd

(
X

i1(i)
1 (d)

)
for

all d ∈ D, for all i ∈ I \ ({i0} ∪W ).

The result is analogous to Lemma 1. Notice the result implies the set of SPE

outcomes coincides with the set of NE outcomes of game Γ. Therefore, we

have

Proposition 6 The set of SPE outcomes of T coincides with the set of

SPE outcomes of the SAM .

In particular, all the results of Section 3 extend to all the mechanisms on the

class of TOM .

8Notice we are abusing notation. In order to be completely consistent with the de�ni-
tion of an extensive-form mechanism, we should write, for instance, Si0 =

∏
h∈H 2Xh ×∏

d∈D {d}, meaning that doctors, at this stage, do not have any choice to make.
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Corollary 3 Let (H,D,X,�) be a matching market and let T be a TOM .

Then

a) All SPE outcomes of the game induced by the T are pairwise stable allo-

cations.

b) If preferences are substitutable, all SPE outcomes of the game induced by

T are stable allocations.

c) If �H are substitutable and �D are unilateral substitutable, the game in-

duced by the T has an SPE.

d) If � are substitutable, the set of SPE outcomes of the game induced by

the T outcomes is a non-empty lattice with respect to Blair's order.

e) If �H are substitutable and satisfy the law of aggregate demand and �D

are substitutable, the hospital-optimal stable allocation is an SPE outcome

of the game induced by T .

5 Centralized Markets

In many markets, clearing houses are already in use, as is the case, for in-

stance, with the school admission procedures in place in many school dis-

tricts. As mentioned in the introduction, a many-to-many matching market

with contracts is arguably the most accurate representation of school admis-

sion models given that a signi�cant number of families have more than one

child and di�erent arrangements between schools and families are possible

(e.g., di�erent tuition fees, schedules, lunch options, or grants). However,

school admission problems have been modeled as a many-to-one matching

market, allowing for minor adjustments on school priorities to favor siblings.

Let us now consider the problem of centralizing the assignment of students to

schools as a many-to-many matching market with contracts. The objective

is to provide a centralized mechanism able to implement stable allocations.

Because no strategy-proof, stable revelation mechanism exists in this frame-
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work, we pursue the stability of the Nash equilibrium outcomes.

To maintain the concordance with the rest of the paper, we call the agents on

each side of the market hospitals and doctors, respectively. As is usual in this

case (see, e.g., Ergin and Sönmez, 2006, and Haeringer and Klijn, 2009), we

assume the hospital priorities are known to doctors, and we consider strategic

behavior only among the latter.

Formally, the problem is characterized by the following:

• a set of hospitals H,

• a set of doctors D,

• a vector of quotas (qh)h∈H , where qh is a positive integer that represents

the number of doctors hospital h ∈ H can sign,

• a set of contracts X,

• a strict priority structure �H , where, for all h ∈ H, �h is a strict order

over Xh ∪ {∅},

• for all doctors d ∈ D, a strict preference pro�le �d over X ∪ {∅} .

We need to extend hospitals' priorities over doctors to priorities over sets of

doctors. To do so, we assume that priorities over a set of doctors are respon-

sive to priorities over individual doctors. Formally, we say the pro�le �̃H is

responsive to the priority structure �H with a vector of quotas (qh)h∈H if

for all h and all Yh ⊆ Xh, x, z ∈ X\Y : (i) if |Yh| < qh, then Y ∪{x} �̃hY ∪{z}
if and only if x �h z, (ii) Y ∪ {x} �̃hY if and only if x �h A (�h), and (iii)

if |Yh| > qh, then ∅�̃hY .

Responsive priorities are substitutable and satisfy the law of aggregate de-

mand, so our previous results extend to this framework.

Contrary to the previous sections, from now on, we consider TOM mech-

anisms where doctors make the proposals, because we are interested in de-

signing an admission mechanism for doctors.
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It is a well-known fact (see Roth and Sotomayor, 1990) that, in a many-to-

many framework, no stable revelation mechanism exists where truth-telling

is a dominant strategy for the agents on either side of the market. Thus, we

turn our attention to the stability of Nash equilibrium outcomes.

A natural candidate for the centralization is the doctor-optimal stable mech-

anism. However, it may produce unstable allocations as NE outcomes (see

Haeringer and Klijn, 2009). An alternative to the doctor-optimal stable

mechanism is the DO algorithm. However, even if the DO algorithm does

not coincide with the cumulative o�er algorithm, its outcome coincides with

the doctor-optimal stable allocation when preferences are substitutable and

satisfy the law of aggregate demand.

