Inequality and Growth in the 21st Century*

Weijie Luo†

October 8, 2017

Abstract

Persson and Tabellini (1994) argue that increased inequality leads to greater demand for redistribution and thus less growth. However, empirical work has challenged this relationship. This paper develops a model that distinguishes between income inequality induced by differences in labor productivity and income inequality induced by differences in capital income. Whilst the standard argument applies to productivity-induced income inequality, greater capital income inequality leads to smaller government if, as often observed, capital income is difficult to tax, and thus higher growth since such policies cause less distortionary taxes and less impact on accumulation. Using OECD data, government size and capital income inequality (proxied by the top 1% income share) are found to be negatively related in both fixed effects and instrumental variable regressions. Results also suggest that an increase in capital income inequality has a significant positive relationship with subsequent economic growth in fixed effects with period dummies. Moreover, controlling for capital income inequality yields a negative relationship between labor income inequality and growth, as originally conjectured.

Keywords: capital income, inequality, size of government, growth

JEL: D31, E62, O40

*I am grateful to my supervisors, Andrew Pickering and Paulo Santos Monteiro for their constant support. I also thank the participants at the European Public Choice Society Conference, the Public Choice Society Conference, the Money Macro and Finance Research Group Annual Conference, the Royal Economic Society Annual Conference, and the University of York for helpful comments.

†Department of Economics, University of York. E-mail: wl695@york.ac.uk.
1 Introduction

Is inequality necessarily harmful for growth? Political economy models in the early nineties, as articulated by Persson and Tabellini (1994),\(^1\) building upon Meltzer and Richard (1981), formalize an attractive prediction: a more unequal distribution of income implies divergence between mean and median income and so, under universal suffrage, raises redistribution. Such redistributive policies are financed by distortionary taxes, in principle affecting investment and growth-promoting activities.

I find that, however, evidence supporting the Meltzer and Richard (1981) hypothesis - greater ex-ante inequality raise redistribution - is generally weak. For example, the United States and other Anglo-Saxon countries have greater income inequality but lower public sector spending as a share of total GDP, while Scandinavian countries have relatively equal income distributions and a larger government spending share. Perotti (1996), Benabou (1996), and Persson and Tabellini (2003) all find an insignificant or even negative link between the size of government and the degree of inequality.\(^2\)

In response to this puzzle, new theoretical work has proposed mechanisms through which greater inequality levels can coexist with smaller government under democracy. For instance, Benabou (2000) identifies a functional role for the government to provide insurance (which implies redistribution) under capital market imperfections. The capacity for society to reach consensus on this role increases as the income distribution becomes more equal and risks become aligned and so government grows with equality. However, this type of mechanism also implies that government size should be positively correlated with economic growth and the evidence relating to the so-called ‘Armey curve’ surveyed by Bergh and Henrekson (2011)

\(^1\)Alesina and Rodrik (1994) and Bertola (1993) also provide similar anecdotes.

\(^2\)More recent empirical literature (Mello and Tiongson, 2006; Shelton, 2007; and Muinelo-Gallo and Roca-Sagales, 2013) is also unsupportive.
if anything points to a negative relationship, at least for high income countries.\footnote{Other mechanisms are proposed by Persson (1995) and Rodriguez (2004). In the former, utility depends on relative consumption. In this model there is increasingly a problem of excessive labor supply in more equal societies and taxes work to increase utility by reducing labor. As in Benabou (2000), greater equality increases the capacity for agreement to tax, which again solves a market failure. Taxes work to eliminate the negative externalities associated with individual labor supply. Rodriguez (2004) instead models the political power of the rich as increasing with inequality, thereby reducing their obligation to pay tax. The democratic constraint is therefore undermined.}

I also find that a substantial amount of evidence has attempted to examine the impact of inequality on growth, but the literature has not provided a satisfactory conclusion so far. For example, earlier cross-country OLS studies (e.g. see Alesina and Rodrik, 1994; Persson and Tabellini, 1994; Perotti, 1996; and Deininger and Squire, 1998) all find negative consequence of higher inequality for economic performance. However, with the appearance of inequality data set compiled in Deininger and Squire (1996), panel data models start to challenge the negative effect of inequality on growth found in cross-country regressions. Barro (2000) finds little overall link between income inequality and economic growth in a panel of countries, reporting a negative effect in poor countries and a positive effect in rich countries. Perhaps the most surprising result is Forbes (2000): By controlling for country-specific effects and period effects, she finds that in the short and medium-term, an increase in the level of income inequality in a country has a positive and significant relationship with subsequent growth rates.\footnote{Li and Zou (1998) also find the positive link by using an improved data set on income inequality again compiled in Deininger and Squire (1996). More recent empirical work is that of Frank (2009), who, estimating a dynamic panel data model but using regional data from different U.S. states, provides evidence that the long-run relationship between inequality and growth in the United States is positive and in principle driven by the upper end of the income distribution.}

