Specialization matters in the firm size-wage gap

Maria Molina-Domene*

JOB MARKET PAPER

Please click here for the most recent version.

November 18, 2017

Abstract

This study applies the O-ring theory to explain the firm-size wage premium. It focuses on the joint role of the division of labor and employee characteristics. Including the firm concentration of occupations in a standard wage regression with individual fixed effect shrinks the size coefficient by a third. Labor productivity follows a similar pattern as wages. The intuition is that individuals who work for large firms focus on a limited number of tasks become more efficient and productive, and earn higher wages. Additional predictions originating from this hypothesis receive support from the data. The argument has implications when the specialized firm faces demand downturns: given complementarity and low levels of substitutability, the firm preserves employees at the expense of a drop in labor productivity.

*Centre for Economic Performance, London School of Economics and Political Science. Email: m.molinadomene@lse.ac.uk. I am extremely grateful to Jörn-Steffen Pischke for his continuous advice and support. Thanks also to Philippe Aghion, Heiner Frank, Jennifer Hunt, Stephen Machin, Guy Michaels, Dana Müller, Barbara Petrongolo, Yona Rubinstein and John Van Reenen as well as participants at the CEP-LSE Labor Seminar, XXXI AIEL Conference (Trento, Italy), XLI SAEe (Bilbao, Spain), EEA-ESEM 2017 (Lisbon, Portugal) and XXIX EALE (St.Gallen, Switzerland). Any remaining errors are my own.
1 Introduction

Why do small establishments pay employees less than large establishments? There is a large literature both documenting and attempting an explanation of the firm size-wage premium. Nevertheless, the existing explanations are incomplete and an unexplained firm size-wage gap remains (Lester, 1967; Brown and Medoff, 1989; Burdett and Mortensen, 1989; Green et al., 1996; Troske, 1999 and Barth et al., 2016). I investigate the idea that workers in large firms focus on fewer tasks, exhibit higher skills (quality) and hence are more productive. I find that greater labor specialization explains about a third of the firm size-wage gap.

Numerous studies conclude that larger employers select more skilled workers and therefore pay higher wages. Other explanations revolve around employer characteristics like market power, capital intensity, and unionization. Also there is at least one organizational explanation, which is that the firm size-wage premium relates to efficiency wages. The idea is that larger firms pay efficiency wages because they find it more difficult to monitor workers. Apart from this, the literature has not focused much on the different organizational structures of small and large firms. In this paper I suggest and test such an explanation.

Large employers make better use of the division of labor by assigning their employees more specialized roles. That is, employees tend to work on a fairly limited number of more specific and closely related tasks. Conversely, small employers need to perform a comparable set of tasks with fewer workers. Their employees need to be able to perform a greater variety of tasks, which sometimes go beyond their specific roles.

For example, if biscuits are manufactured by a large firm, some employees will be specialized in utilizing the baking oven or different parts of the production line, while others will have expertise in quality control and good manufacturing practices. There could also be experts in the areas of marketing, product development and customer satisfaction. In contrast - if the same process is executed in a small firm an employee working at the baking oven will likely also be working on the production line and carrying out quality controls, while whoever is working in marketing might also be in charge of customer satisfaction, and so on.

I use linked employer-employee data covering all private sector workers for the
period 1993-2010 from the German Social Security system. This data allows me to construct the entire occupation distribution within each firm surveyed. I include measures capturing the heterogeneity of the occupations in a firm in wage regressions. Firms where workers perform dissimilar occupations or where they are focused on fewer tasks, pay higher wages, and including this effect attenuates the firm size-wage premium. For a subsample of firms, business characteristics like sales are available from the IAB Establishment Panel survey. For these firms, I obtain results for labor productivity, which have the same pattern as those for wages - suggesting a productivity based explanation.

Following Autor and Handel’s (2013) approach, I delve into the ‘task framework’. The underlying intuition is that high levels of division of labor entail performing distinct tasks. To link the occupations to their related tasks, I merge the German Social Security data with the U.S. Occupational Information Network (O*NET) data and build a measure utilising the simple idea of assigning employees to occupations where they focus on distinct tasks. Including this measure in wage and productivity regressions, I find that firms assigning fewer and more distinct tasks pay higher wages.

There may be different organizational choices underpinning my results but I focus on labor specialization. I argue the O-ring theory (Kremer, 1993) helps to explain two mechanisms through which specialization may foster labor productivity: the specialization due to job assignment by skills and the sorting of workers into firms due to the role of skills held by the workers.

I suggest that workers’ skills represent their expertise at a task or the probability of successfully completing that task (i.e. even beyond the educational attainment). Intuitively, under the first mechanism, employees working for large employers make less mistakes, in the Smithian and Beckerian way because they specialize and concentrate on a narrow set of tasks. Under the second mechanism, given that large firms perform a higher number of tasks, large employers avoid mistakes by employing highly skilled individuals.

To illustrate the first mechanism of job assignment by skill, assume that both large and small firms hire the same type of workers. While large firms assign employees

1For instance, Caliendo et al. (2015a,b) find that firms with more hierarchical layers are larger and pay higher wages.
to the tasks they are best at, small firms assign them to multiple tasks with the
drawback that workers might not be equally good at all tasks. In a nutshell, em-
ployers who make better use of the division of labor assign their employees fewer
tasks and therefore achieve efficiency and productivity gains because the possibil-
ity of mistakes lessens when you have focused employees.
I evaluate this pattern using survey-based data from the German Federal Institute
for Vocational Education and Training. I regress firm size on measures that ac-
count for the number of tasks performed by individuals; the time spent on them
and the results confirm my intuition.
The second mechanism relates to the sorting of workers into firms. Because of job
assignment, large firms look for individuals who have expertise in certain skills
and consequently are more productive under higher division of labor (specialists)
while small firms seek out individuals who can switch between different tasks (generalists). I am interested in whether employees who are highly skilled at task 1
work with employees highly skilled at task 2 and I expect to find this matching of
workers predominantly in large firms.
My prediction is that individuals with specific talents (e.g. very knowledgeable on
particular subjects) are more likely to work in large firms where they can make
best use of their expertise. In contrast, generalists will prefer to work in small
firms because they are well versed in a variety of fields but do not excel in any
of them. In this sense the individual who works for a small employer will be an
extension of Lazear’s (2005) ‘jack of all trades’.
I test this implication with two datasets: the U.S. National Longitudinal Survey
(NLSY79) and the Survey of Adult Skills (PIAAC). I regress firm size and wage on
measures reflecting focus (specialization) in skills. The results for both datasets
display the same feature: specialists tend to be concentrated within large firms
and earn a firm size-wage premium, while generalists more likely work for small
firms. The NLSY79 results are particularly compelling because they suggest that
information about individuals at a young age could predict the size of the employer

Lazear (2005) and Moog et al. (2015) suggest that individuals will be inclined to specialize
in one skill if they have a strong absolute advantage in doing so. These authors argue that the
ability to combine talents can trigger entrepreneurship. On the other hand, narrow expertise or
specialization (e.g. in fields where knowledge is deeper) predicts working in larger teams (Jones,
2008).
these individuals will work for and the wage premiums they could potentially earn. Another aspect of the sorting of workers into firms derived from specialization, is that that expertise results in individuals who are more likely to work within a similar occupation when they change job. Experts (specialists) typically possess less transferable talents and are less able to move to a very different occupation if they change job.\(^3\)

To investigate this implication I study individuals who change job. Again, using data from the German Social Security system, I characterize somebody as a specialist if the individual works in a similar occupation after changing jobs. In a cross section analysis, I regress firm size and wage on this additional measure of specialization and confirm the robustness of my previous results. Specialists tend to work for large firms and earn higher wages than generalists do.

If specialized firms hire highly skilled workers in the first \(n-1\) tasks, they aim to have a highly skilled worker also in the \(n\)th task, due to positive cross derivative. I generalize this argument and study the response of the specialized firm to demand downturns. The logic is that these firms will preserve all its workers, for at least two reasons: complementarities and low levels of substitutability.

My findings confirm this intuition. I find evidence that specialized employers do not lay off employees and their employees do not quit, during downturns. Indeed, these employers reassure employees during recessions (for instance, sharing rents to avoid quits) taking more of a hit in terms of labor productivity. Labor hoarding (Fair, 1985; Fay and Medoff, 1985; Bernanke, 1986; Hall, 1988; Bernanke and Parkinson, 1991; Burnside et al.,1993) probably plays a role.

This behaviour seems hard to reconcile with a competitive labor market, because it prevents labor resources moving to more productive uses during slumps. Consistent with an extensive literature, specialization appears to bring additional frictions to the labor market.

The remainder of the paper is organized as follows. Section 2 suggests a conceptual framework and Section 3 lays out my empirical strategy and describes the data used to illustrate specialization in terms of productivity and wages. Section

\(^3\)A learning-by-doing mechanism could explain how working in large firms allows employees to become better specialists (i.e. in the extreme, they replicate the same production process indefinitely), while working in small firms allows employees to become better generalists.
2 Conceptual Framework

Consider a firm performing a production process, which consists of \(n \) tasks. For simplicity, let’s assume \(n \) is technologically fixed and each task requires a single worker\(^4\).

Let’s call \(q \) a worker’s quality or skill at a task and define the expected percentage of maximum value the product retains if a certain worker performs the task. Each worker has a chance of performing the task perfectly and the probability of mistakes by different workers is independent.

Define \(B \) as the output per worker with a single unit of capital if all tasks are performed perfectly. There is a fixed supply of capital \(k \).