Alternatively, we can focus on the incentives provided by the so-called imme-

diate acceptance mechanism (see Alcalde, 1996), also known as the Boston

mechanism (see Abdulkadiro§lu and Sönmez, 2003).

First, let us de�ne the immediate acceptance mechanism for the many-

to-many matching markets with contracts that we analyze. The strategy

space of doctor d is the set of strict rational preferences over 2Xd , L
(
2Xd
)
.

Given a preference for doctor d, �d over 2Xd and an integer r, 1 ≤ r ≤
∣∣2Xd

∣∣,
let Y r

�d
be the rth ranked acceptable set according to �d, when one exists. Let

Y r
�d

be empty otherwise. Formally, Y = Y r
�d

if and only if Y ⊆ Xd, Y �d ∅
and |{Z ⊆ Xd | Z �d Y }| = r − 1. Set Y r

�d
= ∅ if |{Z ⊆ Xd | Z �d Y }| =

r − 1 =⇒ ∅ �d Y .

The following procedure describes the immediate acceptance mecha-

nism.

• Step 1: Only the top acceptable choices of the doctors at �D are con-

sidered. Set A1 =
⋃

d∈D Y 1
�d

and set Y 1 = CH (A1). Contracts in Y 1 are

signed. Every doctor who has signed a contract and every doctor who

has proposed the empty set, that is, every d ∈ Y 1
D∪
{
d ∈ D | Y 1

�d
= ∅
}
,

is removed from the market. Let D2 = D \ Y 1
D be the set of remaining

doctors.
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• Step r, r ≥ 2: Only the rth choices of doctors in Dr are considered, and

hospitals decide which contracts to add to the ones selected at step r−1,

compatibly with the already signed contracts. Set Ar =
⋃

d∈Dr−1 Y r
�d
,

for all h ∈ H, set Y r,h = max�h

{
Y ⊆ Xh | Y r−1,h

h ⊆ Y ⊆ Y r−1,h ∪ Ar
h

}
.

Finally set Y r =
⋃

h∈H Y r,h ∪ Y r−1. Contracts in Y r are signed. Every

doctor who has signed a contract and every doctor who has proposed

the empty set, that is, every d ∈ Y r
D ∪

{
d ∈ Dr | Y r

�d
= ∅
}
, is removed

from the market. Let Dr+1 = D \Y r
D∪
{
d ∈ Dr−1 | Y r

�d
= ∅
}
be the set

of remaining doctors. The procedure stops at r∗ = min {r | Dr = ∅}.
Let Y = Y r∗ be the �nal outcome.

Let IA (�D,�H) be the outcome of the algorithm when doctors submit pref-

erence pro�le�D and the pro�le of hospital priority is�H . The game induced

by the immediate acceptance mechanism is IA=
(
D,�D,L

(
2Xd
)
, IA (·,�H)

)
.

We consider the game Γ introduced in Section 3.1.2, where doctors make pro-

posals.

Proposition 7 Assume �D are substitutable and �H are responsive; then

the set of NE outcomes of Γ coincides with the set of NE outcomes of IA.

Thus, the set of NE outcomes of the immediate acceptance mechanism is

a non-empty lattice of stable allocations that includes the doctor-optimal

stable allocation.9

Unfortunately, in situations where priorities are not responsive (e.g., in cases

involving budget constraints; see, e.g., Mongell and Roth, 1986, and Abizade,

2016, or when students are ranked using scores systems that give extra points

to siblings simultaneously entering a new school), the immediate acceptance

mechanism may fail to implement even individually rational allocations.

Example 8 Let us assume H = {h1, h2} and D = {d1, d2, d3, d4}.
9The result follows from Corollary 1, Proposition 4, and Proposition 5.
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Priorities and preferences are the following:

�h1 : {d1, d3} , {d1d2, d3} , {d2, d3} , {d1, d2} , {d1} , {d3} , {d2} ;

�h2 : {d4} , {d1} ;

�d1 : {h2} , {h1} ;

�d2 : {h1} ;

�d3 : {h1} ;

�d4 : {h2} ;

The outcome of truth-telling in the immediate acceptance algorithm results

in the following allocation: Y = {{h1, d1, d2, d3} , {h2, d4}} , which is not

individually rational, because h1 would like to �re d2. However, truth-telling

is an NE because any agent but d1 is assigned to her preferred hospital, but

d1 has no pro�table deviations.

