Accurate Yield Curve Scenarios Generation using Functional Gradient Descent

Francesco Audrinoa,* and Fabio Trojania,b,†

a Institute of Finance, University of Lugano, Switzerland
b Department of Economics, University of St. Gallen, Switzerland

This version: March 2004

*Corresponding author. Address: USI, Institute of Finance, Via Buffi 13, CH-6900 Lugano, Switzerland. E-mail: francesco.audrino@lu.unisi.ch.

†Address: USI, Institute of Finance, Via Buffi 13, CH-6900 Lugano, Switzerland. E-mail: fabio.trojani@lu.unisi.ch. Financial support by the National Centre of Competence in Research “Financial Valuation and Risk Management” (NCCR FINRISK) is gratefully acknowledged.
Abstract

We propose a multivariate nonparametric technique for generating reliable historical yield curve scenarios and confidence intervals. The approach is based on a Functional Gradient Descent (FGD) estimation of the conditional mean vector and volatility matrix of a multivariate interest rate series. It is computationally feasible in large dimensions and it can account for non-linearities in the dependence of interest rates at all available maturities. Based on FGD we apply filtered historical simulation to compute reliable out-of-sample yield curve scenarios and confidence intervals. We back-test our methodology on daily USD bond data for forecasting horizons from 1 to 10 days. Based on several statistical performance measures we find significant evidence of a higher predictive power of our method when compared to scenarios generating techniques based on (i) factor analysis, (ii) a multivariate CCC-GARCH model, or (iii) an exponential smoothing volatility estimators as in the RiskMetrics™ approach.

Key words: Conditional mean and volatility estimation; Filtered Historical Simulation; Functional Gradient Descent; Term structure; Multivariate CCC-GARCH models
1 Introduction

The quality and the effectiveness of interest rate risk management depends on the ability to generate relevant forward looking yield curve scenarios that properly represent the future. Based on such scenarios, future distributions of interest rate dependent portfolio exposures and associated risk measures like VaR or Expected Shortfall can be ultimately derived from the future distributions of the underlying interest rates. In this paper we propose a new procedure to construct reliable out of sample yield curve scenarios and interval estimates for interest rate short-term risk management purposes.

One broadly used approach to the estimation of interest rate scenarios and associated risk measures is based on the historical/Monte Carlo simulation of the standardized residuals in a yield curve model with state dependent conditional means and volatilities; see for instance Barone-Adesi et al. (1998) and Barone-Adesi et al. (1999), for an introduction to the filtered historical simulation method and Jamshidian and Zhu (1997) and Reimers and Zerbs (1999) for the Monte Carlo method applied to generating term structure scenarios. While in a pure Monte Carlo setting parametric assumptions on the conditional distribution of standardized residuals have to be introduced, the historical simulation method is nonparametric and can incorporate a quite broad variety of historical distributional patterns. Since we do not want to rely on parametric assumptions on the distribution of interest rates we apply in the paper this last method to compute out-of-sample interest rate scenarios.

A necessary ingredient of the filtered historical simulation method is a dynamic model for conditional means and/or volatilities of the joint interest rate dynamics. Conditioned on an estimate of the model parameters, standardized interest rate residuals can be bootstrapped to generate out-of-sample scenarios for interest rates at different maturities. From such scenarios, confidence intervals for the prices of interest rate dependent securities can be easily derived.

The estimation of a dynamic model for the joint interest rate dynamics is a challenging task because term structures are typically high dimensional objects. Moreover, in many relevant applications it can be necessary to model not only the term structure dynamics but also those of further important risk factors like for instance exchange rates. To overcome this problem, several authors have proposed some form of dimension reduction technique to reduce the estimation problem to an acceptable dimension. Examples of such methodologies are presented and discussed, among others, in Engle et al. (1990), Loretan (1997), Rodrigues (1997) and Alexander (2001). An even simpler approach to the problem is adopted by the RiskMetrics™ approach,
which applies a multivariate exponential smoothing volatility estimator to estimate conditional volatilities.

This paper proposes a multivariate nonparametric technique based on Functional Gradient Descent (FGD, Audrino and Bühlmann, 2003) to generate out-of-sample historical yield curve scenarios. The methodology is computationally feasible in large dimensions and avoids dimension reduction techniques. It allows us to estimate jointly the whole term structure dynamics, from the very short maturity segments (i.e. the overnight maturity) up to its very long end (i.e. 10 to 30 years maturity rates).1 Moreover, the non parametric nature of our approach can account for non-linearities in the dependence of interest rates at all available maturities. As we show below, this last feature is important in order to produce satisfactory one day ahead forecasts for interest rates in the short maturity spectrum and to predict accurately longer term maturities interest rates over horizons longer than one day.

Based on the estimated FGD dynamics we apply filtered historical simulation to USD bond data and compute short-term out-of-sample yield curve scenarios for horizons from one to ten days. We back-test the out-of-sample accuracy of our method and compare it to the one of filtered historical simulation techniques based on (i) a factor analysis of the yield curve dynamics, (ii) a multivariate AR-CCC-GARCH (Bollerslev, 1990) model and (iii) a multivariate exponential smoothing volatility estimator as in the RiskMetricsTM approach.

Based on several out-of-sample performance measures and formal statistical tests, we find generally empirical evidence of a higher predictive potential of FGD-based scenarios generating techniques. More specifically, we observe that approaches based on factor analysis or an exponential smoothing volatility estimator deliver very inaccurate interval forecasts, both with respect to the expected number of back-test exceedances and the expected durations between consecutive exceedances. The improvement of FGD upon the CCC-based approach is smaller than the one for the factor analysis and the RiskMetricsTM approaches, but it is statistically significant. Furthermore, the FGD-approach provides out of sample confidence intervals with a smoother behavior over time. On the contrary, the CCC-GARCH based confidence intervals can be often very unstable over time, especially when estimating the out-of-sample interest rates quantiles at the confidence levels typically used in risk management applications.

The paper is organizes as follows. Section 2 presents the basic model and the FGD estimation procedure needed to estimate it. A short description of the filtered historical simulation

1The incorporation of a possibly high number of further risk factors can be easily accomplished by FGD.
procedure is also included. Section 3 presents our application to daily USD yield curve data and the results of our back-tests. Section 4 concludes and summarizes.

2 The yield curve scenarios generating methodology

This section introduces first our multivariate model for the conditional mean and volatilities of the joint yield curve dynamics. In a second step, the FGD estimation procedure is presented, together with a computationally feasible algorithm that can be applied to estimate the model. Finally, the filtered historical simulation approach relevant for our setting is briefly reviewed.

2.1 The general model

We consider a multivariate time series $R = \{r_t\}_{t \in \mathbb{Z}}$, $r_t = (r_{t,T_1}, \ldots, r_{t,T_d})'$, of spot interest rates for a given set of fixed times to maturity $T_1 < \ldots < T_d$. Therefore, r_t is the yield curve at time t. Denote by $X = \{x_t\}_{t \in \mathbb{Z}}$, $x_t = r_t - r_{t-1}$, the corresponding time series of interest rate changes. It is assumed that R is a strictly stationary process. Denoting by F_{t-1} the information available up to time $t-1$, we model the dynamics of the conditional mean $\mu_t = \mathbb{E}(x_t|F_{t-1})$ and the conditional variance $V_t = \text{Cov}(x_t|F_{t-1})$ by modelling explicitly the joint yield curve dynamics for all available maturities. No dimension reduction technique is used in the whole procedure. The basic idea is to extend the classical constant conditional correlation (CCC)–GARCH model firstly introduced by Bollerslev (1990) in order to take into account possible nonparametric nonlinearities in the functional dependence of μ_t and V_t on variables in the conditioning information set F_{t-1}.

We start from a time series process of the form

$$x_t = \mu_t + \Sigma_t z_t,$$

under the following assumptions:

(A1) (Innovations) $\{z_t\}_{t \in \mathbb{Z}}$ is a sequence of i.i.d. multivariate innovations with zero mean and covariance matrix $\text{Cov}(z_t|F_{t-1}) = I_d$.

(A2) (CCC construction) The conditional covariance matrix $V_t = \Sigma_t \Sigma_t'$ is almost surely positive definite for all t. A typical element of V_t is given as

$$v_{t,ij} = \rho_{t,ij} (v_{t,ii} v_{t,jj})^{1/2},$$
where \(i, j = 1, \ldots, d \). The parameter \(\rho_{t,ij} = \text{Corr}(x_{t,T_i}, x_{t,T_j} | F_{t-1}) \) is the conditional correlation between the coordinates \(i \) and \(j \) of the process \(\mathcal{X} \). It is assumed in the sequel that \(\rho_{t,ij} \) is constant over time: \(\rho_{t,ij} = \rho_{ij} \) for some scalars \(-1 \leq \rho_{ij} \leq 1\). Recall that by construction we have \(\rho_{ii} = 1 \).