The production function is:

\[
y = k^\alpha \left(\prod q_i \right) nB
\]

(1)

The O-ring production function differs from the standard efficiency unit formulation of labor skill, in that it does not allow quantity to be substituted by quality. Specifically, mistakes in a task or production process reduces the product’s value. Combining the O-ring theory and Becker (1981), firms maximize profit if they match together workers of high quality \(q \) in the \(n \) tasks (i.e. those who make few mistakes). Taken to the extreme\(^5\), a specialized firm operates the ray where the ratio between the number of workers to production activity (input) is constant and cannot reassign production activities across employees\(^6\).

Firms pay wages \(w(q) \), based on worker \(i \) quality \(q \). The first-order condition of each \(q_i \) is:

\[
\frac{dw(q_i)}{dq_i} = \frac{y}{dq_i} = \left(\prod_{j \neq i} q_j \right) nBk^\alpha
\]

(2)

\(^4\)Additionally, workers supply labor inelastically and do not face a labor-leisure choice.

\(^5\)The production function should be a Leontief, where \(y = \min y(n) \)

\(^6\)I assume specialized firms operate under optimal level of division of labor. That is, firms specialize as much as the market allows, conditioned on other forces, such as coordination and communication costs, supervision complexity, etc.
The marginal product of quality, $d(y)/dq_i$ must equal the marginal cost of quality $dw(q_i)/dq_i$.

Specialized firms operate under high levels of division of labor and hire high quality workers (those who have less chances to make mistakes when they perform tasks). I argue this matching process takes place predominantly within large firms.

1 The firm size-wage gap

First mechanism: the division of labor

Large firms make more use of the division of labor. Indeed, there is a positive correlation between the number of tasks and the number of workers. As each employee focuses -taken to the extreme on one task, the probability of making mistakes decreases. The employee working at the baking oven is less prone to make mistakes, if he just performs that task. The same for the engineer who supervises the production line, and so on.

Workers are more productive because they concentrate on a single production activity, combining their outputs with employees who work on other production activities. This job design produces superadditivity (Rosen, 1978) and leverages labor productivity, due to the multiplicative effect arising from the complementarity between employees.

Large firms can hire workers of similar or dissimilar educational attainment or skills (Kremer and Maskin, 1996). For instance, there are production line workers and engineers, but what counts is that each worker performs a task at the maximum quality q.

Second mechanism: the sorting of workers into firms

I argue specialists (proficient workers) sort into large firms and earn higher wages. Consistent with Abowd et al., (1999) person effects, especially those not related to observable characteristics, are an important source of the positive firm size-wage rate relation.

My intuition is that the specialist’s proficiency goes beyond traditional observable patterns of skills such as education achievement, experience and earnings (Iranzo et al., 2008). Building on Lazear (2009), I suggest the dispersion of talents or of education interests can complement traditional proxies for skills.
Going back to the previous example, the production line worker does a better job within a large firm if he has the ability to perform optimally a specific task. Instead, if he is a multitasker, he will benefit from working for a small employer.

As in the O-ring theory, the specialist has high probability of successfully completing a specific task. Given his ability to concentrate, the specialist make the most of his capacities, working under high levels of division of labor.

2 An implication: firm’s response during downturns

I apply of the O-ring theory to another stylized fact: firms tend to be procyclical in terms of labor productivity during downturns.

\[
\frac{d^2y}{dq_i d(\prod q_i)} = nBk^{\alpha} > 0
\]

(3)

The positive cross derivative means the firm needs high quality workers in the \(n \) tasks. Due to complementarity and low level of substitutability of worker’s (i.e. the firm already knows the employee’s \(q \) "personal efficiency"), the employer has no incentive to lay off during downturns.

According to the O-ring theory, small differences in worker skill can create large differences in productivity and wages. Specialized firms rely on firm-specific human capital and prefer to hoard workers during downturns. Instead of laying-off, the specialized firm may reassign workers to auxiliary tasks.

3 Empirical Strategy and Data Description

3.1 Firm size-wage gap assessment using German linked employer-employee data

A number of explanations for the firm size-wage gap account for observed worker cross-sectional differences (Brown and Medoff, 1989; Oi and Idson, 1999 among others). I start testing these differences and then I evaluate the specialization
explanation I suggest for the firm size-wage gap. To assess the firm size-wage gap I work with the linked employer-employee data (LIAB LM9310) provided by the German Federal Employment Agency, which matches establishment data (BHP Establishment History Panel) to administrative biographies of individuals (IEB Integrated Employment Biographies). From all the biographies I focus on the Employee History (BeH) data which are the annual and end-of-employment notifications submitted by employers to the social security agencies for individuals subject to social security (i.e. excluding civil servants, self-employed, students and individuals receiving earnings replacement benefits) and part-time employees (since 1999). I build a sample which includes around 35 million employee notifications (observations) which corresponds to 1,686,783 employees. It excludes employees with reported zero daily wages (i.e. due to employment interruption notifications such as maternity leave), establishments with less than two employees and those who work for public administration and defense; political parties; educational, scientific and cultural organizations; Christian churches and representations of foreign countries. After deleting observations that do not have information on the variables I study, the LIAB LM9310 sample includes around 12 million observations.

It is worth noting that the FDZ Datenreport provides a precise definition of establishment as a regionally and economically delimited unit in which employees work and to which, according to specific principles, an establishment number is to be allocated (e.g. if the company has several branch offices in several municipalities each of these branch offices is an establishment). More leniently, establishment and firm are used as interchangeable in the present paper.

My empirical strategy focuses on evaluating the impact of the levels of occupation heterogeneity on the firm size-wage gap. I start running a standard wage regression, controlling for worker characteristics (age, age squared, gender, education, occupation status and occupation title). I also control for year, industry and region of the employer:

7Therefore, I am unable to observe firm patterns such as decentralization, integration, etc.
8Distinguishes blue-collar, white collar, trainee, apprentice, etc.
9Occupation titles come from the 'Classification of Occupations. Systematic and Alphabetical Directory of Job Titles, KldB88.'
The dependent variable W_{ijt} is the natural logarithm of gross daily wages of individual i at time t, working in firm j. The reported gross daily wages in LIAB are top coded; that is they are reported up to the upper earnings limit for statutory pension insurance. These limits might change every year and differ between Eastern and Western Germany. I address this potential issue below.

The size variable is represented by the natural logarithm of the number of employees in the establishment. Including industry and region dummies as additional controls in my regressions allows me to capture the idiosyncrasies of different economic activities and geographic realities.

The industry dummies are 3-digit codes of the relevant industry in accordance with the Classification of Economic Activities for the Statistics of the Federal Employment Services (WZ73). The region dummies correspond to the place of residence of the employee (10 regional directorates: North, Berlin-Brandenburg, Saxony-Anhalt/Thuringia, Saxony, Lower Saxony-Bremen, North Rhine-Westphalia, Hesse, Rhineland-Palatinate-Saarland, Baden-Wuerttemberg and Bavaria).

My second specification scrutinizes the effect of occupation heterogeneity on wages. Therefore I add measures of occupation heterogeneity to my basic specification as described in the following subsection:

\begin{equation}
W_{ijt} = \alpha_i + \beta Size_{jt} + \pi Controls_{it} + \gamma Controls_{jt} + \epsilon_{ijt}
\end{equation}

Firms’ occupation heterogeneity can be interpreted in different ways and in this study I suggest that it can be an indicator of specialization. I expand on this in Section 3.3. In addition to the organizational choice, labor quality may be playing a role in the firm size-wage gap. I use individual fixed effect ψ_i to control for

\begin{equation}
W_{ijt} = \alpha_i + \beta Size_{jt} + \delta OccupationHeterog_{jt} + \pi Controls_{it} + \gamma Controls_{jt} + \epsilon_{ijt}
\end{equation}

\[10\text{ Departing from Garicano (2000) in which only a layer of the organization is formed by specialist problem solvers (knowledge-based hierarchy), I do not impose restrictions on the structure of the firm’s hierarchy. For instance, my hypothesis leaves space for explanations like Fox’s (2009); that increasing job responsibility raises the firm-size wage premium. This mechanism could be supporting the remaining unexplained firm-size wage gap.} \]
the unobserved dimensions of the employee productivity as in Brown and Medoff (1989):

\[W_{ijt} = \alpha_i + \beta Size_{jt} + \delta \text{OccupationHeterogeneity}_{jt} + \psi_i + \pi \text{Controls}_{it} \]
\[+ \gamma \text{Controls}_{jt} + \epsilon_{ijt} \]

(6)

3.1.1 Measures of occupation and tasks heterogeneity

I work with two measures of occupation heterogeneity. Both measures rely on the fact that each employee is assigned a unique occupational title for the job he performs within a firm. This information is included in the Employee History administrative data. Employers encode an employee’s occupation with the title that best defines the main activity performed (i.e. even if more than one title could apply to one employee), in accordance with any of the German systematic classification of occupations. My data contains information of around 330 titles provided in the 3-digit coded ‘Classification of Occupations. Systematic and Alphabetical Directory of Job Titles. KlB88’.

The first measure is simple and straightforward but could leave uncovered industry idiosyncrasies in terms of occupation heterogeneity. Therefore, I complement it with a second measure which helps to address this potential weakness.

Firstly, I compute the Simpson’s Interaction Index (hereafter S) which allows measuring the proportion of different occupations within each firm every year (see Appendix). This index is appealing because it measures occupation diversity within firms and it is highly comparable across different firms because it is bounded between zero (complete segregation or division of labor: employees are evenly distributed among different occupations) and minus one (complete concentration or no division of labor: all employees are assigned to the same occupation).

Next I work with the dynamic version of the Ellison and Glaeser Index (Dumais et al., 2002) apply the Ellison and Glaeser Index to measure the geographic concentration of industries. The original version was proposed by Ellison and Glaeser in 1997. I multiply this indicator by minus one to focus on dispersion (instead of concentration)
et al., 2002) (hereafter EG) applied in this case to compute the distribution of occupations in a firm. Given its construction, one advantage of working with EG is that it tells us to what extent the firms’ heterogeneity of occupations departs from the occupation heterogeneity in a typical firm, within a specific industry every time there is a change in the firm employment composition (i.e. due to the start and the end of an employment relationship) (see Appendix).