In response to the conflicting results, new theoretical literature has put forward mechanisms through which greater levels of income inequality can promote economic growth. For instance, Galor and Moav (2004) study the effect of inequality on growth along the process
of development. In the early stages of development, when physical capital accumulation is the prime engine of growth, inequality stimulates growth as it channels resources towards individuals with more incentive to save. The positive effect of inequality on growth is reversed when human capital accumulation instead of physical capital is the primary engine for growth, where equality alleviates human capital accumulation and therefore stimulates growth. Moreover, Foellmi and Zweimuller (2006) study an innovation-based growth model and identity that an increased unequal in the distribution of income affects the incentive to innovate through a price effect, where greater inequality allows innovators to charge higher prices, and a market-size effect, with an opposite direction. It turns out that the price effect always dominates the market-size effect, and thus increased inequality simulates growth.

The approach analyzed in this paper instead revisits Meltzer and Richard (1981) and Persson and Tabellini (1994) more closely. In the original mechanism, labor is the only source of income and the rich have higher income by dint of higher individual-specific skills (productivity, in other words). However, labor is not the only source of income for the rich and moreover, the labor share of income has declined in recent years (see Azmat et al., 2012; Karabarbounis and Neiman, 2013). Indeed, Piketty (2014) relates rising inequality to the falling labor share: if the rate of return on capital is greater than the rate of economic growth, then the share of capital rises, and if ownership is concentrated within a small number of groups, then inequality inexorably increases. Furthermore, capital income has recently become more unequal as well as more important. Kaymak and Poschke (2016) document considerable increases in the concentration of wealth in the U.S. over the past 50 years. Luo et al. (2017), building on Meltzer and Richard (1981), link rising capital income inequality to declining redistribution: if inequality increases such that the share of capital income going to the top capital-income recipients increases, then the preferred tax rate falls because the (capital) rich are supplying less taxable labor income and hence the capacity of the median
voter to redistribute is reduced.

Hence I instead ask how inequality stemming from capital income affects government size. Individuals differ in their capital endowment, with a right skewed capital income distribution. The majority of individuals are endowed with limited (or zero) assets or wealth and so are compelled to supply labor for their income, which is taxed. In contrast, if capital-income is not taxed then the capital-rich are relatively less exposed to taxation. In direct contrast to Meltzer and Richard (1981), the key result is that increased inequality in capital income leads to smaller government. When income differences are driven by capital income, the capacity of the median voter to redistribute through the tax system is reduced because the capital-rich supply less (taxable) labor. If capital income inequality increases such that the capital-rich supply less labor, then the preferred labor income tax rate falls because the (capital-poor) median voter cannot effectuate redistribution. The work is related to Krusell and Rios-Rull (1999), who study a version of Meltzer and Richard’s model that includes inequality not only in labor income but also in wealth. However, I differ from Krusell and Rios-Rull (1999) as we assume capital income cannot be taxed, for the reasons explained below.

I also ask how inequality stemming from capital income affects economic growth in an overlapping generations model. In direct contrast to Persson and Tabellini (1994), the key result is that increased inequality in capital income leads to higher economic growth. When income differences are again driven by capital income, more unequal societies induced by an increase in the capital income earned by the top capital-income recipients tend to redistribute less. Such redistributive policies are financed by distortionary taxes, in principle, affecting capital accumulation and growth-promoting activities which in turn is detrimental to growth. If capital income inequality increases such that the preferred labor income tax rate falls as the (capital-poor) median voter cannot effectuate redistribution, then the subsequent rate
of economic growth increases because smaller size of redistributive policies are financed by less distortionary taxes.