(A3) (Functional form for conditional variances) The conditional variances have a nonparametric functional form given by

\[
\sigma_{t,i}^2 = \text{Var}(x_{t,T_i} | F_{t-1}) = F_i(\{r_{t-j,T_k} : j = 1, 2, \ldots; k = 1, \ldots, d\})
\]

where \(F_i \) is a function taking values in \(\mathbb{R}^+ \).

(A4) (Functional form for conditional means) The conditional mean \(\mu_t \) has a nonparametric functional form given by

\[
\mu_t = (\mu_{t,1}, \ldots, \mu_{t,d})',
\]

\[
\mu_{t,i} = G_i(\{r_{t-j,T_k} : j = 1, 2, \ldots; k = 1, \ldots, d\})
\]

where \(G_i \) is a function taking values in \(\mathbb{R} \).

Assumption (A1) is standard, for instance when working with multivariate time series models of the GARCH family. For estimation purposes a specific pseudo log likelihood for \(z_t \) (for instance a multivariate normal one) is introduced; see Section 2.2 below. Under Assumption (A2), the conditional covariance matrix \(V_t \) of model (2.1) is of the form

\[
V_t = \Sigma_t \Sigma_t' = D_t RD_t,
\]

where \(D_t = \text{diag}(\sigma_{t,1}, \ldots, \sigma_{t,d}) \) and \(R = [\rho_{ij}]_{i,j=1}^d \) is the matrix consisting of all (constant) correlations between the coordinates of the process \(\mathcal{X} \). The nonparametric functional forms (A3)-(A4) permit a rich specification of conditional means, variances and (indirectly) conditional covariances. For instance, cross-dependencies across the different interest rates can be modelled. Similarly, a mean reversion or a nonlinearity in conditional means can be accounted for, as well as functional forms for conditional volatilities that are dependent on the level of current and past interest rates. Several models in the literature are included in the above setting. For instance, the standard parametric CCC-GARCH model is encompassed by (2.1). Similarly, multivariate AR-CCC-GARCH models where conditional means \(\mu_{t,i} \) incorporate mean reversion in the standard way are special cases of the above setting. Finally, also
multivariate CCC-GARCH-type models with asymmetric volatilities are encompassed by the above specification. By Assumption (A2) model (2.1) avoids a time varying conditional correlations structure. Models with time varying correlations have been recently advocated by Engle and Sheppard (2001), among others, in a parametric Dynamic Conditional Correlations (DCC) multivariate GARCH setting. In contrast to DCC-type models the dynamics (2.1) is based through (A3), (A4) on a nonparametric functional form for conditional means and volatilities. This feature of the model can account for quite flexible (nonparametric) structures in the associated time varying conditional covariances. This is an important distinction of model (2.1) from parametric DCC-GARCH-type models that assume a parametric GARCH-type dynamics for conditional variances and correlations. Moreover, in our back-testing exercise on real data applications, we estimate all models using a rolling window. This empirical approach takes into account in a simple and effective way a possibly time-varying correlation structure in our time series of interest rate changes.

A nonparametric estimation of multivariate models of the form (2.1) in full generality is an unfeasible task, because of the curse of dimensionality problem which arises when the dimension d is not a very low one. A computationally tractable but still very general version of the nonparametric model (2.1) can be formulated and estimated within the Functional Gradient Descent (FGD) framework (Friedman et al., 2000, and Friedman, 2001). Applications of this methodology to the estimation of multivariate equity dynamics (see Audrino and Barone-Adesi, 2002 and Audrino and Bühlmann, 2003) have demonstrated that FGD is a powerful methodology which allows to construct accurate estimates and predictions for the multivariate conditional mean μ_t and volatility matrix V_t also for very large dimensions d. In this paper we apply the FGD technique to estimate the joint yield curve dynamics, from the very short maturity segments (i.e. the overnight maturity) up to its very long end (i.e. 10 to 30 years maturity rates). Unlike several studies on the estimation and the prediction of the yield curve, this approach avoids relying on dimension reduction technique like Principal Components or Factor Analysis (PCA and FA, respectively). This has several advantages. First, we do not need to rely on restrictive assumptions necessary to apply consistently PCA or FA in a general time series context based on stochastic conditional means and volatilities (see for instance Mardia, 1971, for an exposition of PCA and FA). Second, we can estimate the joint yield curve dynamics also over its very short term maturity spectrum where the high variability of short term interest rates can make the application of dimension reduction techniques cumbersome. Third, the joint term
structure dynamics estimated by FGD are directly interpretable in terms of observable interest rate variables and can be naturally related to the prices of further interest rates derivatives, as for instance forward rates. By contrast, in PCA or FA the estimated factors are typically interpreted ex post as some abstract shift-, slope- or curvature factors in the spot yield curve. These factors cannot be however naturally reconverted into forward rate factors without introducing implicitly strong restrictions in the estimated forward curve dynamics (see for instance Lekkos, 2000) for a discussion of this point). Finally, our full multivariate FGD approach allows us to account also for (possibly nonlinear) short-term feed-back effects of shocks in the very short end of the yield curve on conditional means and variances of medium and long term interest rates.

The next section introduces the FGD modelling approach in a version of model (2.1) under the Assumptions (A1)–(A4).

2.2 Conditional mean and volatility estimation using FGD

The main idea of FGD is to compute estimates \(\hat{G}_i(\cdot) \) and \(\hat{F}_i(\cdot) \) for the nonparametric functions \(G_i(\cdot) \) and \(F_i(\cdot) \), \(i = 1, \ldots, d \), which minimize a joint negative pseudo log likelihood \(\lambda \) under some constraints on the form of \(\hat{G}_i(\cdot) \) and \(\hat{F}_i(\cdot) \). More specifically, given an initial estimate \(\hat{G}_{i0}(\cdot) \) and \(\hat{F}_{i0}(\cdot) \), \(i = 1, \ldots, d \) – computed for instance from a parametric AR-CCC-GARCH model – estimates \(\hat{G}_i(\cdot) \) and \(\hat{F}_i(\cdot) \) are obtained as additive nonparametric expansions around \(\hat{G}_{i0}(\cdot) \) and \(\hat{F}_{i0}(\cdot) \). Such nonparametric expansions are based on some simple estimates of the gradient of the loss function \(\lambda \) in a neighborhood of the initial estimates \(\hat{G}_{i0}(\cdot) \) and \(\hat{F}_{i0}(\cdot) \). These simple estimates are derived from a base learner \(S \) least squares fitting.\(^2\) From the simple estimates of the gradient of the loss function \(\lambda \), FGD determines \(\hat{G}_i(\cdot) \) and \(\hat{F}_i(\cdot) \) as additive nonparametric expansions of \(\hat{G}_{i0}(\cdot) \) and \(\hat{F}_{i0}(\cdot) \) which minimize the joint negative pseudo log likelihood \(\lambda \). Therefore, FGD aims at producing estimates which improve locally the pseudo log like likelihood of some initial estimates \(\hat{G}_{i0}(\cdot) \) and \(\hat{F}_{i0}(\cdot) \) by means on nonparametric additive expansions \(\hat{G}_i(\cdot) \) and \(\hat{F}_i(\cdot) \).

Conditionally on the first \(p \) observations, the negative pseudo log likelihood implied by a

\(^2\)Well known examples of base learners are regression trees, projection pursuit, neural nets or splines; see also Friedman et al. (2000), Friedman (2001), Audrino and Barone-Adesi (2002), Audrino and Bühlmann (2003) and Bühlmann and Yu (2003) for more details.
"nominal" Gaussian distribution assumption for \(z_t \) in (2.1) is given by:

\[
- \sum_{t=p+1}^{n} \log \left((2\pi)^{-d/2} |V_t|^{-1/2} \exp(-\xi_t^T V_t^{-1} \xi_t/2) \right) = \sum_{t=p+1}^{n} \left(\log(\det(D_t)) + \frac{1}{2} (D_t^{-1} \xi_t)^T R^{-1} (D_t^{-1} \xi_t) \right) + n'd\log(2\pi)/2 + n'\log(\det(R))/2
\]

(2.2)

where \(\xi_t = x_t - \mu_t \), \(D_t \) is a diagonal matrix with elements \(\sqrt{v_{t,ii}} \) and \(n' = n - p \). Therefore, a natural conditional loss function for our FGD estimation procedure is

\[
\lambda_R(x, G, F) = \log(\det(D(F))) + \frac{1}{2} (D(F)^{-1}(x - G))^T R^{-1} (D(F)^{-1}(x - G)) + \frac{1}{2} \log(\det(R)) + \frac{d}{2} \log(2\pi),
\]

\[
D(F) = \text{diag}(\sqrt{F_1}, \ldots, \sqrt{F_d}),
\]

\[
x - G = (x_1 - G_1, \ldots, x_d - G_d)',
\]

(2.3)

where the terms \(d\log(2\pi)/2 \) and \(\log(\det(R))/2 \) are constants that do not affect the optimization.