Finally, I merge the LIAB-LM9310 with the O*NET 21.2 database (U.S. Department of Labor), to measure whether different individuals focus on distinct tasks. I use a crosswalk to link occupations classified according to the Standard Occupational Classification 2010 (O*NET-SOC 2010) and the 3-digit coded Classification of Occupations (Systematic and Alphabetical Directory of Job Titles–KldB88), present in the German data. Consistent with Becker’s (1994) view, the intuition is that within large firms, each employee concentrates on a set of definable and diverse tasks.

The O*NET data contains information on standardized and occupation-specific descriptors (levels and importance) organized to reflect the characteristics of workers (abilities, values, knowledge, and licensing) and jobs (tasks, work context, and labor market information). Within job patterns, I focus on tasks, in particular in a set of variables called Generalized Work Activities (GWAs), which are 41 task statements specific to occupations and generalized work activities that apply to multiple occupations (see Appendix).

The GWAs tasks range from thinking creatively; estimating the quantifiable characteristics of products, events, or information; to handling and moving objects, etc. They are based on the primary activity among multiple activities found in a task statement and are also based on the meaning of a given task statement (one including work activity, purposes, context and technology).

The importance of the GWAs tasks ranges from 0 to 100. Taken to the extreme, within large firms, each employee concentrates on a different task, giving that task very high importance. In parallel, co-workers in a different occupation assign that task less importance and focus on a different task and so on. As a natural outcome, individuals working for large firms are more likely to develop firm-specific human capital than those working for small firms.

To compute my specialization proxy, I firstly standardize the task variables and
then compute the standard deviation of the importance of the 41 tasks present in a firm occupation by occupation. Next, I build my measure of the heterogeneity of tasks across occupations, which is the average (i.e. among all the individuals who work for a firm) of the standard deviations of the importance of tasks (see Appendix) and I call it SD. The intuition is that at a maximum level of SD, each employee focuses on fewer distinct tasks.

3.1.2 Productivity implication using German linked employer-employee data

Following the Becker and Murphy (1994) model an intuitive implication is that specialization impacts labor productivity, leading to increasing returns13. The model explains that labor productivity could increase due to higher division of labor and knowledge. This is because workers do better if they specialize in a subset of tasks, and they can be even more productive at particular tasks depending in part on how much knowledge they have14. The increasing returns of concentrating on a narrower set of tasks should raise the productivity of the specialist over the generalist.

After testing the impact of occupation heterogeneity on wages I evaluate its potential impact on productivity. My strategy is to study whether occupational heterogeneity works through a productivity channel. Again I use the German administrative data and build a subsample, merging LIAB LM9310 with the waves of surveys from the unbalanced15 IAB Establishment Panel (1994-2010). This additional data is useful for my analysis because it contains information on firm characteristics such as sales, investments, etc. Given that the survey’s sampling frame is all establishments covered by the social security system, stratified according to industry, firm size and federal state, this data should be representative of the German firm population.

My subsample consists of around 3 million observations and also excludes civil

13Greater specialization can result in increasing returns to scale depending, for instance, on the level of indivisibility of labor (Edwards and Star, 1987).

14Some of the human capital individuals acquire can be firm-specific or even task-specific human capital (Gibbons and Waldman, 2004).

15This panel is unbalanced because only the majority of the same establishments are interviewed every year.
servants, self-employed, students and individuals receiving earnings replacement benefits. These observations correspond only to employees who worked in the firms surveyed in specific years (i.e. they exclude employees in firms that while part of the panel did not hold interviews in those corresponding years and they exclude employees in firms not selected for the IAB Panel survey).

My empirical strategy here is to mimic the wage regressions at the worker level using labor productivity as the dependent variable for a subsample of firms (i.e. for which sales are available). I run productivity regressions at the firm level and not at the worker level because otherwise, having more employees, large firms could have more weight on the results. This allows me to discern whether specialization affects productivity in the same way as wages.

The first productivity specification controls for age, age squared, education, year, industry and region:

\[P_{jt} = \alpha_j + \beta Size_{j(t-1)} + \pi Controls_{it} + \gamma Controls_{jt} + \varepsilon_{jt} \]

(7)

The labor productivity variable \(P_{jt} \) is defined as the value added divided by the number of employees of the firm \(j \) at time \(t \). Value added is defined as the natural logarithm of the business volume (sales in euro) minus intermediate inputs (e.g. all raw materials and supplies purchased, external services, rents, etc.). As the dependent variable is computed using the current number of employees, I use the lagged size to avoid working with a simultaneously determined regressor. The rest of the independent variable definitions are the same as in the previous subsection.

The second productivity specification adds to the basic specification measures of occupation heterogeneity:

\[P_{jt} = \alpha_j + \beta Size_{j(t-1)} + \delta \text{OccupationHeterog}_{jt} + \pi Controls_{it} + \gamma Controls_{jt} + \varepsilon_{jt} \]

(8)

where the occupation heterogeneity measures are again the S and EG Indexes, computed as described in subsection 2.1.1. Table 1 shows a comparison of the sample size of both samples LM9310 and LM9310+IAB.
3.2 The division of labor/specialization hypothesis. Evaluation of mechanisms using different datasets

The size-wage strategy I present could admit different explanations. S and EG measure firm occupational distribution and a concern is that occupational distribution could be consistent with different interpretations. Different occupational distribution could reflect different organizational choices such as the degree of integration, more or less extensive hierarchical controls, etc.

An alternative interpretation is that the occupational distribution reflects the fact that bigger firms carry out more tasks but the level of specialization is the same. To rule out this alternative and provide support for my specialization hypothesis, I investigate independent evidence of the two key mechanisms: very specific and clear task assignments (i.e. high levels of division of labor) and sorting of workers into firms. These two mechanisms can obviously coexist.

For the first mechanism, assume that small and large employers hire the same type of worker. My intuition is that lower specialization is frequently small firms’ organizational choice which might result in lower efficiency and productivity (e.g. an employee of a small manufacturer of biscuits sometimes undertakes quality controls, documents anomalies and suggests corrective actions in the production process; other times he focuses on the production process and when necessary he helps his colleague working on the production line). On the other hand, within large firms there should be higher specialization because every worker carries out very few tasks (taken to the extreme, only one task) and this translates into a considerable number of very specific tasks. I expect tasks within large employers to be properly assigned to employees on a regular basis, which might represent gains in efficiency and productivity.

For the second mechanism, which is the sorting of workers into firms, I drop the assumption that small and large firms hire the same type of workers and study the sorting of generalists into small firms and specialists into large firms.

My basic empirical analysis does not provide information on these mechanisms (e.g. whether specific abilities matter for working in small or large employers).

16Complementary to my argument, Bolton and Dewatripont (1994) predict returns to specialization, when the firm is able to minimize costs of processing and communicating information. Otherwise, benefits from specialization can be offset by the increased costs of communication.
To provide more insights on this I employ two additional strategies: I run firm size and wage regressions on variables capturing the specialization of individual workers.

The specification for the firm size regressions is:

\[S_{jt} = \alpha_i + \lambda \text{Specialization}_{it} + \pi \text{Controls}_{it} + \gamma_1 \text{Controls}_{jt} + \varepsilon_{ijt} \]

(9)

where \(S_{jt} \) is the firm size and \(\text{Specialization}_{it} \) are the different measures of specialization adopted in different contexts and datasets.

The specification for the wage regressions is:

\[W_{ijt} = \alpha_i + \lambda \text{Specialization}_{it} + \pi \text{Controls}_{it} + \gamma_2 \text{Controls}_{jt} + \varepsilon_{ijt} \]

(10)

and \(W_{ijt} \) is the wage of individual \(i \) at time \(t \), working in firm \(j \) and \(\text{Specialization}_{it} \) are the different measures of specialization.

In the following paragraphs I present alternatives for testing these strategies using different datasets.

3.2.1 Specialization mechanism. Evaluation using BIBB data

I study the first mechanism of my hypothesis with the Employment Survey data\(^{17}\). These surveys are considered representative among full-time employed persons in Germany. They collect information on vocational qualifications and the working conditions of individuals aged 15 or older who work in paid employment for at least 10 hours. I work with two cross-section employment surveys conducted in 2005/2006 and 2011/2012 (approximately 20,000 individuals), and the second part of the Supplemental Task Survey to employment (approximately 2,000 individuals).

The surveys provide data on the professional requirements for performing tasks as

well as the different tasks performed by employees, which is fundamental for my analysis. This data set is compelling because workers are asked about the number of the different tasks performed and their frequency. These two dimensions enable us to measure whether an employee is carrying out either more or fewer tasks and parallel to that - if an employee undertakes the same tasks frequently.

My empirical strategy is to run size and wage regressions on a variable I call specialist. The firm size variable is the firm size class where the individual works (i.e. including owner and trainees). It is an ordered categorical variable which ranges from 1 to 10.\footnote{This variable takes the following values: 1 (2 people), 2 (3–4 people), 3 (5–9 people), 4 (10–19 people), 5 (20–49 people), 6 (50–99 people), 7 (100–249 people), 8 (250–499 people), 9 (500–999 people) and 10 (1,000 and more).}

To build the specialist variable I gather information about tasks from two sources. One source is the information provided by the main surveys. They contain categorical ordinal variables which record the choice of types of work performed in the job and their frequency (frequently, sometimes, never). These are standardized tasks such as manufacturing, quality control, working with computers, etc.\footnote{The survey gives a choice of 19 tasks in 2005/2006 and 20 tasks in 2011/2012. There is a new question about using the Internet or editing e-mails. This is a categorical ordinal variable which gives employees 3 options: each task could have been performed sometimes, frequently or never.} and considered exhaustive by around 88 percent of the respondents (i.e. respondents replied they do not need to mention any other activity performed in the job). The second source is the supplemental survey, which provides additional information to the main surveys, measuring how much time respondents spend on these standardized tasks on any working day of their choice.