The relationship between inequality and the size of government, and the relationship between inequality and the subsequent growth are investigated empirically using a panel of OCED countries, including a measure of capital income inequality as an additional explanatory variable. Direct measures of capital income inequality are not widely available. In the empirical work this is proxied by the top 1% total income share, taken from the World Wealth and Income Database (WID). A theoretical justification for this approach is Piketty (2014), wherein capital is disproportionately owned by a small number of dynasties. In this analysis the larger top income share stems from increasing capital income with fixed capital ownership. Certainly capital income represents an important component of the income of the top 1%. Frydman and Saks (2010) document the increasing importance of stock options and long-term bonuses (also in the form of capital payments) in the remuneration of executives in large publicly traded corporations in the US.

Examination of disaggregated capital income data for a subset of countries provides empirical justification for this proxy. The WID contains non-wage (i.e. capital) income data for the top 1% and the top 10% for Australia, Canada, France and the United States. I posit that the higher the ratio of the share of non-wage income going to the top 1% relative to the top 10% the more unequal the capital income distribution. Ideally given the theory I would require that the numerator and denominator would respectively be the mean and 50th percentile non-wage income, but such data are not available. Nonetheless it seems plausible that inequality between the top 1% and the top 10% would be correlated with the theoretical ideal. Figure 1 plots this measure of capital income inequality together with the

5The 0.1% income share could alternatively be used, though the results are very similar because the correlation between the 0.1% and 1% income shares is around 0.98.
top 1% income share for these countries. In all four cases there is a strong correspondence between the direct measure of capital income inequality and the top income share, giving some credence to using the latter to proxy for the former for the wider sample of countries.

The empirical analysis below also separately employs specific measures of productivity-induced labor income inequality as distinct from capital income inequality. As I discuss below the two measures are empirically as well as conceptually distinct from one another. I firstly test the relationship between inequality and the size of government. Consistent with the theory, the size of government is negatively associated with capital income inequality. A one standard deviation increase in capital income inequality leads to a reduction in the size of government of around 2.6% of GDP. The negative relationship holds up when the lagged dependent variable is controlled for, and also when capital income inequality is instrumented with measures of technological progress and capital market access. I also find that once capital income inequality is controlled for, then the impact of labor income inequality becomes positive, consistent with Meltzer and Richard (1981) and in contrast to the voluminous empirical work testing their hypothesis.

I also test the relationship between inequality and the subsequent growth. Consistent with the theory, an increase in capital income inequality has a positive and significant relationship with subsequent economic growth in the short and medium term. A one standard deviation increase in capital income inequality is statistically correlated with a 0.9% increase in average annual growth over the next five years. The positive relationship holds up when different sample sets or omitted variables are considered, and also when difference and system GMM estimations are included to deal with the potential endogenous problem. Moreover, controlling for capital income inequality yields a negative relationship between labor income inequality and growth, as originally conjectured.\(^6\)

\(^6\)The empirical work is part of a small literature that attempts to get a better grasp of the empirical pic-
The next section theoretically analyzes how the size of government and growth change with capital income inequality. Section 3 contains the empirical work, and section 4 concludes.

2 The Model

This model revisits Persson and Tabellini (1994) to include labor income taxation instead of wealth taxation. I study an overlapping generations model with constant population, where individuals live for two periods. Individuals born in period \(t \), indexed by \(i \), have preferences defined over consumption when young \(c^i \), leisure when young \(l^i \), and consumption when old \(d^i \), represented by a strictly concave, continuous, twice-differentiable utility function \(u^i_t = U(c^i_t, l^i_t, d^i_{t+1}) \). Consumption and leisure are both normal goods. Following the original, I first analyze the equilibrium behavior conditional on a given tax policy and then address the tax policy choice itself.

2.1 Economic Environment

Income may be derived from both labor and capital, and the stock of asset, \(k \), accumulated on average by the previous generation has a positive externality on the income of the newborn generation as in Persson and Tabellini (1994). All individuals possess a unit of time to

Earlier empirical contributions include Voitchovsky (2005), Castello-Climent (2010), and Halter et al. (2014). The first-mentioned paper questions previous empirical literature that uses aggregate indicators of inequality (e.g. Gini coefficient) which may mask different impacts of the upper and bottom part of the income distribution on growth. Castello-Climent (2010), consistent with Barro (2000), states that the results of inequality are different for rich and poor countries, finding a positive effect in the group of rich countries but a negative effect in the poor one. Finally, Halter et al. (2014), by contrast, argue this relationship in the time dimension rather than the regional dimension, and indeed find a positive effect in the short term but a negative effect further in the future. None of these papers, however, links inequality in the distribution of capital income to economic growth.
allocate to labor n^i, or leisure $l^i = 1 - n^i$. Individual labor income $y^i_t = n^i e^i k_t$ depends on productivity, e^i, as well as hours worked, and is taxed at a linear rate τ. Capital income varies exogenously across individuals and is denoted by $R^i k_t$. Following Meltzer and Richard (1981), consumption is also financed by lump-sum redistribution, r, common to all individuals, hence the budget constraints are:

$$c^i_t + k^i_{t+1} = (1 - \tau_t)n^i e^i k_t + r_t + R^i k_t$$ \hspace{1cm} (1)

$$d^i_{t+1} = \gamma k^i_{t+1}$$ \hspace{1cm} (2)

where k^i is the individual accumulation of asset, and γ is the exogenous rate of return on asset. Individuals make decision between consumption and investment when young, financed by labor and capital income as well as lump-sum transfers, and benefit from the return on that investment when old. Note that the stock of aggregate capital is accumulated as average productivity of all individuals increases. With homothetic preferences, the ratio of consumption in the two periods is independent of wealth and labor income taxation, $\frac{d^i_{t+1}}{c^i_t} = D$. Equivalently, every individual has the same “saving rate”.

To clarify the argument, capital income is assumed to be untaxed. In practice it is often more difficult to raise taxes on capital than on labor. Capital is often highly mobile internationally, whilst labor is not, and given this Diamond and Mirrlees (1971) show that small open economies should not tax capital income. Indeed, international tax competition limits the democratic control over capital income taxation. Whilst in practice capital income taxation rates are positive, Gordon et al. (2004) observe lower average rates than for labor income in most countries. Moreover, the academic literature documents considerable difficulties

\[7\text{Throughout the paper I use superscripts to denote individual-specific variables and no superscripts to denote average variables.}\]
with the collection of capital income taxation, primarily due to different types of capital income being taxed differentially (thereby, enabling arbitrage opportunities), and the fact that interest payments are tax-deductible. Indeed Gordon and Slemrod (1988), using US tax return data from 1983, estimated that the tax revenue loss from eliminating capital income taxation completely would be zero, hence that the tax burden on capital was effectively non-existent. It is an open question quite why the median voter would tolerate such a state of affairs, but conceivably the perceived deadweight and/or capital flight losses from increasing capital income taxation to some extent nullifies it as an instrument. Thus I focus on the choice of the labor income tax.

Each individual chooses labor supply so as to maximize:

\[v_i^t = U\left[\frac{\gamma}{\gamma + D} \left((1 - \tau_t) n^i e^i k^t_i + r^t + R^i k^t_i \right), 1 - n^i, \frac{\gamma D}{\gamma + D} \left((1 - \tau_t) n^i e^i k^t_i + r^t + R^i k^t_i \right) \right]. \]

(3)

The first-order condition is:

\[\frac{\gamma}{\gamma + D} (1 - \tau_t) e^i k^t U_c - U_l + \frac{\gamma D}{\gamma + D} (1 - \tau_t) e^i k^t U_d = 0 \]

(4)

which determines the labor supply, \(n[(1 - \tau_t)e^i, r^t, R^i] \), for those who wish to work.\(^8\) Since leisure is a normal good, I have that

\[\frac{\partial n^i}{\partial R^i} = -\frac{\partial^2 v_i}{\partial n^i \partial R^i} < 0 \]

(5)

\(^8\)Note again that \(k_t \) is given due to accumulation by the previous generation. Further, for simplicity (but without loss of generality) I henceforth assume that the joint distribution of \(e^i \) and \(R^i \) is such that \(n^i > 0 \) for all \(i \), so that everyone supplies a strictly positive amount of market work.
given the assumption that v is strictly concave. Similarly, since consumption is a normal good I have that:

$$\frac{\partial c_i}{\partial R^t} = \frac{\gamma k_t}{\gamma + D}(1 + \frac{\partial n^i}{\partial R^t}(1 - \tau_t)e^i],$$

$$= \frac{\gamma k_t}{\gamma + D}(1 - \tau_t)e^i k_i U_{cc} + \frac{\gamma D}{\gamma + D}(1 - \tau_t)e^i k_i U_{cd} - U_{ll} - \gamma^2 k_t \gamma + D(U_{dl} - U_{ll}) > 0, \quad (6)$$

a condition which imposes additional restrictions on U_{cd} and U_{dl}. Hence, all else equal, people who are relatively capital-rich supply less labor and enjoy higher consumption.