As highlighted by the subscript \(R \), the loss function \(\lambda_R \) depends on the unknown correlation matrix \(R \). At any step of our FGD optimization procedure, the updated optimal values of \(R \), \(G \), \(F \) will be constructed by a two step procedure. For a given initial correlation matrix \(R \), updated estimates for all \(G_i \)'s and \(F_i \)'s are obtained by minimizing \(\lambda_R \) with respect to \(G \), \(F \). In a second step, given the updated estimates \(\hat{G} \) and \(\hat{F} \) the correlation matrix is updated using the empirical moments of the resulting standardized multivariate residuals. Therefore, given estimates \(\hat{G} = (\hat{G}_1, \ldots, \hat{G}_d) \) and \(\hat{F} = (\hat{F}_1, \ldots, \hat{F}_d) \), we compute the standardized residuals

\[
\hat{\varepsilon}_{t,i} = (x_{t,i} - \hat{G}_i(r_{t-1,\ldots,i}))/\hat{F}_i(r_{t-1,\ldots,i})^{1/2}, \ t = p + 1, \ldots, n
\]

to obtain the empirical correlation matrix

\[
\hat{R} = (n-p)^{-1} \sum_{t=p+1}^{n} \hat{\varepsilon}_t \hat{\varepsilon}_t^T, \ \hat{\varepsilon}_t = (\hat{\varepsilon}_{t,1}, \ldots, \hat{\varepsilon}_{t,d})',
\]

(2.4)

as an updated estimate of \(R \).

The optimization of \(\lambda_R \) with respect to \(G, F \) is performed by calculating the partial derivatives of the loss function \(\lambda_R \) with respect to all \(G_i \)'s and \(F_i \)'s. In our setting, they are given for any \(i = 1, \ldots, d \), by

\[
\frac{\partial \lambda_R(x, G, F)}{\partial G_i} = -\sum_{j=1}^{d} \gamma_{ij} (x_j - G_j) / F_j^{1/2} F_j^{1/2},
\]

(2.5)
and

\[\frac{\partial \lambda_R(x, G, F)}{\partial F_i} = \frac{1}{2} \left(\frac{1}{F_i} - \sum_{j=1}^{d} \frac{\gamma_{ij}(x_i - G_i)(x_j - G_j)}{F_j^{3/2} F_i^{1/2}} \right), \]

respectively, where \([\gamma_{ij}]_{i,j=1}^d = R^{-1}\). This step of the optimization suggests the name *Functional Gradient Descent*. Indeed, given initial estimates \(\hat{G}_{i0}(\cdot)\) and \(\hat{F}_{i0}(\cdot), i = 1, \ldots, d\), the above gradients are used by FGD to define a set of simple additive expansions of the functions \(\hat{G}_{i0}(\cdot)\) and \(\hat{F}_{i0}(\cdot)\). Such expansions improve the optimization criterion precisely in the directions of steepest descent of the loss function \(\lambda_R\). Moreover, since they define a nonparametric estimate of \(G\) and \(F\) the resulting optimization is a functional one.

Details on the FGD algorithm used in the paper are presented below. In Step 2 of the algorithm the above gradients are fitted by means of a base learner \(S\). In Step 3 and 4, the estimated gradients are used to define a set of additive expansions \(\hat{G}_{i0}(\cdot)\) and \(\hat{F}_{i0}(\cdot)\) which improve the optimization criterion precisely in the directions of steepest descent of \(\lambda\).

Algorithm: Estimating conditional means and volatilities

Step 1 (initialization). Choose appropriate starting function \(\hat{G}_{i0}(\cdot)\) and \(\hat{F}_{i0}(\cdot)\) and define for \(i = 1, \ldots, d\) and \(t = p + 1, \ldots, n\):

\[
\hat{G}_{i0}(t) = \hat{G}_{i0}(r_{t-1}, r_{t-2}, \ldots)
\]

\[
\hat{F}_{i0}(t) = \hat{F}_{i0}(r_{t-1}, r_{t-2}, \ldots).
\]

Compute \(\hat{R}_0\) as in (2.4) using \(\hat{G}_0\) and \(\hat{F}_0\). Set \(m = 1\). Natural starting functions in our application are univariate AR-GARCH estimates for the single components, \(i = 1, \ldots, d\), of the process \(X\). In particular, we remark that the conditional mean of interest rate changes in the initializing estimate depends on past multivariate interest rate levels in its autoregressive structure. Moreover, the GARCH structure of the chosen initializing variance functions implies FGD volatility estimates that are functions of the whole process history.

Step 2 (projection of component gradients to base learner). For every component \(i = 1, \ldots, d\), perform the following steps.

(I) (mean) Compute the negative gradient

\[
U_{t,i} = -\frac{\partial \lambda_{\hat{R}_{m-1}}(x_t, G, \hat{F}_{m-1}(t))}{\partial G_i}|_{G = \hat{G}_{m-1}(t), t = p + 1, \ldots, n}.
\]
This is explicitly given in (2.5). Then, fit the negative gradient vector \(U_i = (U_{p+1,i}, \ldots, U_{n,i})' \) with a base learner \(S \), using the first \(p \) time-lagged predictor variables (i.e. \(r_{t-p}^{t-1} = (r_{t-1}, \ldots, r_{t-p})' \) is the predictor for \(U_{t,i} \)):

\[
\hat{g}_{m,i}(\cdot) = S_X(U_i)(\cdot),
\]

where \(S_X(U_i)(x) \) denotes the predicted value at \(x \) from the base learner \(S \) using the response vector \(U_i \) and a predictor variable \(X \) (say). In our application, we use as predictor variables the first two lags of multivariate interest rate levels, i.e. \(p = 2 \).

(II) (volatility) Compute the negative gradient

\[
W_{t,i} = -\frac{\partial \hat{\lambda}_{R_m}(x_t, \hat{G}_{m-1}(t), F)}{\partial F_i} \bigg|_{F = \hat{F}_{m-1}(t)}, \ t = p + 1, \ldots, n.
\]

This is explicitly given in (2.6). Then, analogously to (I) fit the negative gradient vector \(W_i = (W_{p+1,i}, \ldots, W_{n,i})' \) with the base learner \(S \), using again the first \(p \) time-lagged predictor variables

\[
\hat{f}_{m,i}(\cdot) = S_X(W_i)(\cdot).
\]

As for the conditional mean function, in our application we use as predictor variables the first two lags of multivariate interest rate levels.

Step 3 (line search). Perform a one-dimensional optimization for the step-length,

\[
\hat{w}_{m,i}^{(\text{me})} = \arg\min_w \sum_{t=p+1}^n \lambda_{R_m}(x_t, \hat{G}_{m-1}(t), \hat{G}_{m-1}(t) + \hat{w}_{m,i}(r_{t-p}^{t-1}), \hat{F}_{m-1}(t)),
\]

\[
\hat{w}_{m,i}^{(\text{vol})} = \arg\min_w \sum_{t=p+1}^n \lambda_{R_m}(x_t, \hat{G}_{m-1}(t), \hat{F}_{m-1}(t) + \hat{w}_{m,i}(r_{t-p}^{t-1})),
\]

where \(\hat{G}_{m-1}(t) + \hat{w}_{m,i}(\cdot) \) and \(\hat{F}_{m-1}(t) + \hat{w}_{m,i}(\cdot) \) are defined as the functions which are constructed by adding in the \(i \)-th component only. This can be expressed more explicitly using the functional form (2.3).\(^3\)

Step 4 (up-date). Select the best component for the conditional mean and volatility, respectively, as

\[
i_m^{(\text{me})} = \arg\min_i \sum_{t=p+1}^n \lambda_{R_m}(x_t, \hat{G}_{m-1}(t), \hat{G}_{m-1}(t) + \hat{w}_{m,i}^{(\text{me})}(r_{t-p}^{t-1}), \hat{F}_{m-1}(t))
\]

\[
i_m^{(\text{vol})} = \arg\min_i \sum_{t=p+1}^n \lambda_{R_m}(x_t, \hat{G}_{m-1}(t), \hat{F}_{m-1}(t) + \hat{w}_{m,i}^{(\text{vol})}(r_{t-p}^{t-1})).
\]

\(^3\)The line search guarantees that the negative log-likelihood is monotonically decreasing in the number of iteration steps.
If the improvement in minimizing the empirical criterion (2.2) for the component \(i^*_m\) in the conditional mean is larger than the one for the component \(i^*_m\) in the conditional variance, then update as

\[
\hat{G}_m(\cdot) = \hat{G}_{m-1}(\cdot) + w^{(me)}_{m,i^*_m} \hat{g}_{m,i^*_m}(\cdot),
\]
\[
\hat{F}_m(\cdot) = \hat{F}_{m-1}(\cdot)
\]

and set \(j_m^* = 1\). Else, update as

\[
\hat{G}_m(\cdot) = \hat{G}_{m-1}(\cdot),
\]
\[
\hat{F}_m(\cdot) = \hat{F}_{m-1}(\cdot) + w^{(vol)}_{m,i^*_m} \hat{f}_{m,i^*_m}(\cdot)
\]

and set \(j_m^* = 2\). Then, compute the new estimate \(\hat{R}_m\) according to (2.4) using \(\hat{G}_m\) and \(\hat{F}_m\).