The time spent on tasks should be more informative than frequencies, but it is only available for a small subsample of 2,000 respondents. I take advantage of the fact that time is continuous and relate the first moment of time variables distribution to the frequency variables. This is valuable because being frequent or sporadic means different spans of time spent on the different tasks. For instance quality controls are considered frequent if the time spent on them in mean is 49 minutes while working with computers is considered frequent if the time spent on it is in mean 115 minutes.

Working with the BIBB data I include two regressors of interest: the Simpson’s
Interaction Index and the count of tasks, which is the number of different types of task performed frequently or sometimes in the job by each employee. Within this context, the Simpson’s Interaction Index reflects individual’s focus on specific tasks and it is based on the fraction of total work time spent on each task on the reporting day (see Appendix). My intuition is that performing fewer tasks regularly could more likely make an employee a specialist, rather than performing many tasks seldom. Hence, maximum level of specialization entails performing only one task frequently (i.e. all the time spent in the working time is dedicated to one task).

I drop observations containing missing answers (non response, refusal, etc.) on the variables I use for my analysis and also delete observations with imputed wages. My samples include around 14,000 observations.

The regressions with the BIBB data control for school education (highest general school leaving certificate), occupation (3-digit coded occupation based on KldB1992) and industry (2-digit coded branch of industry according to WZ2003).

3.2.2 Sorting of workers into firms mechanism. Evaluation using NLSY79 and PIACC data

For the second mechanism I investigate the prediction that employees who work for more or less specialized establishments are intrinsically different in terms of skills balance. That is, individuals who have more specialized knowledge might end up working for large employers while those who have more balanced skills might work for small employers. Regarding wages, more specialized individuals could earn higher wages than less specialized ones.

Firstly, I work with NLSY79 data. The NLSY79 data is provided by the U.S. Department of Labor and originally consisted of information on the lives of a cohort of 12,686 American respondents (which now become 9,964), first surveyed in 1979. The data refers to 25 rounds of surveys from 1990 to 2012 because respondents were interviewed annually (until 1994) and biennially (since then).

\[^{20}\text{Within this scenario, there is higher efficiency in avoiding multitasking and allocating effort to specific tasks. This contrasts with Holmstrom and Milgrom (1991) model where there are efficiency gains in assigning effort across a given set of tasks.}\]
My sample consists of around 41,000 observations. I exclude missing values (i.e. refusal, don’t know, valid skip, non-interview) and self-employed. I only use observations of individuals who work 6 or more hours a day (i.e. individuals who have finished their education and are working full time).

Secondly, I study this implication using the PIAAC surveys report. Working with this data is appealing because the measured abilities should be related to employee productivity and in turn to firm size. PIAAC Surveys of Adult Skills (adults aged 16-65) were conducted by the OECD in 2008-2013 in selected countries. They refer to around 5,000 individuals in each participating country, representative of the population of adults living in that country.

The survey questions are designed to be valid cross-nationally, however participating countries adapt questions to reflect national characteristics (e.g. educational systems). For this reason I include in my sample only the fraction of individuals currently working in comparable countries such as Germany, Austria, Finland and the UK, where the assessment questions are the same. My sample then consists of around 13,000 observations, excluding missing values.

My empirical strategy in this case is to run regressions of employer size and wage using the standard deviation of abilities as a key independent variable for this analysis, controlling for mean ability. I analyze if there is an association between excelling on any aptitude tested and the size of the firm where the individual works and the wage this individual earns.

For the NLSY79 data firm size is given by the number of employees at the place where the respondent works. The wage variable is the natural logarithm of the gross pay rate received in the job. This pay rate accounts for tips, overtime, bonuses and reflects how much the respondent usually earns at that job.

My regression includes the standard deviation of all the Armed Services Vocational Aptitude Battery (ASVAB) vocational test scores controlling for mean ASVAB. The ASVAB scores are based on exams (administered to the respondents in 1980) on 10 areas of knowledge. I compute the standard deviation and the mean of

\[\text{standard deviation} \]

\[\text{mean of ASVAB} \]

\[\text{This is a battery of multiple choice tests administered to high school students (when they are in 10th, 11th and 12th grade), which is used to determine qualification for enlisting in the U.S. Armed Forces.} \]
standardized variables using the 10 tests.\footnote{I use the scale scores related to the 10 tests that measure knowledge and skill in the following areas: general science, arithmetic reasoning, word knowledge, paragraph comprehension, numerical operations, coding speed, auto and shop information, mathematics knowledge, mechanical comprehension, electronics information.}

My additional controls are employee education (completed education on the survey year: completed less than 12th grade, enrolled in high school or college, high school graduate), occupation (3-digit coded according to the 2000 census) and the industry (4-digit coded according to the 2000 census) where the respondent works. Once again I run regressions of employer size and wage on the standard deviation of the tested abilities, controlling for the mean.

For the PIAAC data, firm size is given by an ordered categorical variable which ranges from 1 to 5\footnote{This variable takes the following values: 1 (1-10 people), 2 (11-50 people), 3 (51-250 people, 4 (251-1000 people), 5 (More than 1000 people) plus other categories for refused, don’t know, valid skip, not stated or inferred answers.} and I treat it as continuous. The wage variable for this dataset is the monthly income rank category.

I focus on worker abilities used in the workplace. These abilities are based on proficiency levels shown in tests on three areas of knowledge: literacy, numeracy, and problem solving. The PIAAC survey provides ten plausible values for each test and each individual. I average these ten values to obtain a single test score. I then compute the average and standard deviation of the standardized values of the three test scores.

In addition I control for employee education (highest qualification level), occupation (according to the International Standard Classification of Occupations 2008) and industry (1-digit code from the International Standard Industrial Classification of All Economic Activities) where the respondent works.

3.2.3 Sorting of workers into firms mechanism. Evaluation using LIAB-MM9308 data

Another way of using the data to measure whether someone is a specialist or a generalist is to concentrate on movers. Knowing that an employee tends to work in a similar occupation when he changes job could suggest that this employee is a specialist. The motivation is that a specialist’s very specific talents might bind
him to work in very similar occupations.

To characterize specialists I work again with the LIAB data, but this time with the Movers Model (LIAB-MM9308). This dataset contains around 129 million employee notifications.

I investigate whether individuals who change job (movers) persistently behave as generalists or as specialists. The question here is how likely is it that a worker from a large firm remains in a similar position after changing jobs. Knowing that individuals are more versatile and able to change occupation should be a sign of being a generalist, who tends to work in small firms and might earn lower wages. Conversely, individuals who are likely to work within similar occupations suggest that they are specialists.

My empirical strategy is then to run firm size and wage regressions on a specialization variable. Once more the size variable is represented by the natural logarithm of the number of employees in the establishment and the wage variable is the natural logarithm of the gross daily wages of individuals.

My specialization variable within this context is called proximity. Higher proximity should be interpreted as working within similar occupations while changing employer.

I build the proximity variable based on the employee change of occupation. The first digit of the 3-digit KldB88 coding identifies the occupation class. I consider a substantial change of occupation when the worker changes occupation class (i.e. the new occupation has a different first digit KldB88 code) and a small change when the worker keeps working within the same occupation class (i.e. the new occupation has the same first digit KldB88 code but the second or third digits are different).

I compute a categorical variable which equals 2 if the individual makes a substantial change of occupation, equals 1 if the individual moves to a similar occupation, and equals 0 if the individual stays in the same occupation. My proximity variable is the average of this variable and reflects how far, the individual moves in terms of job class while changing employer.

After deleting observations that do not have information on the variables I study, there remains around 38 million observations. I build a cross-section sample on the last observation of each employee, which includes around 3.8 million observations.
In my basic specification I control for worker characteristics (age, age squared, gender, education and occupational status). The region dummies correspond to the place of residence of the employee (10 regional directorates as stated in 2.1) and the industry dummies correspond to the economic sector (WZ73).

An alternative point of view would be that job changes reflect a search process, where workers locate better firms and job matches, consistent with Topel and Ward (1992). Towards the end of this process they may end up at larger firms and make more marginal changes. In order to control for this potentially confounding situation my modified specification controls for the number of times the individual changes employer.

3.3 Implications during a demand shock

I investigate industry transitory demand shocks (via recessions\(^{24}\)). From (2) labor adjustments during transitory demand shocks may be negligible as workforce is quasi-fixed (Oi, 1962; Lucas, 1970).

In practical terms, specialized firms’ optimal strategy should be to hoard workers even above the minimum level required to produce a given output. Some implications are: (1) specialized firms are more hit in terms of labor productivity (compared to generalists firms), (2) they do not decrease wages, (3) nor the employer lays off neither employees quit. The latter may prefer to continue working for the firm because they possess highly idiosyncratic skills (e.g. specifically trained for the firm)\(^{25}\).

I empirically evaluate these implications, estimating the differential effect of being specialized in downturns, in terms of firm’s labor productivity and other labor outcomes (wages, hires and separations\(^{26}\)). The data regarding downturns come from German National Accounts (Eurostat) that provide different national macroeconomic indicators, aiming to convey an overall view of the country economy.

\(^{24}\)Firm’s organizational choice can make firms more resilient to negative shocks. For instance, Aghion et al., 2017 find evidence ‘bad times’ can be less tough for decentralized firms.