The failure of the immediate acceptance mechanism in implementing indi-

vidually rational allocations relies on the multiple-round structure of the

mechanism. Therefore, we consider the game derived from the immedi-

ate acceptance mechanism, where the �rst-round allocation, Y 1, is the �-

nal one. We call this mechanism the one-shot immediate acceptance

mechanism. Formally, let �D= (�d)d∈D be a pro�le of preferences for doc-

tors, and let (�h)h∈H be hospital priorities. De�ne OS
(
(�d)d∈D ,�H

)
=

CH

(⋃
d∈D Y 1

�d

)
. The game induced by the one-shot immediate acceptance

mechanism is OS=
(
D,�D,L

(
2Xd
)
, OS (·,�H)

)
.

Notice the structure of OS is very similar to the structure of game Γ, where

doctors make the proposal. Indeed, the Nash equilibrium outcomes of the

two games coincide.

Proposition 8 The set of NE outcomes of the game induced by the one-shot

immediate acceptance mechanism coincides with the set of NE outcomes of

game Γ. Then

a) All NE outcomes of OS are pairwise stable allocations.
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b) If preferences are substitutable, all NE outcomes of OS are stable alloca-

tions.

c) If �D are substitutable and �H are unilateral substitutable, OS has an

NE.

d) If � are substitutable, the set of NE outcomes of OS is a non-empty

lattice with respect to the Blair's order.

e) If �D are substitutable and satisfy the law of aggregate demand and �H

are substitutable, the hospital-optimal stable allocation is an NE outcome of

OS.

The immediate acceptance mechanism and the one-shot immediate accep-

tance mechanism are equivalent when priorities are responsive. However,

when one relaxes the assumption of complete information, the one-shot im-

mediate acceptance mechanism makes an agent more likely to end without

signing any contract, preventing an e�cient allocation from being achieved.

The immediate acceptance mechanism allows information to be revealed and

agents' preferences to be expressed along the di�erent stages of the mecha-

nism as the following example shows.

Example 9 Let H = {h1, h2} and let D = {d1, d2}. Doctors only know their

own preferences. The priority of the hospitals are �h1=�h2 : d1 � d2. Each

hospital has quota q = 1. Each doctor can be of two independent types a

or b. The preferences of the doctors are represented by the following utility

functions: udi (d1 | a) = udi (d2 | b) = 2, udi (d2 | a) = udi (d1 | b) = 1, and

udi (∅ | a) = udi (∅ | b) = 0. Doctor d1 is of type a with probability p, and

doctor d2 is of type a with probability 1
2
.

Assume the immediate acceptance mechanism is employed. Let p ≤ 1
2
. A

unique Bayesian Nash equilibrium exists where both doctors reveal their pref-

erences. The payo� of doctor d1 is 2 and the payo� of doctor d2 is 2 − p.

Now let p > 1
2
. A unique Bayesian Nash equilibrium exists where doctor d1
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reveals her preferences and doctor d2 ranks her second option as the �rst one

and her �rst option as the second one. The payo� of doctor d1 is 2 and the

payo� of doctor d2 is 1 + p.

Assume the one-shot immediate acceptance mechanism is employed. Then,

in any Bayesian Nash equilibrium, both doctors reveal their �rst options. The

payo� of doctor d1 is 2, the interim payo� of doctor d2 of type a is 2 − 2p,

and the interim payo� of doctor d2 of type b is 2p. Furthermore, doctor d1 is

left without any position with strictly positive probability.

Both when p ≤ 1
2
and when p > 1

2
, the one-shot immediate acceptance mech-

anism always yields a strictly higher interim expected payo� than the imme-

diate acceptance mechanism to doctor d2.

6 Conclusions

In this paper, we have studied a simple mechanism called the simultaneous

acceptance mechanism or SAM . The SAM is a take-it-or-leave-it mechanism

where hospitals make their o�ers simultaneously and then doctors accept or

reject them simultaneously. The mechanism is well known and mimics real-

world environments, allowing us to explore the allocative implications of the

use of contracts in many-to-many matching markets.

The SAM generalizes previous results in many-to-many matching markets

(Sotomayor, 2004; Echenique and Oviedo, 2006) to the many-to-many match-

ing markets with contracts environment. The SAM also allows us to prove the

existence of pairwise stable allocations when one side of the market has sub-

stitutable preferences and the other side has unilaterally substitutable pref-

erence. This extends the existence result provided by Hat�eld and Kominers

(2017). Moreover, when restricted to the many-to-one case, the procedures

coincide with the mechanisms presented in Alcalde et al. (1998) and Alcalde

and Romero-Medina (2000), unifying their implementation results, with and

without transferable utility.
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We extend our �ndings on the SAM to the general class of take-it-or-leave-it

o�ers mechanisms or TOM . All the mechanisms in this newly de�ned class

weakly implement the set of pairwise stable allocations in SPE when the

doctors' preferences are unilaterally substitutable and hospitals' preferences

are substitutable. The SAM is not the only mechanism in the TOM class

that has been previously analyzed in the literature. Another interesting el-

ement of the TOM class is the mechanism where doctors accept proposals

one at a time in an order that has been previously established at the begin-

ning of the game. This member of the TOM class extends the mechanisms

introduced by Romero-Medina and Triossi (2014) (see also Klaus and Klijn,

2016) to many-to-many matching markets with contracts.