Step 5 (iteration). Increase \(m\) by one and iterate Steps 2–4 up to an optimal level \(m = M\). More details on the determination of \(M\) are given in Remark 4 below. The resulting functions \(\hat{G}_M\), \(\hat{F}_M\) are our FGD estimates for conditional means and volatilities. More formally, they are given by:

\[
\hat{G}_M(\cdot) = \hat{G}_0(\cdot) + \sum_{m=1}^{M} w^{(me)}_{m,i^*_m} \hat{g}_{m,i^*_m}(\cdot) I\{j_m^* = 1\}
\]
\[
\hat{F}_M(\cdot) = \hat{F}_0(\cdot) + \sum_{m=1}^{M} w^{(vol)}_{m,i^*_m} \hat{f}_{m,i^*_m}(\cdot) I\{j_m^* = 2\}.
\]

Remark 1. The base learner \(S\) in Step 2 determines the FGD estimates \(\hat{G}_M(\cdot)\) and \(\hat{F}_M(\cdot)\) via the predicted values of the gradient of the objective function \(\lambda\). The base learner should be a “weak” one - not involving a too large number of parameters to be estimated - in order to avoid an immediate overfitted estimate at the first iteration of the algorithm. The complexity of the FGD estimates \(\hat{G}_M(\cdot)\) and \(\hat{F}_M(\cdot)\) is increased by adding further nonparametric terms at every step of the above iterations. In our application, such additional terms are nonparametric functions of the first two lags of multivariate interest rate levels. We use decision trees as base learners, because particularly in high dimensions they are able to perform a very effective variable selection by selecting only a few explanatory variables as predictors. This is not an exclusive choice: further base learners could be applied and compared based on some form of cross-validation.
Remark 2. As mentioned, it is desirable to use sufficiently “weak” base learners in the above FGD algorithm. A simple effective way to reduce the complexity of a base learner is via shrinkage towards zero. In this case, the update Step 4 of the FGD algorithm can be replaced by an updating step given by:

\[\hat{G}_m(\cdot) = \hat{G}_{m-1}(\cdot) + \nu \cdot \hat{u}_{m,i}^{(me)} \hat{g}_{m,i}^{(me)}(\cdot) \text{ or} \]

\[\hat{F}_m(\cdot) = \hat{F}_{m-1}(\cdot) + \nu \cdot \hat{u}_{m,i}^{(vol)} \hat{f}_{m,i}^{(vol)}(\cdot), \]

(2.7)

where \(\nu \in [0, 1] \) is a shrinkage factor. This reduces the variance of the base learner by the factor \(\nu^2 \).

Remark 3. The initialization Step 1 in the above algorithm is crucial, since FDG aims at improving locally by means of nonparametric additive expansions the pseudo log likelihood criterion of an initial model estimate. Therefore, it is important to start from adequate initial estimates, in order to obtain a satisfactory performance. In our application we make use of the fit of a diagonal VAR(\(p_i \))-CCC-GARCH(1,1) model\(^4\) to initialize the FGD algorithm by means of functions \(G_{i,0}, F_{i,0}, i = 1, \ldots, d \), given by

\[G_{i,0}(r_{t-1}, r_{t-2}, \ldots) = \mu_{t,i} = \sum_{k=1}^{p_i} \phi_{k,i} x_{t-k,T_i}, \]

\[F_{i,0}(r_{t-1}, r_{t-2}, \ldots) = \sigma_{t,i}^2 = \alpha_{0,i} + \alpha_{1,i}(x_{t-1,T_i} - \mu_{t-1,i})^2 + \beta_{i} \sigma_{t-1,i}^2, \]

where the autoregressive parameter \(p_i \) is selected in order to optimize the Akaike’s Information Criterion (AIC) for each individual series \(i \). In particular, since such initial estimates depend on the whole history of the process in the GARCH–part of the model, the resulting FDG estimates also imply volatility structures that depend on the whole process history. Using a Gaussian pseudo likelihood function, we estimate by pseudo maximum likelihood this model for each of the \(d \) individual series, thereby neglecting in the first step the structure of the correlation matrix \(R \). This causes some statistical loss in efficiency but has the advantage that the model estimation remains fast and therefore computable also in very high dimensions \(d \).

Remark 4. The stopping criterion in Step 4,5, is important. It can be viewed as a regularization device which is very effective when fitting a complex model. We determine the stopping criterion by means of a cross validation scheme: for a given sample size \(n \), we split the (in-sample) estimation period into two subsamples, the first of sample size \(0.7 \cdot n \) (used as training set) and the

\[^4\text{See Bollerslev (1990) for more details.}\]
second of sample size 0.3·n (used as test set). The optimal value M to stop the algorithm is then chosen as the one which optimizes the cross-validated log-likelihood. In our 12-dimensional real data application, typical values of the selected parameter M ranged from $M = 10$ to $M = 20$.

Consistency results for the above FGD estimation procedure based on convex risk minimization are available; see, among others, Bühlmann (2002), Mannor et al. (2003), Zhang and Yu (2003), Zhang (2004) and Lugosi and Vayatis (2004). Most of these works consider regression or classification trees as base learners. We remark that such FGD–consistency proofs hold for additive expansions of the form (2.7) where the terms of order $m \geq 1$ are functions defined on a fix finite-dimensional domain. This is why in our algorithm we work with additive expansions where the higher order terms are functions only of a finite number p of lags in our multivariate interest rate series.

Our FGD procedure, connected with tree-structured base learners, provides a computationally feasible and simple method aiming at improving the pseudo log likelihood criterion, given a set of initial model estimates. FGD performs a one-dimensional sequence of estimated non-parametric mean and volatility functions which are optimized by selecting the optimal stopping value M with the above cross validation scheme. Based on the FGD estimates for the multivariate conditional mean vector μ_t and for the covariance matrix V_t, we apply a filtered historical simulation procedure to generate out-of-sample scenarios for the term structure of interest rates. Such a procedure is briefly reviewed in the next section.

2.3 Simulation of future yield curve scenarios

We generate future scenarios for the time series \mathcal{R} of interest rate changes (and consequently the time series \mathcal{X} of interest rate levels). To this end, we apply a multivariate version of the filtered historical simulation procedure proposed first by Barone-Adesi et al. (1998). Our historical simulation is based on a model-based bootstrap of multivariate filtered historical residuals, implied by an FGD estimation of the yield curve dynamics. Using the bootstrapped residuals, we construct out of sample scenarios for the term structure. The FGD model estimate is used as the filter for the estimation of standardized multivariate residuals.

More details on the complete simulation methodology are as follows. In a first step, we filter

5This cross-validation scheme has been shown to work well in empirical applications of FGD; see again Audrino and Barone-Adesi (2002) and Audrino and Bühlmann (2003).
the multivariate standardized innovations z_t with our model (2.1):

$$z_t = (\Sigma_t)^{-1}(x_t - \mu_t),$$

$$V_t = \Sigma_t \Sigma_t^T = D_t R D_t, \ t = 1, \ldots, n,$$

where the individual conditional mean functions $\mu_{t,i} = G_i(\cdot)$ and (squared) volatility functions $\sigma_{t,i}^2 = F_i(\cdot), \ i = 1, \ldots, d$ are estimated by means of our FGD technique, as described in detail by the algorithm of Section 2.2. Under Assumption (A1), the standardized multivariate innovations are i.i.d. and can be therefore bootstrapped. The historical standardized residuals are drawn randomly (with replacement) and are used to generate pathways for future interest rate changes (and, consequently, for future interest rate levels). Hence, we apply a model-based bootstrap (Efron and Tibshirani, 1993) where from an i.i.d. resampling of the standardized multivariate residuals z_t we recursively generate a time series of interest rates using the structure and the fitted parameters of the estimated optimal model (2.1).