\(^{25}\)My proposition is different from Acemoglu and Pischke (1998), who argue once employees ability becomes common knowledge, the secondhand labor market is perfectly competitive.

\(^{26}\)Separations adds up quits and layoffs, to include cases such as disguised or induced dismissals, which could be driven by wage loss.
particular, I look at the gross value added\(^{27}\) (euro) by industry breakdowns, according to NACE Rev.2 classification. I merge this data with LIAB 9310 through the industry code.

To work with an homogeneous sample, I exclude firms with less than 10 employees. Dismissals are regulated by legislation in Germany and since 2003 they are restricted by the Dismissal Protection Act. Firms with more than 10 employees face specific procedures and costs to terminate employment relationships, otherwise the employee has to be reinstated to his former position\(^{28}\).

I implement a difference-in-difference specification. My empirical specification is:

\[
Y_{jt} = \alpha_i + \rho_j + \tau_1 Down_{st} + \tau_2 Specialization_{jt} + \tau_3 (Specialization_{jt} X Down_{st}) \\
+ \gamma_1 Controls_{jt} + \varepsilon_{1jt}
\]

(11)

where subscripts \(j = 1, ..., m\) represent firms, \(s\) is the industry and \(t\) is year (1995-2010). \(Y_{jt}\) is the natural logarithm of productivity and average wages and the midpoint change in the net change of employment, hires and separations\(^{29}\). \(Down_t\) is the dummy variable indicating slumps at time\(^{30}\).

I assume specialization \(Specialization_{jt}\) is a firm pattern, which I interpret as the average across the years. My preferred proxy for specialization is EG\(^{31}\) and is computed using data in LIAB9310.

I am interested in the differential effect of being specialized during downturns, which is given by \(\tau_3\). The control variables \(Controls_{jt}\) are size (the natural loga-

\(^{27}\)Eurostat defines gross value added as the output value at basic prices less intermediate consumption valued at purchasers’ prices and calculates it before consumption of fixed capital (http://ec.europa.eu/eurostat/web/national-accounts).

\(^{28}\)This applies to employees employed in the business unit for at least six months, working under an employment contract. Additional rules apply to collective dismissals and certain groups of employees (members of the works council, disabled people, pregnant women, etc.).

\(^{29}\)Instead of the natural logarithm, I use the midpoint change given these three variables can be zero.

\(^{30}\)Firstly, I compute a measure of the business cycle change as a growth rate in the aggregated gross value added: \(BC_{i(t-1)} = VA_{i(t)} - VA_{i(t-1)}/VA_{i(t-1)}\). Next, I build a dummy variable for downturn: \(Down_{st} = 1\) if \(BC_{i(t-1)} < 0\) and 0 otherwise.

\(^{31}\)I focus on EG because it reflects firm’s specialization features compared to the mean firm in the industry. Given the demand shock is at industry level, this proxy should be more informative.
algorithm of the number of employees) or lagged size (when the dependent variables are change in the net change of employment, hires and separations) and year. I also control for the interactions between the downturn indicator variable and the other covariates, to account for differential levels of outcome changes by firm size and year. Firm fixed effects ρ_j allow absorbing the unobserved heterogeneity across firms. Standard errors are clustered at the firm level.

4 Results

4.1 The firm size-wage gap: results

I plot the wage against firm size for both LIAB samples in Figure 1. The size-wage relationship appears, in both samples, as strictly increasing. In practice these results suggest that an employee working for an establishment of the smallest size class earns in mean around 20 percent less than an employee working for an establishment of the largest size class. Furthermore the former establishments are on average around 20 percent less productive than the latter ones.

An important insight is that the S and EG index (see Appendix) monotonically increases with establishment size for both samples. This implies that there is a higher division of labor in large establishments and it might mean that each employee works on a limited number of more specific tasks. Vice versa, smaller establishments display a higher S and EG index, which I interpret as a lower division of labor.

In Figure 2, I present the relationship between an employee’s highest schooling qualification and firm size. The plot shows that there is only a weak pattern relating to these two dimensions. This is relevant for my empirical strategy for two reasons. Firstly, the fact that larger establishments do not necessarily employ individuals with the highest schooling qualifications but end up paying employees higher wages leaves space for the organizational explanation. Secondly, it points to additional employee characteristics, beyond those of educational qualifications, which give to the employee a comparative advantage when working in firms of a different size.

Some results about the core question why small firms pay employees less than
large firms are displayed in Tables 2 to 7. These are the outcomes of wage regressions using the two samples of German data (LIAB LM9310 and LIAB LM9310 + IAB Panel). The odd columns present results in line with some of the traditional explanations for the firm size wage premium. That is, I check if controlling for worker characteristics and including industry and region dummies as additional controls still leaves part of the firm size-wage premium unexplained.

For instance the statistically significant firm size-wage premium shown in Table 2, column (1) implies that a 10 percent increase in size augments wages by around half a percent, controlling for worker characteristics, industry and region.

The main feature of these results is that the positive and highly significant coefficient of size shrinks after controlling for specialization. Even columns in Tables 2 to 4 provide evidence that including my proxies for specialization (S, EG and SD) contributes to explaining the positive relationship between employer size and wages. Indeed, including the S variable shrinks the size effect between 18 percent and 35 percent, including the EG variable reduces the size effect between 22 percent and 38 percent, and including the SD variable diminishes the size effect between 18 percent and 31 percent.

Columns 3 to 6 in Tables 2 and 3 show alternative specifications, controlling for additional employee characteristics such as occupation and occupational status. After including these additional controls the pattern of results changes little when using the three proxies of specialization.

This firm size-wage premium is smaller for the subsample of firms which reports sales. Even columns in Table 5 show that by including S in the wage regressions the reduction of the size coefficient is lower for establishments that report sales (by between 16 percent and 23 percent). A similar picture is observed in Table 6 where the size coefficients reduce only between 8 percent and 12 percent. In both tables, the effect is almost negligible, after including individual fixed effects. It is worth noting that given that the subsample includes only employees who work in the firms surveyed in specific years, some firms might be overrepresented.

The previous literature has documented that firm size is related to unobserved dimensions of employee productivity, therefore I complement my analysis using individual fixed effect. The results given in columns 7 and 8 of Tables 2 to 4, suggest that at least around 28 percent of the wage gap due to firm size vanishes when
S, EG or SD are included within the fixed effects specifications. Again the impact on the firm size-wage premium in the fixed effects specifications is substantially smaller for the subsample of firms that report sales. Recalling that wages are censored, the estimates I obtain could be biased. I check the previous results computing Tobit estimates based on censored wages (Maddala, 1983). In addition I focus on the lower education subgroup since this group is less affected by censoring. In both cases the estimates and standard errors presented in Tables 2 to 4 remain unchanged. These findings suggest that even if wages are top coded, the OLS estimates are reliable and I adhere to this methodology for the rest of the paper.32

My hypothesis is that specialization contributes to explaining the firm size-wage premium through a productivity channel. Consequently I check whether specialization matters for productivity using the LIAB LM9310 + IAB Panel subsample. In Table 7, I present the results for the productivity regressions. Given that productivity is computed at firm level I do not mimic the individual fixed effect strategy in the labor productivity regressions. As anticipated above, columns 2 to 4 illustrate that the coefficients of the one-year lagged size decrease between 5 percent and 20 percent after controlling for occupation heterogeneity (S and EG) and by 15 percent after controlling for task concentration (SD) that I interpret as specialization. This reflects a similar pattern as shown in the wage regressions (Table 3), suggesting that specialization might be playing a role through productivity.

4.2 Mechanisms of the specialization hypothesis: results

I now present the results obtained by assessing the two mechanisms of my specialization hypothesis.

Firstly, I evaluate if employees working for large employers may be carrying out more distinct tasks. That is, leaving aside the type of employees hired, I test whether employees of firms of different sizes work under different levels of division of labor.

Large firms should make more use of the division of labor, assigning employees

32Dustmann et al. (2009) impute the censored part of the wage distribution under alternative distributional assumptions. They also find that OLS estimates and the standard errors based on imputed wages and Tobit estimates based on censored wages, are almost identical.
more distinct tasks. The results from a firm size regression on the specialist variable working with the BIBB survey-based data are presented in Table 8. Columns 1 and 2 exhibit the outcomes for the relationship between firm size and being a specialist and columns 3 and 4 show the results for the relationship between income and being a specialist. The odd and even columns present the outputs for 2005-2006 and 2011-2012 respectively.

Controlling for education, vocational degrees, skills, occupation and industry the coefficient of the specialist variable is negative and highly significant within the firm size and wage regressions. This suggests that there is a strong association between systematically performing fewer tasks and working at large firms as well as earning higher income. These findings seem to be in line with the first mechanism of my hypothesis. That is, a one standard deviation increase in the concentration of the time dedicated to tasks is associated with a rise in wages by around 2 percent. In addition the negative coefficients of count of tasks (columns 1 to 3) reinforce my intuition that employees who work at large firms are assigned fewer tasks. Regarding the count of tasks, the interpretation is that performing sometimes or frequently 1 more task (out of 19 or 20 tasks, in 2005-2006 and 2011-2012 respectively), is related to a wage decrease of 1 percent (column 2). This effect becomes close to negligible in 2011-2012 (column 4).

Secondly, I test the mechanism of the sorting of workers into firms. In Table 9 I present firm size and wage regressions on the dispersion of workers’ skills. Even columns show the outcomes obtained working with NLSY79 data and odd columns exhibit the outcomes working with PIAAC data. In columns 1 and 2, the coefficients of the average skill (AVG) show the familiar pattern that more able individuals work for larger firms (even if the coefficient is not statistically significant for NLSY79 data).