The inability of the mechanism in the TOM class to fully implement the set of

pairwise stable allocation when the preferences are unilaterally substitutable

gives us insight on the strategic limitation of the market mechanism. These

limitations are important, because a class of simple sequential mechanisms

is able to perform well in a complex environment.

Finally, we apply our �ndings to the school admissions problem. We show the

extension of the school choice problem to the many-to-many case is not triv-

ial, because we can no longer rely on strategy-proof mechanisms. However,

we can guarantee the allocation of stable allocations in equilibria of the im-

mediate acceptance mechanism as long as schools have responsive priorities.

If the priorities of the schools are not responsive, the immediate acceptance

mechanism can produce allocations that are not individually rational. In this

case, the one-shot immediate acceptance mechanism guarantees the imple-

mentation of stable allocations.
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Appendix

Proof of Proposition 1. Assume s∗ is an SPE, and let Y be the outcome

from s∗. We will show by contradiction that Y is a pairwise stable allocation.
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We �rst prove Y is an individually rational allocation. The proof of the claim

is by contradiction. Assume Y is not an individually rational allocation for

agent n ∈ N . Let n = h ∈ H; then Ch (Yh) is a pro�table deviation, from

IRC, yielding a contradiction. Let n = d ∈ D; in this case, the contradiction

follows from Lemma 1.

We conclude the proof by showing Y is not pairwise blocked. By contradic-

tion, assume a hospital h, a doctor d, and a contract x ∈ X \ Y exist with

xD = d, xH = h such that x ∈ Ch (Y ∪ {x}) ∩ Cd (Y ∪ {x}).
First, we prove x ∈ Cd

(⋃
s∗
h′D=d {s∗h′} ∪ {x}

)
. Set Z =

⋃
s
∗
h′D=d {s∗h′}. From

Lemma 1, Cd (Z) = Yd. By contradiction, assume x /∈ Cd

(⋃
s∗
h′D=d {s∗h′} ∪ {x}

)
=

Cd (Z ∪ {x}). From x ∈ Cd (Yd ∪ {x}) , it follows that Cd (Z ∪ {x}) �d

Cd (Xd ∪ {x}). However, because x /∈ Cd (Z ∪ {x}), Cd (Z ∪ {x}) = Cd (Z) =

Xd, yielding a contradiction.

Set T = {y | y ∈ s∗h, y /∈ Ch (Y ∪ {x}) , yD 6= d}. T is the set of o�ers that h

made in equilibrium to doctors di�erent than d who don't have contracts in

Ch (Y ∪ {x}). Consider the following deviation for h, sh = (s∗h ∪ {x})\T . In
the subgame induced by this deviation, doctor d is o�ered the contracts in⋃

s∗
h′D=d {s∗h′} ∪ {x}. From IRC and Lemma 1, it follows that the deviation

is pro�table to h, yielding a contradiction.

Proof of Proposition 2. Let Y be a stable allocation. We will construct

an equilibrium yielding Y as the outcome. If brh (Y−h) = Yh for all h ∈ H,

the proof is complete. Otherwise, let Th 6= Yh be such that Th = brh (Y−h).

Then Th = Ch (Yh ∪ Th), and thus Ch (Yh ∪ {t}) is a pro�table deviation for

h for all t ∈ Th \ Yh. Let T =
(⋃

h∈H Th

)
\ Y .

Let t ∈ T . Because Y is pairwise stable, preferences are substitutable and

satisfy UA. d ∈ D, y ∈ Y exist such that yH = tH = h, yD = tD = d

such that t ∈ Ch (Y ∪ {t}) ∩ Cd ((Y \ {y}) ∪ {t}) and y /∈ Cd (Y ∪ {t}). Be-
cause the market is contestable, t′ = t′ (t) ∈ X and h′ 6= h exist such that t′ ∈
Cd ((Y \ {y}) ∪ {t, t′}), t /∈ Cd ((Y \ {y}) ∪ {t, t′}) , and t′ /∈ Cd ((Y ) ∪ {t, t′}).
Set Y ′ = Y ∪

⋃
t∈T t′ (t). Let Sh = Y ′h for all h ∈ H. Observe that, by con-
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struction, Yh = brh (S−h). Furthermore, t′ (t) ∈ Rh

(
Y ′h, Y

′
−h
)
because Y is

stable and �D are substitutable. It follows that (Sh)h∈H is an NE of Γ yield-

ing Y as the outcome, which completes the proof of the claim. Proof of

Lemma 3. (i) First we show brh (S−h) is a best response to S−h, and for any

best response Yh, brh (S−h) ⊆ Yh. Notice g (brh (S−h) , S−h) = brh (S−h). Let

Yh be a best response and let Y ′h = CD

(⋃
h′ 6=h Sh′ ∪ Yh

)
h

= (g (Yh, S−h))h.