Specifically, we draw randomly dates with corresponding standardized innovations

$$z_1^*, z_2^*, \ldots, z_x^*,$$ \hspace{1cm} (2.8)

where x is the time horizon at which we want to generate future scenarios (typically, from 1 up to 10 days). We then construct for each time to maturity T_i pathways for future conditional means and (squared) volatilities and interest rate levels, from time $n+1$ up to time $n+x$ (say), based on the model structure (2.1). More formally we compute the quantities

$$\hat{\mu}_{t+b,i} = \hat{G}_i(\{r_{t+b-s,k}^*; s = 1, 2, \ldots, p, k = 1, \ldots, d\}),$$

$$\hat{\sigma}_{t+b,ii} = (\hat{\sigma}_{t+b,i})^2 = \hat{F}_i(\{r_{t+b-s,k}^*; s = 1, 2, \ldots, p, k = 1, \ldots, d\}),$$

$$\hat{\rho}_{t+b,ij} = \hat{\rho}_{ij} \sqrt{\hat{\sigma}_{t+b,ii} \hat{\sigma}_{t+b,jj}},$$

$$x_{t+b,T_i} = \hat{\mu}_{t+b,i} + (\hat{\Sigma}_{t+b,j}^*)_{ij},$$

$$r_{t+b,T_i} = r_{t+b-1,T_i}^* + x_{t+b,T_i}^*, \ b = 1, \ldots, x, \ i, j = 1, \ldots, d,$$ \hspace{1cm} (2.9)

where all quantities denoted by “$\hat{\cdot}$” are based on the model structure estimated by means of the FGD algorithm in section 2.2.

The “empirical” distribution of simulated model-based interest rate levels at the chosen future time point $n+x$ for each series $i = 1, \ldots, d$, is obtained by replicating the above procedure a large number of times, e.g. 2000 times. Confidence bounds for the term structure of interest rates at the future time point $n+x$ for a confidence level q are finally estimated by the lower and
upper $\frac{1-q}{2}$-quantiles of the simulated “empirical” distribution of interest rates. In our exposition we focus for brevity on confidence levels $q = 0.90, 0.95, 0.99$. However, any other quantile of the simulated interest rates distribution could be estimated in the same way.

3 Empirical Results

In this section we back-test on real data our FGD scenario generation technique for forecasting horizons $x = 1, 3, 5, 10$ days and for three different confidence levels $q = 0.90, 0.95, 0.99$.

We compare the performance of our approach with three historical simulation procedures based on (i) a three factor analysis for the yield curve dynamics as in Diebold and Nerlove (1989), (ii) the industry standard benchmark\(^\text{6}\) used by RiskMetrics\(^\text{TM}\) and (iii) a standard multivariate AR-CCC-GARCH model. The third comparison is particularly useful, because it highlights the exact contribution of the FGD technique in enhancing the accuracy of VaR predictions for the yield curve relatively to a standard multivariate GARCH model.

3.1 Data

We consider multivariate time series for the yield curves of daily interest rate levels r_{t,T_i} at twelve different maturities T_i. For the lowest maturity segments, i.e. overnight, 1 week, 2 weeks, 1 month, 2 months, 3 months, 6 months and 1 year, we make use of Euro dollar interest rates. For the higher maturities, i.e. 2 years, 5 years, 10 years and 30 years, we make use of interest rates of US government bonds. The data span the time period between January 1, 1996 and September 30, 2002, for a total of 1760 trading days, and have been downloaded from Data Stream International. We split our sample in a back-testing period used to test the predictive accuracy of our FGD methodology and an in-sample estimation period used to initialize the model parameter estimates. The back-testing period goes from January 3, 2000 to September 30, 2002, for a total of 716 trading days. In our back-testing exercise the model

\[^6\text{RiskMetrics}^\text{TM}\] uses an EWMA conditional variance estimator of the form

$$V_t = (1 - \lambda)\xi_{t-1}\xi_{t-1}^T + \lambda V_{t-1}, \; \lambda = 0.94,$$

where V_0 can be fixed to be the sample covariance matrix or some presample data selection used to initialize the smoother. This model is extremely easy to estimate since it contains only one parameter of interest. One obvious drawback is that it forces all assets to have the same smoothing coefficient $\lambda = 0.94$, irrespectively of the specific dynamic features of a given interest rate.
parameters are re-estimated every 20 working days, as new data become available for prediction purposes, using all multivariate past observations in the estimation of the model dynamics. The updated conditional mean and volatility dynamics are then used to compute out of sample VaR predictions based on historical simulation for the whole back-testing period.

Table 1 presents summary statistics of the time series of interest rate changes in our sample. Figure 1 plots the yield curves in our sample as a function of time and maturity.

TABLE 1 AND FIGURE 1 ABOUT HERE.

Table 1 shows that the sample means of all interest rate changes in our sample are negative, highlighting the fact that in our back-testing period the Fed reduced several times the target interest rate. This effect is more pronounced for interest rates up to 2 years times to maturity and is clearly visible in Figure 1. In particular, we can expect a back-test based on such a time span to be a quite hard test for a VaR prediction model. Finally, the volatilities for interest rates up to 1 month time to maturity tend to be larger than those of interest rates corresponding to further time to maturities. The Ljung-Box statistics LB(20) testing for autocorrelations in the level of interest rate changes up to the 20th order are strongly significant for maturities up to 1 year, showing evidence of some autocorrelation at shorter times to maturity for the euro bonds interest rates in our sample. For higher times to maturity they are not significant at the 5% confidence level.

The |LB(20)| statistics for testing the null hypothesis of no autocorrelation in the absolute interest rate changes are all highly significant, supporting a volatility clustering hypothesis. Finally, when analyzing the sample correlations between interest rates of different maturities (not reported here) we observe that, as expected, the time series of interest rate changes of different times to maturities are positively correlated, with higher correlations for the longer times to maturity; for example, the sample correlations of interest rate changes at 3 and 6 months and at 2 and 5 years are 0.73 and 0.91, respectively.

Starting from these summary statistics, it is reasonable to model the joint yield curve dynamics based on some multivariate GARCH-type model of the general form (2.1). We apply the FGD technique of Section 2 and investigate the accuracy of its VaR predictions. In particular, using FGD we can account for a possibly non-linear dependence between multivariate interest rate series. Moreover, we do not need any dimension reduction technique like FA. In fact, historical simulation combined with a FA of the joint yield curve dynamics provides very poor,
typically too conservative, VaR predictions in our study. This holds also for forecasts of interest rates in the long term maturity spectrum. To investigate this issue we estimated a three factor model as in Diebold and Nerlove (1989) with our yield curve data and computed the implied out-of-sample VaR predictions using historical simulation. We applied such FA to several subsets of times to maturity in our sample, in order to control for the impact of the highly variable short-term interest rates on the prediction results implied by such a FA. However, we always obtained poor, typically too conservative, interest rate interval estimates.

As an illustration, Figure 3 presents the estimated one day ahead 95%-confidence intervals for the 10-years maturity interest rate when using the FGD– (dot dashed curves) and the FA–based (dotted curves) approaches. Similar findings arise for the other maturities.

FIGURE 2 ABOUT HERE.

In Figure 3 it appears clearly that the interval estimates provided by the FA-based approach are very large and much broader than those obtained with the FGD–based approach. For instance, at some dates – especially after periods of suddenly higher interest rate volatility – the length of the intervals provided by the FA–methodology is almost 200 basis points (see for instance the intervals around March 1, 2001 and March 1, 2002). Such confidence intervals lengths are too large for applied risk management purposes. Moreover, they are also too conservative. Indeed, in a formal back-testing analysis not reported here the realized number of exceedances of confidence intervals produced by the FA–based approach was most of the times significantly lower than the one expected under the given confidence level. Intuitively, this conservative behavior happens because the part of volatility dynamics that is not filtered by the FA-based approach inflates the variability of the filtered interest rates residuals in the resulting historical simulation procedure: when bootstrapping such residuals to compute out-of-sample interest rate confidence intervals their excess variability generates too conservative interval estimates. Such effects arise also when applying FA to lower dimensional subsets of the maturities available in our data set. Since the interest rate interval estimates and the back-testing results implied by the FA-based approach are so poor, we do not discuss them in more detail in the rest of the paper.

The next sections present our back-testing results for one day prediction intervals and analyze in a second step those for longer forecasting horizons. We focus on the comparison of our FGD–based approach with the one used by RiskMetrics™ and a filtered historical simulation
procedure based on a standard multivariate AR-CCC-GARCH model.

3.2 Yield curve confidence envelopes: some preliminary evidence

We examine and compare the out-of-sample performance and the accuracy of ahead confidence bounds for the yield curve, computed by means of three historical simulation-based procedures: the industry standard benchmark used by RiskMetrics™, one based on a standard multivariate AR-CCC-GARCH model dynamics and, finally, one based on the FGD approach. For any available time to maturity and any time in the back-testing sample we compute by historical simulation confidence intervals on the value of the corresponding future interest rates. By plotting these confidence bounds as a function of time to maturity we can obtain for each methodology a set of out-of-sample confidence "envelopes" for the whole yield curve at any relevant date. Examples of such yield curve confidence envelopes are presented in Figure 3, where we plot the realized yield curves at some given dates, together with the 95%-confidence envelopes obtained by means of filtered historical simulation based on the RiskMetrics™ approach (the dotted lines in Figure 2) and the FGD technique (the dash-dotted lines in Figure 2), respectively.

FIGURE 3 ABOUT HERE.