More important for my investigation is that the coefficients of the standard deviation (SD) are also positive and point to the fact that having a different bundle of skills (being a specialist) is linked to working for large employers while not excelling in any skill or talent but balancing them (being a generalist reflected in a low standard deviation) is associated with working for small employers. The same pattern holds for wages, in line with my hypothesis.

In addition, I test whether individuals who tend to switch around between sim-
ilar occupations when they change job are likely to work for large firms and get higher wages while those who are more versatile and can switch to very different occupations typically work for small firms earning lower wages. To evaluate this implication I work with the LIAB MM9308 data.

In Table 10, I present the results of two specifications. The results from the basic specification are displayed in columns 1 and 3. The highly significant and positive coefficient of proximity in column 1 confirms that individuals who move to similar occupations when they change job (specialists) tend to work in large firms. I obtain similar evidence for wages. The positive and significant coefficient of proximity displayed in column 3 makes apparent that more specialized individuals should get higher wages.

The second specification (columns 2 and 4) adds to the basic specification an additional control regarding the number of times an individual changes job. The results suggest the presence of a fairly important omitted variable bias in the basic specifications. Controlling for the number of times individuals change job shrinks the proximity effect in the size regression (column 2) and grows the proximity effect in the wage regression (column 4).

This could mean that the basic specification is capturing other job mobility aspects such as different stages of the employment careers or simply a higher propensity to change job. Once these potential confounders are controlled for, it is confirmed that specialists tend to work for large firms at a lower extent than originally suspected. An interesting finding is that, given the positive relationship between the number of job changes and wages, the negative omitted variable bias in the wage regression suggests that higher wages are associated with less job changes and probably higher specialization.

4.3 Generalization during a demand shock: results

Having established that specialization contributes to explain the firm size-wage premium, I study the empirical relevance of the O-ring theory during downturns, in terms of average labor productivity, wages and labor outcomes.

In Table 11 col (1), I document specialized firms are more hit in terms of labor productivity. The coefficient of the interaction term is negative and statistically
significant. The interpretation is that more specialized firms (25 percentile of specialization) are more hit than less specialized firms (75 percentile of specialization) by around 4 percentage points\(^{33}\) during downturns.

Instead, I am able to get precise estimates regarding the changes in hires. In col (2) and (3) the coefficient of the interaction term DownturnXEG are negative and highly significant, which indicates that specialized firms hire and fire less than their generalists counterparts when they were hit by a negative value added shock. In col (5) I show specialized firms the coefficient of the interaction term DownturnXEG is almost zero and not significant. Testing whether the relationship between specialization and wages is the same during booms and downturns, I do not find enough evidence to reject the null hypothesis.

Combining the results, a plausible explanation is that specialized firms appear less productive because they hoard employees during slumps. Instead of laying off, these firms retain workers even above the minimum level required to produce a given output. Higher levels of sunk costs and low levels of substitutability may be playing a fundamental role.

Taken together, specialized firms appear to have a harder time to adjust to demand shocks. According to a O-ring production function, small differences in worker’s quality can make large difference in productivity. In addition, complementarity may be strong enough, that none of the workers should be left out.

5 Discussion and Conclusion

This paper has applied the O-ring theory to explain the firm size-wage premium. Large firms frequently make more use of the division of labor. This appears to increase employee’s concentration on tasks and to decrease the probability of being inefficient.

I found that firm occupation heterogeneity explains around a third of the wage premium due to firm size. These results may be consistent with different explanations and I present supporting evidence for labor specialization.

Working with the linked employer-employee German administrative LIAB LM9310

\(^{33}\)EG 25 percentile: 1.13, EG 75 percentile: 1.86. Therefore, \((1.13-1.86) \times 0.054 = -0.039\)
and the IAB Panel I verified that observed worker cross-sectional differences, such as education attainment and vocational qualifications, did not completely account for the wage gap due to firm size. Next, my empirical strategy was to include proxies for occupational heterogeneity (S and EG) and task focus (SD) in wage regressions. I found that occupation heterogeneity helps to shrink the firm size-wage premium. Furthermore, these results were similar even after controlling for individual fixed effects.

I also investigated whether specialization plays a role in labor productivity. I replicated the wage strategy and have been able to confirm this intuition, working again with the German administrative data and O*NET data.

I provided additional evidence for two mechanisms through which the O-ring theory could apply. Firstly, under the assumption that small and large firms hire the same type of workers, I explored whether specialization means specialized job assignment by skills. Secondly, dropping this assumption I investigated the sorting of workers into firms.

Given my basic empirical analysis did not provide information on the time spent on individual occupational tasks, abilities or talents, I evaluated these two mechanisms with different datasets. The intuition was that individuals who perform fewer tasks and possess very focused talents, have the chance to make less mistakes and therefore exhibit higher quality. These individuals tend to work for larger firms and to earn higher wages.

For the first mechanism, I worked with waves of the BIBB surveyed-based data which provide detailed information on job tasks of the German labor force. I found that being systematically focused on fewer tasks (as per specialists) is strongly associated with working for large firms and earning higher wages.

The second mechanism extended Lazear (2005), asking whether individuals who work for small firms possess balanced talents while individuals who work for large firms have more concentrated talents. Using the NLSY79 and PIAAC data the results showed that generalists (those who do not excel in any skills but balance them) are more likely to work for small employers and to earn lower wages.

Using the LIAB MM9308 movers, I studied the intuition that taking the same or similar occupations while changing jobs could confirm the pattern of having very specific talents. I also found that workers who move to more similar occupations
when they switch jobs tend to work for larger firms and earn higher wages. I discussed a number of ways in which specialists and generalists can be characterized. All of them helped to explain the sorting of individuals into firms of different sizes. I regarded this sorting process as evidence that specialists prefer to work within large firms, probably with higher levels of division of labor. My findings lined up with the O-ring theory. I found the joint role of the job assignment by skills and the sorting of workers by skills plausibly explain part of the firm size-wage gap. I found empirical support for various implications of the division of labor/specialization hypothesis which relates to firm size. I generalized my analysis and look at specialized firm’s response during downturns.

According to a conventional production function, a firm can fire and hire following the trends of the output demand. Under an O-ring production function, the quality of the workers is highly appreciated, therefore employers avoid laying-off. An implication was that firms appeared less productive than generalist firms during downturns. I inferred that hoarding of employees could be a plausible underpinning mechanism. I confirmed that specialized firms hire and fire less employees compared to their counterparts-generalists firms. Regarding wages, I did not get statistically significant evidence to conclude whether specialized firms adjust them during downturns. I suggested specialized firms may prefer to operate with excess of workforce during downturns, due to complementarities and high levels of firm specific human capital. The analysis revealed that specialized firms may face additional frictions in the labor market.
References

Tables and Figures

Table 1: LIAB 9310-LM9310 Data - Descriptive Statistics

<table>
<thead>
<tr>
<th></th>
<th>Mean</th>
<th>25Percentile</th>
<th>75Percentile</th>
<th>St.Dev.</th>
<th>N (in millions)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean Ln Wages</td>
<td>4.18</td>
<td>3.92</td>
<td>4.41</td>
<td>0.87</td>
<td>12,300</td>
</tr>
<tr>
<td>Age</td>
<td>40.37</td>
<td>31</td>
<td>49</td>
<td>11.25</td>
<td>12,300</td>
</tr>
<tr>
<td>Female</td>
<td>0.39</td>
<td></td>
<td>0.49</td>
<td></td>
<td>12,300</td>
</tr>
<tr>
<td>EG</td>
<td>1.25</td>
<td>1.00</td>
<td>1.21</td>
<td>0.50</td>
<td>12,300</td>
</tr>
<tr>
<td>S</td>
<td>0.66</td>
<td>0.88</td>
<td>0.75</td>
<td>0.26</td>
<td>12,300</td>
</tr>
</tbody>
</table>

Table 2: Sample comparison of the impact of concentration measures S and EG (LIAB data)

<table>
<thead>
<tr>
<th>Without FE</th>
<th>(1)</th>
<th>(2)</th>
<th>(3)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Ln(Wage)</td>
<td>Ln(Productivity)</td>
<td>Number of Observations</td>
</tr>
<tr>
<td>Individual data + Establishment File</td>
<td>Yes</td>
<td>——</td>
<td>12,265,118</td>
</tr>
<tr>
<td>Individual data + Establishment File + IAB Establishment Panel</td>
<td>Yes</td>
<td>Yes</td>
<td>2,256,431</td>
</tr>
</tbody>
</table>
Table 3: Wage regressions in the linked employer-employee data (LIAB-LM9310)

<table>
<thead>
<tr>
<th></th>
<th>Without Fixed Effect</th>
<th></th>
<th>With Fixed Effect</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(1)</td>
<td>(2)</td>
<td>(3)</td>
<td>(4)</td>
</tr>
<tr>
<td>Ln Size</td>
<td>0.051***</td>
<td>0.033***</td>
<td>0.045***</td>
<td>0.037***</td>
</tr>
<tr>
<td></td>
<td>(0.004)</td>
<td>(0.004)</td>
<td>(0.002)</td>
<td>(0.002)</td>
</tr>
<tr>
<td>S Index</td>
<td>0.500***</td>
<td>0.224***</td>
<td>0.430***</td>
<td>0.430***</td>
</tr>
<tr>
<td></td>
<td>(0.030)</td>
<td>(0.002)</td>
<td>(0.030)</td>
<td>(0.030)</td>
</tr>
<tr>
<td>Occup. Status Dummies</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Occupation Dummies</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
</tr>
</tbody>
</table>

Dependent variable: ln gross daily wage
Number of observations: 12,265,118
All regressions control for education, age, age squared, industry and region.
Fixed-effect estimates at individual level
Standard errors, clustered at the firm level, in parentheses.
*** p<0.01, ** p<0.05, * p<0.1
Table 4: Wage regressions in the linked employer-employee data (LIAB-LM9310)