There are two sources of heterogeneity that determine differences in before-tax labor income. Firstly productivity, as analyzed by Meltzer and Richard (1981), and secondly capital income endowments. At the individual level increases in productivity will all else equal increase labor income. On the other hand increases in capital income will all else equal reduce the labor supply and, therefore, labor income. This underpins their proclivity towards taxation of

9In detail, using (4), I have that

$$\frac{\partial n^i}{\partial R^t} = \frac{\frac{\partial^2 v_i}{\partial n^i \partial R^t}}{\frac{\partial v_i}{\partial n^i}},$$

$$= k_t \left[(\frac{\gamma}{\gamma + D})^2 (1 - \tau_t)e^i k_i U_{cc} + (\frac{\gamma D}{\gamma + D})^2 (1 - \tau_t)e^i k_i U_{dd} - \frac{\gamma D}{\gamma + D} U_{cd} + \gamma (\frac{\gamma D}{\gamma + D}) (1 - \tau_t)e^i k_i U_{dl} - U_{ll} \right] > 0,$$

with $\frac{\partial (\frac{\partial v_i}{\partial n^i})}{\partial n^i} = \Delta = \left[(\frac{\gamma}{\gamma + D}) (1 - \tau_t)e^i k_i U_{cc} + U_{ll} + (\frac{\gamma D}{\gamma + D}) (1 - \tau_t)e^i k_i U_{dd} - 2 \frac{\gamma D}{\gamma + D} (1 - \tau_t)e^i k_i U_{cd} + 2 (\frac{\gamma D}{\gamma + D} (1 - \tau_t)e^i k_i U_{dl} < 0.

10Note that, as in Meltzer and Richard (1981), the sign of $\frac{\partial n^i}{\partial e^i}$ is indeterminate, but for any individual with positive labor income I have

$$\frac{\partial y^i}{\partial e^i} = k_t (n^i + e^i \frac{\partial n^i}{\partial e^i})$$

$$= k_t \left[e^i (\frac{\gamma}{\gamma + D} (1 - \tau_t)e^i k_i U_{cc} + \frac{\gamma D}{\gamma + D} (1 - \tau_t)e^i k_i U_{dd}) + n^i (\frac{\gamma}{\gamma + D} (1 - \tau_t)e^i k_i U_{cd} + \frac{\gamma D}{\gamma + D} (1 - \tau_t)e^i k_i U_{dl} - U_{ll}) \right] > 0, \quad (7)$$

must be positive given condition (6).
labor income.

Average labor income can thus be written by integrating:

$$\bar{y}_t = k_t \int_0^\infty \int_0^\infty e^i n[(1 - \tau_t)e^i, r_t, R^i] f(e^i, R^i) dR^i
\quad \text{where} \quad f(e^i, R^i) \text{ is joint distribution function of } e^i \text{ and } R^i.$$

Individual productivity and capital endowments conceivably are correlated with each other to some extent: if, for example, high productivity individuals simultaneously enjoy high capital income. Finally, the government’s balanced budget requirement (in per capita terms) is given by:

$$\tau_t \bar{y}_t = r_t.$$ \hspace{1cm} (9)

For the average individual, by use of (2) and (8) I can thus solve for the growth rate of k

$$g_t = \frac{k_{t+1} - k_t}{k_t} = \frac{D(\int_0^\infty \int_0^\infty e^i n[(1 - \tau_t)e^i, r_t, R^i] f(e^i, R^i) dR^i + R)}{\gamma + D} - 1 \quad \text{ where } R \text{ is average capital income.}$$ \hspace{1cm} (10)

Note that analogous to (5), I have:

$$\frac{\partial v_i}{\partial r_t} = -\frac{\partial^2 v_i}{\partial r_t \partial n} < 0.$$ \hspace{1cm} (11)

In detail, using (4), I have that

$$\frac{\partial n^i}{\partial r_t} = \frac{\partial^2 v_i}{\partial r_t \partial n} \frac{\partial^2 v_i}{\partial n^i} = \frac{(\gamma D)^2 (1 - \tau_t)e^i k_t U_{cc} + (\gamma D)^2 (1 - \tau_t)e^i k_t U_{dd} - \gamma D U_{cl} + 2(\gamma D)(1 - \tau_t)e^i k_t U_{cd} - \gamma D U_{dl}}{\Delta} < 0.$$ 11 Hence for given productivity and
capital income endowment, individual labor supply falls with increased redistribution. Therefore:

\[
\frac{\partial \bar{y}_t}{\partial r_t} = k_t \int_0^\infty \int_0^\infty e^i \frac{\partial n^i}{\partial r_t} f(e^i, R^i) de^i dR^i < 0.
\] (12)