The term structure realizations presented in Figure 2 suggest at first sight that both methodologies yield reasonable confidence envelopes. In particular, in almost all graphs of Figure 2, the realized yield curves lie inside the corresponding 95%-confidence envelopes. A small exceedance of the FGD-based envelope bounds is observed for instance in the term structure on March 13, 2001, at weekly maturities. For the RiskMetrics™ approach one relatively large exceedance is observed on January 5, 2001, at the two months maturity. The FGD-based procedure seems to replicate better some particular shapes of the observed yield curves, especially at the shorter times to maturity. Indeed, in some cases the term structure envelopes based on the RiskMetrics™ methodology appear to be too smooth as a function of time to maturity (see again for instance the graph in Figure 2 for the term structure on January 5, 2001).

In contrast to the results for the factor analysis, neither the RiskMetrics™ nor the CCC–based confidence intervals seem to be systematically more or less conservative than those under the FGD-methodology. To illustrate this point Figure 4 presents Box-Plots of the confidence interval lengths produced by RiskMetrics™ and by FGD for the ten years maturity interest rates and at confidence levels 95% and 99%.
From these graphs, the median interval length under the RiskMetrics™ methodology appears to be lower than under FGD at the 95% and the 99% confidence levels. At the same time, the variability of the arising interval lengths for the RiskMetrics™ methodology is higher than for FGD, especially at the 95% confidence level. Such patterns are a direct consequence of the different implicit dynamic structures of confidence intervals estimated by means of the RiskMetrics™ and the FGD approaches. A comparison related to the one in Figure 4 is presented in Figure 5, presenting Box-Plots of the one-day up to 10 days ahead 95% confidence interval lengths estimated for the 5 years maturity interest rates by an AR-CCC-GARCH–based and a FGD-based methodology.

In Figure 5 we observe that the median interval lengths implied by an AR-CCC-GARCH approach are all lower than those implied by FGD. In contrast to the comparison with RiskMetrics™ in Figure 4, the AR-CCC-GARCH–based methodology implies also lower interquartile ranges of interval lengths than FGD for the 5 years maturity interest rate under scrutiny. However, the AR-CCC-GARCH–based approach also implies quite a few extreme interval lengths that are much larger than the corresponding ones under FGD (see for instance the top left panel in Figure 5). This is mainly a consequence of the higher time instability of interval lengths computed by the AR-CCC-GARCH–based methodology when large changes in interest rates occur; see also Section 3.5 below.

3.3 Back-testing one-day ahead confidence bounds

To compare more consistently and more precisely the effective performance or the above VaR prediction methodologies it is necessary to perform some more formal statistical back-tests. To test the predictive performance of confidence envelopes of the yield curve we use two types of statistical tests, which are based on the frequency and the duration of yield curve envelope exceedances, i.e. the actual interest rate observations r_{t,T_i} that happen to fall outside the predicted confidence envelopes.

The first type of tests are standard overall frequency tests. Such tests test the hypothesis that the expected number of exceedances is compatible with the given confidence interval. For
example, for a 95%-confidence envelope and a sample of 1000 back-testing days, one should expect 50 exceedances at any give time to maturity. In Table 2 we report for all methodologies under scrutiny the observed number of exceedances of one-day ahead confidence bounds for each time to maturity T_i, from 1 month to 30 years, i.e. $i = 4, ..., 12$. For shorter times to maturity no methodology could provide accurate VaR estimation procedures in our sample. We report the observed number of exceedances at the confidence levels 0.9, 0.95, 0.99 for the FGD-based methodology (CCC-FGD), the RiskMetrics™ approach (RM) and the historical simulation methodology based on a standard multivariate AR-CCC-GARCH dynamics (CCC). Under the null hypothesis, the observed number of exceedances is binomially distributed with a standard deviation ranging from 8.027 (for the 90%-confidence level) to 2.662 (for the 99%-confidence level). Back-testing results marked by one and two asterisks, respectively, denote a significant difference from the expected number of exceedances under the null hypothesis at the 5% and the 1% test nominal level, respectively.

TABLE 2 ABOUT HERE.

From Table 2, we observe that the FGD-based historical simulation strategy is the one that produces the lowest number of null hypothesis rejections when using overall frequency tests. In particular, for the 95% and the 99%-confidence envelopes we remark that only in one case a significant difference from the expected number of exceedances is observed. The RiskMetrics™ approach yields very often confidence intervals that are too tight and are therefore often violated a significantly larger number of times than expected under the null hypothesis. Similarly, also a standard CCC-GARCH-based historical simulation produces often too tight confidence intervals, especially for short and intermediate time to maturities. Based on the results of pure overall frequency tests we conclude that the joint non-linear dependence of the yield curve dynamics estimated by FGD improves the accuracy of one day ahead interest rate confidence intervals computed by historical simulation.

A second type of tests that can be applied in our back-testing exercise are likelihood-ratio Weibull duration tests; see Christoffersen and Pelletier (2004). The basic idea of these tests relies on the fact that if a model for constructing the VaR confidence intervals at a confidence level q is correctly specified, then the conditional expected duration between consecutive exceedances - i.e. the expected no-hit duration - is constant and equal to $1/q$ days. Such an hypothesis can
be tested as follows. Let \(D_j = t_j - t_{j-1} \) be the no-hit duration for time \(t_j \), where \(t_j \) denotes the day of exceedance number \(j \). Then, under the null hypothesis that the model is correctly specified, \(E(D_j) = 1/q \) days for any \(j = 1, 2, ... \). This hypothesis can be tested together with the independence hypothesis on the process of no-hit durations against some specific dependence alternative. To this end, we consider alternatives where the distribution of no-hit durations is a Weibull distribution with density given by

\[
f_W(D; a, b) = a b D^{b-1} \exp\left(-\left(aD\right)^b\right),
\]

where \(a, b > 0 \). The exponential distribution with parameter \(a \) then implies the only memoryless (continuous) random distribution in this class, which emerges as the special case \(b = 1 \). Thus, the null hypothesis of the likelihood-ratio Weibull duration test is

\[
H_0 : \ b = 1 \text{ and } a = q,
\]

where \(b = 1 \) is implied under the null hypothesis of independence. Let \(\{C_j : j = 1, \ldots, n\} \) be the hit sequence of \(\{0, 1\} \) random variables that indicate if a no-hit duration \(D_j \) is censored \((C_j = 0)\) or if it is not \((C_j = 1)\). For a given hit sequence and a given sequence of no-hit durations \(D = \{D_j : j = 1, \ldots, n\} \) the log-likelihood is given by

\[
\log L(D; \theta) = (1 - C_1) \log \left(S(D_1)\right) + (1 - C_n) \log \left(S(D_n)\right) + \sum_{j=1}^{n} \left(C_j \log \left(f_W(D_j)\right)\right),
\]

where in the case of a censored observation we merely know that no hit has been observed between time 0 and \(D_1 \) or between time \(\sum_{j=1}^{n-1} D_j \) and \(D_n \), respectively. In this case, the contribution to the likelihood is given by the survival function \(S(D_j) = \exp\left(-\left(aD_j\right)^b\right) \). The standard likelihood-ratio test statistic for testing (3.2) is then given by

\[
LR = -2 \left(\log L(D; \hat{a}, \hat{b}) - \log L(D; 1, a) \right),
\]

where \(\hat{a}, \hat{b} \) are the maximum likelihood estimators of the parameters \(a, b \). This statistic is asymptotically chi-square distributed with two degrees of freedom.\(^9\)

\(^7\)See also Kiefer, 1988 or Gourieroux, 2000 for a general introduction to duration modelling.

\(^8\)If the hit sequence \(\{C_j : j = 1, \ldots, n\} \) starts (ends) with 0 then \(D_1 \) (\(D_n \)) is the number of days until we get the first exceedance (number of days after the last exceedance) and \(C_1 = 0 \) (\(C_n = 0 \)). If instead the hit sequence starts (ends) with a 1, then \(C_1 = 1 \) and \(D_1 \) is simply the number of days until the second exceedance (then \(C_n = 1 \) and \(D_n = t_n - t_{n-1} \)).

\(^9\)It is also possible to compute finite sample critical values for the above statistics by means of Monte Carlo simulation. Our results do not change in an essential way when doing that. We therefore further use standard asymptotic critical values.
Results of the above likelihood-ratio Weibull duration tests for 1-day ahead yield curve confidence bounds are reported in Table 3 below for our FGD-based historical simulation procedure (CCC-FGD), for the RiskMetrics™ one (RM) and for a multivariate AR-CCC-GARCH model based approach (CCC).

TABLE 3 ABOUT HERE.

As for the overall frequency tests an FGD-based historical simulation procedure is the one that clearly produces the lowest number of rejections of the relevant null hypothesis. Indeed, the only rejections are observed at the 95% confidence level for the one month and the six months times to maturity. The RiskMetrics™ approach yields confidence bounds which, especially for the 99% confidence level, are inconsistent with the hypothesis of independent durations between consecutive exceedences. The AR-CCC-GARCH model based approach produces 8 null hypothesis rejections at the different confidence levels, especially for time to maturities up to one year. These findings confirm that the joint non-linear dependence of the yield curve dynamics estimated by FGD improves the accuracy of VaR confidence intervals computed by historical simulation.