To complete the proof of the claim, we show brh (S−h) = Y ′h ⊆ Yh. Let

x ∈ Y ′h. Because (�d)d∈D satisfy UA, x ∈ CxD

(⋃
h′ 6=h Sh′ ∪ {x}

)
. Thus,

Y ′h ⊆
{
x ∈ Xh | x ∈ CD

(⋃
h′ 6=h Sh′ ∪ {x}

)}
. In particular, brh (S−h) �h Y ′h.

The set Yh is a best response to S−h, so Y ′h �h brh (S−h). Because preferences

are strict, brh (S−h) = Y ′h.

(ii) Now, we show that if Yh is a best response to S−h, then Yh ⊆ BRh (S−h).

Observe that Yh is a best response to S−h if and only if
[
CD

(⋃
h′ 6=h Sh′ ∪ Yh

)]
h

=

brh (S−h). Let Yh be a best response. From part (i) of the proof, we have

Yh = brh (S−h) ∪ Zh for some Zh ⊆ Xh, Zh ∩ brh (S−h) = ∅. From IRC,

it follows that z /∈
{
x ∈ Xh | x ∈ CD

(⋃
h′ 6=h Sh′ ∪ brh (S−h) ∪ {z}

)}
for all

z ∈ Zh; therefore, Yh ⊆ BRh (S−h).

(iii) Let brh (S−h) ⊆ Yh ⊆ BRh (S−h). We can write Yh = brh (S−h) ∪
Zh, where Zh ⊆

{
x ∈ Xh | x /∈ CD

(⋃
h′ 6=h Sh′ ∪ brh (S−h) ∪ {x}

)}
and Zh ∩

brh (S−h) = ∅. By contradiction, assume CD

(⋃
h′ 6=h Sh′ ∪ Yh

)
h
6= brh (S−h).

Therefore, z ∈ Zh exists such that z ∈ CzD

(⋃
h′ 6=h Sh′ ∪ brh (S−h) ∪ Zh

)
.

The UA and IRC imply Cd

(⋃
h′ 6=h Sh′ ∪ brh (S−h) ∪ Zh

)
=

Cd

(⋃
h′ 6=h Sh′ ∪ brh (S−h) ∪ {z}

)
. In particular,

z ∈ Czd

(⋃
h′ 6=h Sh′ ∪ brh (S−h) ∪ {z}

)
, yielding a contradiction.

The following Lemmas 7 and 8 will be used in the proof of Proposition 3. In

particular, Lemma 7 will be repeatedly used in the proof of Lemma 8.

Lemma 7 (i) Rh (Sh, S−h) is increasing in Sh, for all S−h: if S
′
h ⊆ Sh, then

Rh (S ′h, S−h) ⊆ Rh (Sh, S−h).
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(ii) Brh (S−h) = brh (S−h) ∪ (Xh \ Fh (S−h)) is a best response.

(iii) Assume �D are unilaterally substitutable. Let h ∈ H. If S ′h′ ⊆ Sh′ ⊆ Xh′

for all h′ ∈ H \ {h}, then Fh (S−h) ⊆ Fh

(
S ′−h

)
.

(iv) Assume �D are unilaterally substitutable and �H are substitutable. Let

h ∈ H. If S ′h′ ⊆ Sh′ ⊆ Xh′, for all h
′ ∈ H \{h}, then brh

(
S ′−h

)
⊆ Brh (S−h).

(v) Assume �D is substitutable. Assume S ′h′ ⊆ Sh′ ⊆ Xh′ for all h′ ∈ H;

then Rh

(
(S ′h′)h′∈H

)
⊆ Rh

(
(Sh′)h′∈H

)
for all h ∈ H.

(vi) Assume �D and �H are substitutable. If S ′h′ ⊆ Sh′ ⊆ Xh′ for all h′ ∈
H \ {h}, then brh

(
S ′−h

)
⊆ BRh (S−h).