<table>
<thead>
<tr>
<th></th>
<th>Without Fixed Effect</th>
<th>With Fixed Effect</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(1)</td>
<td>(2)</td>
</tr>
<tr>
<td>Ln Size</td>
<td>0.051***</td>
<td>0.032***</td>
</tr>
<tr>
<td></td>
<td>(0.004)</td>
<td>(0.004)</td>
</tr>
<tr>
<td>EG Index</td>
<td>0.151***</td>
<td>0.085***</td>
</tr>
<tr>
<td></td>
<td>(0.002)</td>
<td>(0.004)</td>
</tr>
<tr>
<td>Occup. Status Dummies</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>Occupation Dummies</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>Dependent variable: ln gross daily wage.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Number of observations: 12,265,118.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>All regressions control for education, age, age squared, industry and region.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fixed-effect estimates at individual level</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Standard errors, clustered at the firm level, in parentheses.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>*** p<0.01, ** p<0.05, * p<0.1</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table 5: Wage regressions in the linked employer-employee data (LIAB-LM9310 and O*NET)

<table>
<thead>
<tr>
<th></th>
<th>Without Fixed Effect</th>
<th>With Fixed Effect</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(1)</td>
<td>(2)</td>
</tr>
<tr>
<td>Ln Size</td>
<td>0.050***</td>
<td>0.035***</td>
</tr>
<tr>
<td></td>
<td>(0.004)</td>
<td>(0.004)</td>
</tr>
<tr>
<td>SD Imp Tasks</td>
<td>0.353***</td>
<td>0.164***</td>
</tr>
<tr>
<td></td>
<td>(0.021)</td>
<td>(0.012)</td>
</tr>
<tr>
<td>Occup. Status Dummies</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>Occupation Dummies</td>
<td>No</td>
<td>No</td>
</tr>
</tbody>
</table>

Dependent variable: ln gross daily wage.
Number of observations: 12,042,143.
All regressions control for the average importance of tasks, education, age, age squared, industry and region.
Fixed-effect estimates at individual level
Standard errors, clustered at the firm level, in parentheses.
*** p<0.01, ** p<0.05, * p<0.1
Table 6: Wage regressions in the linked employer-employee data (LIAB-LM9310 + IAB Panel)

<table>
<thead>
<tr>
<th></th>
<th>Without Fixed Effect</th>
<th>With Fixed Effect</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(1)</td>
<td>(2)</td>
</tr>
<tr>
<td>Ln Size</td>
<td>0.082***</td>
<td>0.063***</td>
</tr>
<tr>
<td></td>
<td>(0.006)</td>
<td>(0.007)</td>
</tr>
<tr>
<td>S Index</td>
<td>0.485***</td>
<td>0.299***</td>
</tr>
<tr>
<td></td>
<td>(0.008)</td>
<td>(0.005)</td>
</tr>
<tr>
<td>Occup.Status Dummies</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>Occupation Dummies</td>
<td>No</td>
<td>No</td>
</tr>
</tbody>
</table>

Dependent variable: ln gross daily wage.
Number of observations: 2,589,651.
All regressions control for age, age squared, education, industry and region.
Fixed-effect estimates at individual level.
Standard errors, clustered at the firm level, in parentheses.
*** p<0.01, ** p<0.05, * p<0.1
Table 7: Wage regressions in the linked employer-employee data (LIAB-LM9310 + IAB Panel)

<table>
<thead>
<tr>
<th>Without Fixed Effect</th>
<th>With Fixed Effect</th>
<th>With Fixed Effect</th>
<th>With Fixed Effect</th>
<th>With Fixed Effect</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(1)</td>
<td>(2)</td>
<td>(3)</td>
<td>(4)</td>
</tr>
<tr>
<td>Ln Size</td>
<td>0.082***</td>
<td>0.072***</td>
<td>0.073***</td>
<td>0.067***</td>
</tr>
<tr>
<td>EG Index</td>
<td>(0.006)</td>
<td>(0.006)</td>
<td>(0.006)</td>
<td>(0.006)</td>
</tr>
<tr>
<td></td>
<td>0.199***</td>
<td>0.124***</td>
<td>0.189***</td>
<td>0.054***</td>
</tr>
<tr>
<td></td>
<td>(0.009)</td>
<td>(0.007)</td>
<td>(0.008)</td>
<td>(0.004)</td>
</tr>
<tr>
<td>Occup. Status Dummies</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Occupation Dummies</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
</tr>
</tbody>
</table>

Dependent variable: ln gross daily wage
Number of observations: 2,589,651
All regressions control for age, age squared, education, industry, and region
Fixed-effect estimates at individual level
Standard errors, clustered at the firm level, in parentheses.
*** p < 0.01, ** p < 0.05, * p < 0.1
Table 8: Productivity regressions in the linked employer-employee data (LIAB-LM9310 + IAB Panel)

<table>
<thead>
<tr>
<th>Without Fixed Effect</th>
<th>(1)</th>
<th>(2)</th>
<th>(3)</th>
<th>(4)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ln Lagged Size</td>
<td>0.115***</td>
<td>0.092***</td>
<td>0.111***</td>
<td>0.100***</td>
</tr>
<tr>
<td></td>
<td>(0.042)</td>
<td>(0.043)</td>
<td>(0.043)</td>
<td>(0.018)</td>
</tr>
<tr>
<td>S Index</td>
<td>0.774***</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.252)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>EG Index</td>
<td></td>
<td>0.086***</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>(0.037)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SD Imp Tasks</td>
<td></td>
<td></td>
<td>0.303**</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(0.129)</td>
<td></td>
</tr>
</tbody>
</table>

Dependent variable: ln of (value added/number of employees)
Number of observations: 2,919,394
All regressions control for age, age squared, education, industry and region
Standard errors, clustered at the firm level, in parentheses.
*** p<0.01, ** p<0.05, * p<0.1
<table>
<thead>
<tr>
<th>Table 9: Other Databases - Descriptive Statistics</th>
</tr>
</thead>
</table>

BIBB/BAuA Employment Survey (Year 2006)

<table>
<thead>
<tr>
<th></th>
<th>Mean</th>
<th>25Percentile</th>
<th>75Percentile</th>
<th>St.Dev.</th>
<th>N</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean Ln Wages</td>
<td>8.21</td>
<td>7.38</td>
<td>8.37</td>
<td>1.57</td>
<td>19,214</td>
</tr>
<tr>
<td>Count of Tasks</td>
<td>8.55</td>
<td>6</td>
<td>11</td>
<td>3.32</td>
<td>19,214</td>
</tr>
<tr>
<td>S</td>
<td>0.82</td>
<td>0.80</td>
<td>0.88</td>
<td>0.10</td>
<td>19,214</td>
</tr>
</tbody>
</table>

BIBB/BAuA Employment Survey Year 2012

<table>
<thead>
<tr>
<th></th>
<th>Mean</th>
<th>25Percentile</th>
<th>75Percentile</th>
<th>St.Dev.</th>
<th>N</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean Ln Wages</td>
<td>7.81</td>
<td>7.50</td>
<td>8.70</td>
<td>0.67</td>
<td>17,460</td>
</tr>
<tr>
<td>Count of Tasks</td>
<td>9.46</td>
<td>7</td>
<td>12</td>
<td>3.37</td>
<td>17,460</td>
</tr>
<tr>
<td>S</td>
<td>0.82</td>
<td>0.80</td>
<td>0.88</td>
<td>0.10</td>
<td>17,460</td>
</tr>
</tbody>
</table>

Note: main and supplemental surveys

NLSY79 Data

<table>
<thead>
<tr>
<th></th>
<th>Mean</th>
<th>25Percentile</th>
<th>75Percentile</th>
<th>St.Dev.</th>
<th>N</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ln Wages</td>
<td>9.97</td>
<td>9.55</td>
<td>10.17</td>
<td>1.12</td>
<td>35,341</td>
</tr>
<tr>
<td>SD ASVAB(std)</td>
<td>0.59</td>
<td>0.14</td>
<td>0.69</td>
<td>0.17</td>
<td>45,512</td>
</tr>
<tr>
<td>AVG ASVAB(std)</td>
<td>-0.03</td>
<td>0.80</td>
<td>-2.55</td>
<td>1.97</td>
<td>45,512</td>
</tr>
</tbody>
</table>

PIACC Data

<table>
<thead>
<tr>
<th></th>
<th>Mean</th>
<th>25Percentile</th>
<th>75Percentile</th>
<th>St.Dev.</th>
<th>N</th>
</tr>
</thead>
<tbody>
<tr>
<td>Monthly Income</td>
<td>3.49</td>
<td>1</td>
<td>6</td>
<td>1.58</td>
<td>14,156</td>
</tr>
<tr>
<td>SD Skills(std)</td>
<td>0.33</td>
<td>0.19</td>
<td>0.43</td>
<td>0.43</td>
<td>20,029</td>
</tr>
<tr>
<td>AVG Skills(std)</td>
<td>0.00</td>
<td>-0.60</td>
<td>43</td>
<td>0.65</td>
<td>0.88</td>
</tr>
</tbody>
</table>
Table 10: Size regressions. Data from BIBB

<table>
<thead>
<tr>
<th></th>
<th>Ln Size</th>
<th>Ln Income</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(1) 2006</td>
<td>(2) 2012</td>
</tr>
<tr>
<td>Specialist (Simpson’s Index)</td>
<td>1.643*** (0.393)</td>
<td>2.167*** (0.484)</td>
</tr>
<tr>
<td>Count of tasks</td>
<td>-0.101*** (0.010)</td>
<td>-0.126*** (0.012)</td>
</tr>
<tr>
<td>N.Observations</td>
<td>14,624</td>
<td>13,809</td>
</tr>
</tbody>
</table>