3.4 Back-testing confidence bounds for longer forecasting horizons

Accuracy of the above interest rates prediction methodologies for forecasting horizons longer than one day is investigated next. In this context, we found that for times to maturity up to about one year all historical simulation approaches under scrutiny produced a poor predictive power and inaccurate confidence interval estimates, with confidence bounds that were often violated several times in a row. A more detailed data inspection showed that this is due principally to a sequence of multiple big interest rate shocks on the Euro market (often with changes larger than 0.3%-0.4%) caused by several adjustments in the Fed’s target rate during the second part of our back-testing period. In the sequel we therefore focus on several days ahead interest rate predictions for longer terms to maturity between two years and thirty years. We remark, however, that interest rates in the short maturity spectrum still affect the forecasts of longer term interest rates, because they typically influence the conditional mean vector and the conditional covariance matrix in our estimated multivariate model for interest rate changes.

Results of overall frequency tests on the total number of exceedances at prediction horizons of 3, 5 and 10 days are summarized in Table 4 for the FGD-based approach (CCC-FGD), the
RiskMetricsTM approach (RM) and the approach based on a multivariate AR-CCC-GARCH model (CCC).

TABLE 4 ABOUT HERE.

To correct for the autocorrelation in the series of exceedances under overlapping measurement intervals, we estimated the relevant standard errors using a Newey and West (1987) covariance matrix estimator with truncation parameter $x - 1$, where x is the forecasting horizon.

From Table 4 we see that also for longer forecasting horizons the FGD-based approach produces clearly better back-testing results, with only one null hypothesis rejection at the ten days forecasting horizon for the two years maturity interest rate. At the same time, the RiskmetricsTM and the AR-CCC-GARCH methodologies provide a very bad back-testing performance, with 17 and 20 null hypothesis rejections, respectively, across the different forecasting horizons and confidence levels. These findings suggest that the joint non-linear dependence of the yield curve dynamics estimated by FGD improves even more crucially the VaR confidence intervals computed by historical simulation for longer forecasting horizons. Indeed, in terms of the pure number of null hypothesis rejections a standard AR-CCC-GARCH-based approach without FGD does not perform better in our study than a very simple RiskmetricsTM approach. It is interesting to remark that the nonparametric conditional mean and variance functions estimated by FGD for maturities from 2 to 30 years typically contain also lagged interest rates in the short-term spectrum of the yield curve. Therefore, the inclusion of such lagged short-term interest rates as instruments in a nonparametric FGD–approach enhances the quality of several days ahead interval predictions for longer term interest rates. A comparable quality in the forecasting ability of longer term interest rates could not be attained by means of (i) a three factor analysis of the yield curve dynamics, (ii) a RiskmetricsTM–type approach or (iii) a parametric AR-CCC-GARCH–based historical simulation procedure.

3.5 Confidence intervals for bond returns

An accurate yield curve scenarios generation technique can be used to compute the implied confidence intervals and risk measures for, in principle, any interest rate derivative. To this end, any generated yield curve scenario can be mapped into a corresponding derivative price scenario, to obtain an historically simulated distribution of derivative prices. For instance, such an historically simulated distribution of derivative prices can be used to compute the VaR or the
Expected Shortfall of a derivative return for different short-term forecasting horizons. Such an exercise gives insight into the potential losses that are associated with the underlying interest rate risk factors. For derivative prices that depend on several interest rate points on the yield curve (for instance, a simple spread portfolio) it is important to have a procedure generating accurate interest rates scenarios at the same time for (i) several interest rate maturities and (ii) several quantiles of the historical interest rate distribution.10 From the empirical results in the last sections, the FGD–based historical simulation approach is the one which, among the methodologies studied in the paper, better fulfills these two requirements.

To illustrate the computation of the loss distribution for a simple derivative in the above historical simulation setting, consider the problem of computing three days ahead confidence intervals for the returns of a simple 10 years maturity US Treasury Notes. From the simulated 10 years interest rates we can easily compute the corresponding simulated three days bond returns and, from their simulated distribution, compute the associate return confidence intervals. The resulting dynamic three days ahead 99%-confidence intervals and the associated realized returns are presented in Figure 6 for (i) the RiskmetricsTM–type approach, (ii) the parametric AR-CCC-GARCH–based historical simulation procedure and (iii) the technique based on FGD.

\textbf{Figure 6 ABOUT HERE.}

In the top panel of Figure 6 the comparison between the RiskmetricsTM and the FGD-methodology shows that the first one tends to produce too liberal confidence intervals over time, especially in the lowest estimated quantiles of bond returns. This pattern causes a large number of realized losses that violate strongly and too often the estimated confidence bounds (see for instance the time periods around January 2001, May 2001 and November 2001). The realized number of exceedances (19) is consistent with the results in Table 4 and is significantly too high. The FGD–based methodology, instead, produces wider confidence bounds and less severe exceedances. The realized number of exceedances (7) is consistent with the results in Table 4 and is not statistically significantly different from the one expected under the null of a correct VaR prediction model.

The comparison between the AR-CCC-GARCH– and the FGD–based approaches is presented in the bottom panel of Figure 6. As a general remark, we observe an approximate10Clearly, not all interest rate derivatives will have a distribution of prices where upper and lower quantiles are associated only with the upper and lower quantiles of the interest rates affecting the derivative prices.
tendency of both approaches to estimate confidence intervals with similar interval lengths. However, the confidence intervals estimated by the AR-CCC-GARCH–based approach can happen to be too tight and are also more variable over time, especially in periods of very variable interest rates and bond returns (see for instance the time period between May 2001 and May 2002). Such a higher variability of the estimated confidence interval lengths implies in some cases a too liberal confidence interval estimate and a corresponding back-testing exceedance. The realized number of exceedances (14) is consistent with the results in Table 4 and is statistically significantly different from the one expected under the null of a correct VaR prediction model.

4 Conclusions

We proposed a multivariate nonparametric technique based on FGD and historical simulation to generate more reliable scenarios and confidence intervals for the term structure of interest rates from historical data. The methodology is computationally feasible in large dimensions and can account for a non-linear time series dependence of interest rate at all available maturities. We back-tested our methodology on daily USD bond data and found that its out-of-sample accuracy is higher than the one of further scenario generating technologies based on factor analysis, a multivariate AR-CCC-GARCH model, or the exponential smoothing volatility forecasting technique used by the RiskMetrics™ approach. At forecasting horizons of one day, FGD provided accurate multivariate VaR computations for time to maturities between one month and thirty years. For longer horizons (i.e. ten days) accurate VaR predictions are obtained for time to maturities between roughly one and thirty years.
References