Proof. (i) Let S ′h ⊆ Sh, and let x /∈ CD

(⋃
h′ 6=h Sh′ ∪ S ′h ∪ {x}

)
. We

prove by contradiction that x /∈ CD

(⋃
h′ 6=h Sh′ ∪ Sh ∪ {x}

)
. Assume x ∈

CD

(⋃
h′ 6=h Sh′ ∪ Sh ∪ {x}

)
. The UA and IRC imply(

Cd

(⋃
h′ 6=h Sh′ ∪ Sh ∪ {x}

))
=
(
Cd

(⋃
h′ 6=h Sh′ ∪ S ′h ∪ {x}

))
h
for all d, reach-

ing a contradiction. Therefore, Rh (S ′h, S−h) ⊆ Rh (S ′h, S−h).

(ii) NoticeXh\Fh (S−h) = Rh (∅, S−h). From (i)Rh (∅, S−h) ⊆ Rh (brh (S−h) , S−h);

then brh (S−h) ∪ (Xh \ Fh (S−h)) ⊆ BRh (S−h), which implies the claim.

(iii) Let x ∈ Fh (S−h); then x ∈ Cd

(⋃
h′ 6=h Sh′ ∪ {x}

)
, where d = xD.

Notice h /∈
[⋃

h′ 6=h S
′
h′

]
H
. Because �d is unilaterally substitutable, x ∈

Cd

(⋃
h′ 6=h S

′
h′ ∪ {x}

)
.

(iv) We have brh
(
S ′−h

)
= Ch

(
Fh

(
S ′−h

))
∩Fh (S−h)∪

(
Ch

(
Fh

(
S ′−h

))
\ Fh (S−h)

)
.

From (iii) Fh (S−h) ⊆ Fh

(
S ′−h

)
. Therefore, the substitutability of �h implies

Ch

(
Fh

(
S ′−h

))
∩ Fh (S−h) ⊆ Ch (Fh (S−h)), which concludes the proof of the

claim.

(v) The claims follows directly from the de�nition of substitutability of �D.

(vi) From (iv), brh
(
S ′−h

)
⊆ Brh (S−h) ⊆ BRh (S−h).

The next result will be used in the proof of Propositions 3 and 4.
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Lemma 8 Assume �D are unilaterally substitutable and �H are substitutable.

Let h ∈ H. If S ′h′ ⊆ Sh′ ⊆ Xh′, for all h′ ∈ H \ {h}. Then Brh
(
S ′−h

)
⊆

Brh (S−h).

Proof. (i) The proof of the result follows from (iii) and (iv) of Lemma 7

above.

Proof of Proposition 3. The result follows directly from Lemmas 8 and

7.

Proof of Lemma 4. To complete the proof, it su�ces to showRh

(
brh
(
S ′−h

)
, S ′−h

)
⊆

Rh (brh (S−h) , S−h), or equivalently,Xh\Rh (brh (S−h) , S−h) ⊆ Xh\Rh

(
brh
(
S ′−h

)
, S ′−h

)
.

We prove the claim by contradiction. Let x ∈ CD

(
brh (S−h) ∪

⋃
h′ 6=h Sh′ ∪ {x}

)
∩

Xh, and assume x /∈ CD

(
brh
(
S ′−h

)
∪
⋃

h′ 6=h S
′
h′ ∪ {x}

)
. From Lemma 7 (vi),

we have brh
(
S ′−h

)
⊆ BRh (S−h) = brh (S−h)∪Rh (brh (S−h) , S−h). From sub-

stitutability, x /∈ CD

(
brh (S−h) ∪Rh (brh (S−h) , S−h) ∪

⋃
h′ 6=h Sh′ ∪ {x}

)
. From

IRC it follows thatCD

(
brh (S−h) ∪Rh (brh (S−h) , S−h) ∪

⋃
h′ 6=h Sh′ ∪ {x}

)
=

= CD

(
brh (S−h) ∪Rh (brh (S−h) , S−h) ∪

⋃
h′ 6=h Sh′

)
=

CD

(
brh (S−h) ∪

⋃
h′ 6=h Sh′

)
. It follows that x /∈ CD

(
brh (S−h) ∪

⋃
h′ 6=h Sh′ ∪ {x}

)
,

reaching a contradiction.

Proof of Lemma 5. The set of �xed points of BR is a subset of the set

of Nash equilibrium of Γ, so it su�ces to show that any NE outcome is the

outcome of a �xed point of BR. Let X ′ be an SPE outcome, and let (Yh)h∈H
be an NE of Γ yielding X ′ as outcome.