Dependent variable col (1) and (2): size classes; col (3) and (4): ln monthly income. All regressions control for age, age squared, education, vocational degree, occupation and industry. Standard errors, clustered at the individual level, in parentheses. *** p<0.01, ** p<0.05, * p<0.1

Table 11: Size and wage regressions. Data from NLSY79 and PIAAC - OLS

<table>
<thead>
<tr>
<th></th>
<th>Ln Size</th>
<th>Ln Wage</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(1) NLSY79</td>
<td>(2) PIAAC</td>
</tr>
<tr>
<td>Standard Deviation Skills</td>
<td>0.123* (0.072)</td>
<td>0.105* (0.056)</td>
</tr>
<tr>
<td>Average Skills</td>
<td>0.001 (0.044)</td>
<td>0.071*** (0.014)</td>
</tr>
<tr>
<td>N.Observations</td>
<td>23,707</td>
<td>13,224</td>
</tr>
</tbody>
</table>

Dependent variable col (1): ln employees at location of current job. Dependent variable col (2): size classes. Dependent variable col (3) and (4): ln total income from wages and salary in the past year. All regressions control for occupation, education and industry. NLSY79 reg. control for age and age squared. PIACC reg. control for age (categ. variable). Standard errors, clustered at the individual level, in parentheses. *** p<0.01, ** p<0.05, * p<0.1
Table 12: Size and wage regressions. Data from LIAB Mover Model (MM9308)

<table>
<thead>
<tr>
<th></th>
<th>Ln Size</th>
<th>Ln Wage</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(1)</td>
<td>(2)</td>
</tr>
<tr>
<td>Proximity</td>
<td>0.134***</td>
<td>0.087***</td>
</tr>
<tr>
<td></td>
<td>(0.000)</td>
<td>(0.001)</td>
</tr>
<tr>
<td>Number of job changes</td>
<td>No</td>
<td>Yes</td>
</tr>
</tbody>
</table>

Dependent variable col (1) and (2): ln employees at location of last job.
Dependent variable col (3) and (4): ln (gross daily wage).
Number of observations: 3,817,416.
All regressions control for age, age squared, education, occup. status, industry and region.
Robust standard errors, in parentheses.
*** p<0.01, ** p<0.05, * p<0.1

Table 13: LIAB 9310-LM9310 Data and Eurostat - Descriptive Statistics

<table>
<thead>
<tr>
<th></th>
<th>Mean</th>
<th>25Percentile</th>
<th>75Percentile</th>
<th>St.Dev.</th>
<th>N</th>
</tr>
</thead>
<tbody>
<tr>
<td>Downturn</td>
<td>0.56</td>
<td>0.50</td>
<td>0.50</td>
<td>74,354</td>
<td></td>
</tr>
<tr>
<td>Ln Prod</td>
<td>11.54</td>
<td>10.84</td>
<td>12.11</td>
<td>67,042</td>
<td></td>
</tr>
<tr>
<td>Ln Wage</td>
<td>4.12</td>
<td>3.85</td>
<td>4.48</td>
<td>84,502</td>
<td></td>
</tr>
<tr>
<td>Change in Hires</td>
<td>-0.04</td>
<td>0.87</td>
<td>84,502</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Change in Fires</td>
<td>0.02</td>
<td>0.95</td>
<td>84,502</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Net Change in Employ.</td>
<td>0.07</td>
<td>3.48</td>
<td>84,502</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table 14: Regressions with a demand shock. Data from LIAB9310+Eurostat

<table>
<thead>
<tr>
<th></th>
<th>Ln Productivity</th>
<th>Hires Change</th>
<th>Separat. Change</th>
<th>Net Change Emp.</th>
<th>Ln Avg Wages</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(1)</td>
<td>(2)</td>
<td>(3)</td>
<td>(4)</td>
<td>(5)</td>
</tr>
<tr>
<td>Downturn</td>
<td>-0.051</td>
<td>-0.118</td>
<td>-0.016</td>
<td>-0.024</td>
<td>-0.004</td>
</tr>
<tr>
<td></td>
<td>(0.034)</td>
<td>(0.075)</td>
<td>(0.078)</td>
<td>(0.054)</td>
<td>(0.009)</td>
</tr>
<tr>
<td>Downturn x EG</td>
<td>-0.039**</td>
<td>-0.166***</td>
<td>-0.015*</td>
<td>-0.026</td>
<td>-0.006</td>
</tr>
<tr>
<td></td>
<td>(0.018)</td>
<td>(0.030)</td>
<td>(0.038)</td>
<td>(0.008)</td>
<td>(0.005)</td>
</tr>
<tr>
<td>Observations</td>
<td>31,954</td>
<td>48,198</td>
<td>48,198</td>
<td>48,198</td>
<td>59,849</td>
</tr>
</tbody>
</table>

The sample includes establishments with more than 10 employees, which are subject to the Employment Protection Act. Dependent variables: col (1) ln of average gross daily wages, paid by the establishment within a year; col (2): incremental change in the establishment hires within a year; col (3): incremental change in the establishment separations within a year; col (4): incremental change in the establishment employment within a year; col (5) ln of (value added/number of employees) The specialization proxy EG is the average level of specialization across years. Regressions in col (1) and (5) control for firm size, year and interactions of covariates and the downturn dummy. Regressions in col (2) to (4) control for firm lagged size, year and interactions of covariates and the downturn dummy. Fixed-effect estimates at the firm level. Standard errors, clustered at the industry level, in parentheses. Levels of significance: *** p<0.01, ** p<0.05, * p<0.1
Figure 1: Mean Ln Wage by firm size
Figure 2: Percentage of employees in each education category (by size)
Appendix: Measures of occupation concentration

MEASURE 1. The Simpson’s Interaction Index (Reardon et al. 2002) with LIAB LM9310 and LIAB LM9310 + IAB Panel data
It is computed as a measure of concentration of occupations within firms. S is given by:

\[S_{jt} = (-1) \sum_{k} \pi_{kt}(\pi_{kt} - 1) \] (12)

where:

- \(k = 1, .., K \) are the occupations (job titles) assigned by employers to employees based on 3-digit codes from the Classification of Occupations. Systematic and Alphabetical Directory of Job Titles (KldB88).
- \(t = 1, .., T \) are the different years in which the firm is observed.
- \(N_{kjt} \) is the number of workers in occupation \(k \) working in establishment \(j \) at time \(t \).
- \(N_{jt} \) is the total number of workers in establishment \(j \), at time \(t \).
- \(\pi_k = N_{kjt}/N_{jt} \) is the proportion of employees working in each occupation.

This index is corrected by the Herfindahl-style measure to account for the fact that the concentration of occupations should be larger in small firms. It compares the degree of concentration of occupations within an establishment to the concentration of occupation of other establishments within the same economic activity. The EG index is given by:

\[EG_{jt} = (1) \frac{G_{jt}/(1 - \sum_s \pi_{st}^2)}{1 - H_{it}} \] (13)

where:

- \(N_{kjs} \) is the number of workers in occupation \(k \) working in establishment \(j \), sector \(s \), at time \(t \).
- \(N_{js} \) is the total number of workers in establishment \(j \), sector \(s \), at time \(t \).
- \(k = 1, .., K \) are the occupations described in Measure 1.
- \(i=1, .., n \) indicate the different establishments.
\(s = 1, .., m \) represent 3-digit industry according to the WS73 or Classification of Economic Activities for the Statistics of the Federal Employment Services (1973). Before 2003 the variable contains the original values and from 2003 this information is continued or recoded (if necessary). It includes primary economic activities, manufacturing, construction and services.

\(t = 1, .., T \) are the different split episodes, which are non-overlapping periods.

\(\pi_{jst} \) is the establishment occupation share computed as \(N_{kjst}/N_{jst} \).

\(\pi_{st} \) is the average of \(\pi_{jst} \) within each industry.

\[G_{jt} = \sum_{s} \pi_{st} - \pi_{jst} \]

is the sum of squared deviations of establishment occupation share \(\pi_{jst} \) from a measure \(\pi_{st} \) of the share of occupations within a specific industry.

\[H_{jt} = \sum_{k} b_{jt}^2 / (\sum_{k} (b_{jt})^2 \] is a Herfindahl-style measure where \(b_{jt} \) is the number of occupations within an establishment at different split episodes.

MEASURE 3. The dispersion of the importance of tasks with LIAB9310 and O*NET

Firstly, I standardize the \(s \) task variables and then I compute the standard deviation of the importance \(\text{imp} \) of the 41 tasks for each occupation.

\[sd_{\text{imp}(\text{task}(s))_b} = sd(\text{imp(task1)}_{(std)}, \ldots, \text{imp(task41)}_{(std)}) \] (14)

where subscripts \(s \) are the 41 tasks, \(b \) is the occupation present in a firm.

Subsequently, I consider all the employees \(i \) who work for firm \(j \) and compute the average of the standard deviations of the importance of tasks \((sd_{\text{imp}(\text{task}(s))_b}) \) by firm \(j \) and by year \(t \):

\[sd_{AVGjt} = \text{mean}(sd_{\text{imp}(\text{task}(s)_{(std)}))_jt} \] (15)

MEASURE 4. The Simpson’s Interaction Index (Reardon et al. 2002) with BIBB data

It is computed as a measure of concentration on certain tasks performed. \(S \) is
given by:

$$S(\text{tasks})_i = (-1) \sum_k \pi_k (\pi_k - 1)$$ \hspace{1cm} (16)$$

where:

$k = 1, \ldots, K$ are the standardized tasks performed.

T_{ki} is the time individual i spend in task k.

T_i is the individual i work time.

$\pi_k = T_{ki}/T_i$ is the share of the time spent in tasks performed frequently or seldom.