Figure 1: Term structure data: the sample consists of 1760 daily observations between January 1, 1996 and September 30, 2002 for twelve times to maturity $T_i = $ overnight, 1 week, 2 weeks, 1 month, 2 months, 3 months, 6 months, 1 year, 2 years, 5 years, 10 years, 30 years.
Table 1: Summary statistics on time series of interest rate changes (in %) at twelve different maturities for the time period between January 1, 1996 and September 30, 2002, for a total of 1760 observations. Sample sdev, LB(20) and |LB(20)| are the sample standard deviations and the Ljung-Box statistics testing for autocorrelation in the time series of interest rate changes and absolute interest rate changes, respectively, up to the 20th lag. Asterisks indicate statistical significance at the 5% confidence level.
Figure 2: Realized yield curves (solid line) and one day ahead 95%-confidence envelopes using (i) the FGD–based setting (dot dashed lines) and (ii) the RiskMetricsTM approach (dotted lines) in the estimation of conditional means and volatilities for the corresponding historical simulation procedure. The plotted yield curve envelopes are for some selected dates in the backtesting period from January 1, 2000, to September, 30, 2002. The maturity index $i = 1, \ldots, 12$ in the graphs corresponds to twelve ordered maturities: overnight, 1 week, 2 weeks, 1 month, 2 months, 3 months, 6 months, 1 year, 2 years, 5 years, 10 years, 30 years.
Figure 3: Out-of-sample one day ahead 95% interest rate interval estimates for the 10–year maturity bond. The straight line is the realized interest rate level. The two dotted lines are the estimated upper and lower interest rate quantiles when using the FA–based approach. The two dot dashed lines are the estimated upper and lower interest rate quantiles when using the FGD–based approach.
Figure 4: One day ahead confidence interval lengths for the 10–years maturity interest rate under a 95% (left panel) and a 99% (right panel) confidence level. In each panel, the right (left) Box Plot is for the RiskMetricsTM–based (the FGD–based) approach.
Figure 5: One day (left top panel), three days (right top panel), five days (left bottom panel) and ten days (left right panel) ahead confidence interval lengths for the 5–years maturity interest rate under a 95% confidence level. In each panel, the right (left) Box Plot is for the CCC-AR-GARCH–based (the FGD–based) approach.
Figure 6: Three days ahead confidence intervals for the 10–years maturity zero bond return under a 99% confidence level. In each panel the straight line is the realized bond return. In the upper panel, the two dotted lines are the estimated upper and lower return quantiles when using the RiskmetricsTM–based approach. The two dot dashed lines are the estimated upper and lower return quantiles when using the FGD–based approach. In the bottom panel, the two dotted lines are the estimated upper and lower return quantiles when using the parametric AR-CCC-GARCH–based approach. The two dot dashed lines in the bottom panel are again the estimated upper and lower return quantiles when using the FGD–based approach.
<table>
<thead>
<tr>
<th>Maturity</th>
<th>Confidence level</th>
<th>90%</th>
<th>95%</th>
<th>99%</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>CCC-FGD</td>
<td>RM</td>
<td>CCC</td>
<td>CCC-FGD</td>
</tr>
<tr>
<td>Expected</td>
<td>71.6</td>
<td>35.8</td>
<td>7.16</td>
<td></td>
</tr>
<tr>
<td>1 month</td>
<td>61</td>
<td>49**</td>
<td>86*</td>
<td>26</td>
</tr>
<tr>
<td>2 months</td>
<td>75</td>
<td>59</td>
<td>99**</td>
<td>37</td>
</tr>
<tr>
<td>3 months</td>
<td>76</td>
<td>55*</td>
<td>104**</td>
<td>40</td>
</tr>
<tr>
<td>6 months</td>
<td>77</td>
<td>74</td>
<td>88*</td>
<td>44</td>
</tr>
<tr>
<td>1 year</td>
<td>84</td>
<td>69</td>
<td>106**</td>
<td>53**</td>
</tr>
<tr>
<td>2 years</td>
<td>83</td>
<td>80</td>
<td>91*</td>
<td>39</td>
</tr>
<tr>
<td>5 years</td>
<td>87*</td>
<td>80</td>
<td>93**</td>
<td>39</td>
</tr>
<tr>
<td>10 years</td>
<td>91*</td>
<td>80</td>
<td>85</td>
<td>40</td>
</tr>
<tr>
<td>30 years</td>
<td>85</td>
<td>78</td>
<td>81</td>
<td>38</td>
</tr>
</tbody>
</table>

Table 2: Overall frequency tests: exceedances for one-day ahead confidence bound forecasts recorded for times to maturity between one month and 30 years in the backtesting period from January 3, 2000 to September 30, 2002 (for a total of 716 trading days). The predictions are constructed using the FGD algorithm of Section 2 (CCC-FGD), the RiskMetrics™ approach (RM) and a standard multivariate AR-CCC-GARCH model. Results marked with one and two asterisks show significance at the 5% and the 1% confidence levels, respectively, for binomial tests investigating differences from the expected number of exceedances.
<table>
<thead>
<tr>
<th>Maturity</th>
<th>90% FGD</th>
<th>90% RM</th>
<th>90% CCC</th>
<th>95% FGD</th>
<th>95% RM</th>
<th>95% CCC</th>
<th>99% FGD</th>
<th>99% RM</th>
<th>99% CCC</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 month</td>
<td>5.58</td>
<td>13.9**</td>
<td>4.02</td>
<td>8.52*</td>
<td>8.06*</td>
<td>1.32</td>
<td>2.06</td>
<td>29.8**</td>
<td>5.82</td>
</tr>
<tr>
<td>2 months</td>
<td>0.08</td>
<td>6.99*</td>
<td>9.81**</td>
<td>0.17</td>
<td>2.95</td>
<td>9.13*</td>
<td>0.13</td>
<td>17.5**</td>
<td>0.02</td>
</tr>
<tr>
<td>3 months</td>
<td>5.78</td>
<td>5.01</td>
<td>12.4**</td>
<td>2.02</td>
<td>0.72</td>
<td>10.6**</td>
<td>0.30</td>
<td>27.2**</td>
<td>6.27*</td>
</tr>
<tr>
<td>6 months</td>
<td>0.47</td>
<td>1.85</td>
<td>3.31</td>
<td>1.36</td>
<td>7.30*</td>
<td>4.57</td>
<td>0.37</td>
<td>58.9**</td>
<td>2.91</td>
</tr>
<tr>
<td>1 year</td>
<td>7.05</td>
<td>0.19</td>
<td>13.8**</td>
<td>5.95</td>
<td>2.92</td>
<td>9.22**</td>
<td>0.61</td>
<td>40.9**</td>
<td>3.13</td>
</tr>
<tr>
<td>2 years</td>
<td>5.95</td>
<td>0.85</td>
<td>5.76</td>
<td>0.45</td>
<td>4.51</td>
<td>0.49</td>
<td>1.18</td>
<td>13.8**</td>
<td>3.14</td>
</tr>
<tr>
<td>5 years</td>
<td>3.12</td>
<td>1.13</td>
<td>6.14*</td>
<td>0.17</td>
<td>3.75</td>
<td>1.34</td>
<td>3.41</td>
<td>18.7**</td>
<td>1.39</td>
</tr>
<tr>
<td>10 years</td>
<td>4.46</td>
<td>0.80</td>
<td>2.77</td>
<td>0.57</td>
<td>5.06</td>
<td>1.31</td>
<td>1.85</td>
<td>18.4**</td>
<td>0.85</td>
</tr>
<tr>
<td>30 years</td>
<td>2.15</td>
<td>1.68</td>
<td>0.95</td>
<td>0.06</td>
<td>1.60</td>
<td>0.98</td>
<td>3.41</td>
<td>8.14*</td>
<td>1.36</td>
</tr>
</tbody>
</table>

Table 3: Likelihood-ratio Weibull duration tests: exceedances for one-day ahead confidence bound forecasts recorded for the same maturities of Table 2 in the backtesting period from January 3, 2000 to September 30, 2002 (for a total of 716 trading days). The predictions are constructed using the FGD algorithm of Section 2 (FGD), the RiskMetrics™ approach (RM) and a standard multivariate AR-CCC-GARCH model (CCC). Results marked with one and two asterisks show significance at the 5% and the 1% confidence levels, respectively.
<table>
<thead>
<tr>
<th>Maturity</th>
<th>90%</th>
<th>95%</th>
<th>99%</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>CCC-FGD</td>
<td>RM</td>
<td>CCC</td>
</tr>
<tr>
<td>Expected</td>
<td>71.6</td>
<td>35.8</td>
<td>7.16</td>
</tr>
<tr>
<td>2 years</td>
<td>86</td>
<td>91*</td>
<td>92*</td>
</tr>
<tr>
<td>5 years</td>
<td>76</td>
<td>88</td>
<td>94*</td>
</tr>
<tr>
<td>10 years</td>
<td>69</td>
<td>75</td>
<td>84</td>
</tr>
<tr>
<td>30 years</td>
<td>59</td>
<td>75</td>
<td>74</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Maturity</th>
<th>90%</th>
<th>95%</th>
<th>99%</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>CCC-FGD</td>
<td>RM</td>
<td>CCC</td>
</tr>
<tr>
<td>2 years</td>
<td>82</td>
<td>96*</td>
<td>100*</td>
</tr>
<tr>
<td>5 years</td>
<td>80</td>
<td>96*</td>
<td>104**</td>
</tr>
<tr>
<td>10 years</td>
<td>65</td>
<td>81</td>
<td>87</td>
</tr>
<tr>
<td>30 years</td>
<td>64</td>
<td>80</td>
<td>78</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Maturity</th>
<th>90%</th>
<th>95%</th>
<th>99%</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>CCC-FGD</td>
<td>RM</td>
<td>CCC</td>
</tr>
<tr>
<td>2 years</td>
<td>86</td>
<td>99</td>
<td>108*</td>
</tr>
<tr>
<td>5 years</td>
<td>81</td>
<td>97</td>
<td>112*</td>
</tr>
<tr>
<td>10 years</td>
<td>67</td>
<td>82</td>
<td>94</td>
</tr>
<tr>
<td>30 years</td>
<td>62</td>
<td>81</td>
<td>77</td>
</tr>
</tbody>
</table>

Table 4: Overall frequency tests: number of exceedances for 3-days (top panel), 5-days (middle panel) and 10-days (bottom panel) ahead confidence bound forecasts recorded for maturities between 2 and 30 years in the back-testing period from January 3, 2000 to September 30, 2002 (for a total of 716 trading days). The predictions are constructed using the FGD algorithm of Section 2 (CCC-FGD), the risk RiskMetrics™ approach (RM) and a standard multivariate AR-CCC-GARCH model (CCC). Results marked with one and two asterisks show significance at the 5% and the 1% confidence level, respectively, for binomial tests investigating differences from the expected number of exceedances. Standard errors have been computed by means of a Newey and West (1987) covariance matrix estimator to correct for the autocorrelation in the exceedances time series.