Let h ∈ H. We have Yh = X ′h ∪ Zh, where Zh ⊆ Rh (X ′h, X
′
−h) (see Lemma

3). Notice X ′h = brh (Y−h) ⊆ BRh (Y−h). It follows that Yh ⊆ BRh (Y−h)

for all h ∈ H. Consider the sequence T 0 = Y , T k+1 =
((

BRh

(
T k
−h
))

h∈H

)
for all k ≥ 0. Notice that, by construction, brh

(
T k
−h
)

= X ′h for all h ∈ H.

Because T 0 ⊆ T 1 and BR is increasing, the sequence
(
T k
)
k≥0

is increasing

in k. Because X is �nite, K ≥ 0 exists such that TK = T s for all s ≥ K. It

follows that T is a �xed point of BR yielding X ′ as an outcome.
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Proof of Proposition 4. (i) First, we show two preliminary results.

(a) Let (Ah)h∈H and (Bh)h∈H be �xed points of BR such that Ah ⊆ Bh for

all h ∈ H. We show XB = CD

(
XA ∪XB

)
, where XA = g

(
(Ah)h∈H

)
and

XB = g
(
(Bh)h∈H

)
. Let A =

⋃
h∈H Ah and B =

⋃
h∈H Bh and notice A ⊆ B.

We have XB = CD (B) = CD (A ∪B). Because XA ∪XB ⊆ A ∪B, we have

XB = CD

(
XA ∪XB

)
.

(b) Let (Ah)h∈H and (Bh)h∈H be �xed points ofBR, and letXA = g
(
(Ah)h∈H

)
and XB = g

(
(Bh)h∈H

)
. Assume XB = CD

(
XA ∪XB

)
. We show Ah ⊆ Bh

for all h ∈ H. Notice XA = CH

(
XA ∪XB

)
(see Pepa Risma, 2015). Let

x ∈ XA \ XB. We prove x ∈ BRh (B−h) . Let h = xH and let d = xD.

By substitutability of �h, x ∈ Ch

(
XB ∪ {x}

)
. From the pairwise sta-

bility of XB x /∈ Cd

(
XB ∪ {x}

)
. Because �d are substitutable, we have

x /∈ Cd

(
XB ∪

⋃
h′ 6=h Bh′

)
; thus, x ∈ Rh

(
XB, B−h

)
⊆ BRh (B−h).

Now let x ∈ Rh

(
XA, A−h

)
∩Xh and let d = xD. We have

Cd

(
XA ∪

⋃
h′ 6=h Ah′ ∪ {x}

)
= XA

h soXA
d = Cd

(
XA ∪ {x}

)
. From the substi-

tutability of�d, we obtain x /∈ Cd

(
XA ∪XB ∪ {x}

)
= XB as Cd

(
XA ∪XB ∪ {x}

)
=

XB from IRC. It follows that x /∈ Cd

(
XB ∪ {x}

)
. Again, the substitutabil-

ity of �d implies x /∈ Cd

(
XB ∪

⋃
h′ 6=h Bh′

)
; thus, x ∈ Rh

(
XB, B−h

)
⊆

BRh (B−h).

It follows that Ah = XA
h ∪ Rh

(
XA

h , A−h
)
⊆ XB

h ∪ Rh

(
XB

h , B−h
)
for all

h ∈ H.10

The claim follows from (a) and (b) and Lemma 5. Notice the set of �xed

points of BR is a non-empty lattice from the Tarski's Fixed Point Theorem.

(ii) The claim follows from (i) and Pepa Risma, 2015).

Proof of Proposition 5. Let Y be the hospital-optimal stable allocation.

We will construct an equilibrium yielding Y as an outcome. If brh (Y−h) = Yh

for all h ∈ H, the proof is complete. Otherwise, let Th 6= Yh be such that

Th = brh (Y−h). Then Th = Ch (Yh ∪ Th), and thus Ch (Yh ∪ {t}) is a prof-

10See Lemma 3
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itable deviation for h for all t ∈ Th \ Yh. Let T =
(⋃

h∈H Th

)
\ Y .

Let t ∈ T . Because Y is pairwise stable, and preferences are substitutable

and satisfy UA, d ∈ D, y ∈ Y exist such that yH = tH = h, yD = tD = d

such that t ∈ Ch (Y ∪ {t}) ∩ Cd ((Y \ {y}) ∪ {t}) and y /∈ Cd (Y ∪ {t}).
Preferences�H satisfy the law of aggregate demand; thus, |Ch (Y )| ≤ |Ch (Y ∪ {t})|.
Because Y is individually rational and y /∈ Ch (Y ∪ {t}), then Ch (Y ∪ {t}) =

(Yh \ {y}) ∪ {t}. Observe that Cd ((Y \ {y}) ∪ {t}) = (Yd \ {y}) ∪ {t}, be-
cause preferences are substitutable and Cd (Cd (Y ∪ {t})) = Y .

Next consider Z = (Y \ {y}) ∪ {t}. Because preferences are substitutable,

allocation Z is individually rational and Z �H Y . In particular, Z is not

stable. Because Y is stable, t′ = t′ (t) ∈ X and h′ 6= h exist such that

t′ ∈ Ch′ (Y ∪ {t}) ∩ Cd ((Yd \ {y}) ∪ {t, t′}) and t /∈ Cd ((Yd \ {y}) ∪ {t, t′}).

Set Y ′ = Y ∪
⋃

t∈T t′ (t). Let Sh = Y ′h for all h ∈ H. Observe that, by

construction, Yh = brh (S−h). Furthermore, t′ (t) ∈ Rh

(
Y ′h, Y

′
−h
)
because Y

is stable and �D are substitutable. It follows that (Sh)h∈H is an NE of Γ

yielding Y as an outcome, which completes the proof of the claim.

Proof of Proposition 7. Let (S∗d) be a NE of Γ when the preferences of

the students are given by �D. For all d ∈ D, let �∗d such that Y 1
�∗d

= S∗d and

Y r
�∗d

= ∅ for all r > 1. Because (S∗d) is an NE of Γ , �∗D is an NE of the

game induced by the immediate acceptance mechanism.

Now let �∗D be an NE of IA yielding allocation Y as the outcome. For all

d ∈ D and h ∈ H, let rd be the step of the algorithm where doctor d was

removed. For all d ∈ D, let S∗d = Y r
d . We prove (S∗d)d∈D is an NE of Γ

yielding Y as the outcome.

Let Z be the outcome of (S∗d)d∈D in Γ. By construction, Z ⊆ Y . Because

�H is responsive, Y is individually rational and Z = Y .

By contradiction, assume (S∗d)d∈D is not an NE of Γ. Then d ∈ D exists

such that Cd

{
x | x ∈ CH

(⋃
d′ 6=D Yd′ ∪ {x}

)}
6= Yd. Let �′d such that Y 1

�′d
=

Cd

{
x | x ∈ CH

(⋃
d′ 6=D Yd′ ∪ {x}

)}
and Y r

�′d
= ∅ for all r > 1. The deviation

�′d is a pro�table deviation from strategy �∗d when all other agents play �∗−d
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in game IA, which yields a contradiction.

Proof of Proposition 8. We �rst prove that if (�∗d)d∈D is an NE of OS,
then

(
Y 1
�∗d

)
d∈D

is an NE of Γ. Notice OS
(
(�∗d)d∈D

)
= g

((
Y 1
�∗d

)
d∈D

)
. The

proof is by contradiction. Assume
(
Y 1
�∗d

)
d∈D

is not an NE of Γ. Then d′ ∈ D

and Y ′ ⊆ Xd′ exist such that

(
g

(
Y ′,
(
Y 1
�∗d

)
d6=d′

))
d′
�d′

(
g
(
(A (�∗d))d∈D

))
d′
,

where g is the outcome function of Γ. Let �′d′ be any preference pro�le for d′

where the set Y ′ is ranked �rst, which is Y 1
�′

d′
= Y ′. Then �′d′ is a pro�table

deviation for d′ in game OR, yielding a contradiction.

Next, we prove that if (Sd)d∈D is an NE of Γ yielding allocation Y as the out-

come, then anNE of Γ∗,
(
(�∗d)d∈D

)
exists yielding g

(
(Sd)d∈D

)
. For all d ∈ D,

let �∗d be any preference pro�le on 2Xh such that Sd is ranked �rst, which is

Y 1
�∗d

= Sd for all d ∈ D. Then OS
(
(�∗d)d∈D

)
= g

(
(Sd)d∈D

)
. We next prove by

contradiction that
(
(�∗d)d∈D

)
is an NE of Γ∗. Assume (�∗d)d∈D is not an NE

of Γ∗. Then d′ ∈ D and �′d′ exist such that
(
OS

(
�′d′ , (�∗d)d6=d′

))
d′
�d′(

OS
(
(�∗d)d∈D

))
d′
. It follows that

(
g
(
Y 1
�d′ ,

, S−d

))
d′
�d′

(
g
(
(Sd)d∈D

))
d′
,

yielding a contradiction.

Thus, claim (a) follows from Proposition 1, claim (b) follows from Corollary

1, claim (c) follows from Proposition 3, claim (d) follows from Theorem 4,

and claim (e) follows from Proposition 5.
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