This establishes that the left-hand side of (9) is strictly decreasing with \(r \). Moreover, \(\tau \bar{y} \) is non-negative and bounded above by \(\tau e \), where \(e \) is average productivity. In turn, the right-hand side of (9) is strictly increasing with \(r \). Thus, there is a unique value of \(r \) to satisfy (9) for any \(\tau \).

2.2 The Median Voter’s Choice of Tax Policy

I now turn to the policy-setting decision. Crucially, the median voter is still a Condorcet winner even though the electorate is heterogeneous on two dimensions. The logic of this is that the preferred tax rate remains a monotonic function of the labor income alone, regardless of the underlying determinants of that labor income. Hence high labor income (whether induced by either high productivity or low capital income) will engender aversion to taxes, whilst low labor income (whether induced by low productivity or a generous capital income inheritance) will engender support for tax-financed redistribution. Formally, the median labor income-earner, \(m \), is the median voter. She sets taxes to maximize utility subject to the budget constraints (1) and (2), the government budget constraint (9), and a rational anticipation of how taxation will affect the incentives to supply labor in the economy. The first-order condition for the median voter with respect to the tax rate is:

\[
\bar{y}_t - y^m_t + \tau_t \frac{d\bar{y}_t}{d\tau_t} = 0
\] (13)
where y^m is the labor income of the median voter. For a given ratio of mean to median labor income, the political equilibrium τ is constant over time, so that the time subscript t is suppressed henceforth. Let $\theta = 1 - \tau$ be the fraction of earned income retained. Condition (13) yields the following solution for the tax rate chosen by the median voter

$$\tau = \frac{m - 1 + \eta_r}{m - 1 + \eta_r + m\eta_\theta},$$

with $\eta_r < 0$ and $\eta_\theta > 0$ the partial elasticities of average income (assumed constant, as in Meltzer and Richard, 1981), and labor income inequality $m = \bar{y}/y^m$.\footnote{Details are available in the Appendix A.}

The key insight of Meltzer and Richard (1981) is that an increase in labor income inequality raises taxation, since an increase in income inequality raises m and from (14) I have that

$$\frac{d\tau}{dm} > 0.$$

Finally, although I impose almost no restrictions on the joint distribution $f(e^i, R^i)$, I wish to guarantee that: i) the chosen tax rate is positive; and that ii) the individuals that are in the top of the capital income distribution are never the decisive voter. Thus, in the sequel I make the following two assumptions:

Assumption 1 The joint distribution $f(e^i, R^i)$ is such that the labor income distribution is right-skewed. Thus, $y^m < \bar{y}$ and the chosen tax rate is positive.

From (13) I see that Assumption 1 guarantees that the chosen tax rate is positive.

Assumption 2 The joint distribution $f(e^i, R^i)$ is such that the set of individuals $i \in K$ with capital income R^i above the 99% percentile of the capital income distribution has productivity e^i which is sufficiently high so that $y^i = e^i n^i k > y^m$ for all $i \in K$.
I focus on the 99% percentile because in the empirical section that follows I use the income share of the top 1% as our measure of capital income inequality. Figure 2 illustrates the condition imposed by Assumption 2. The locus denoted $y = y^m$ represents productivity and capital income pairs, (e^i, R^i), for which labor income y is equal to the median voter’s labor income, y^m. To the right of this locus, $y > y^m$, since $\frac{\partial y^i}{\partial e^i} > 0$ and $\frac{\partial y^i}{\partial R^i} < 0$. The dashed line denoted $Q_{99\%}$ represents the 99% quantile of the capital income marginal density function. Assumption 2 is a condition requiring that the set \mathcal{K} of all individuals with capital income above $Q_{99\%}$ is located to the right of the locus $y = y^m$, as shown in Figure 2.

2.3 Capital Income Inequality and Redistribution

I am interested in the consequences of higher capital income inequality. To study this issue I consider an increase in the capital income earned by the individuals in the set \mathcal{K} of all individuals with capital income above $Q_{99\%}$. This is represented in Figure 3: the individuals in the set \mathcal{K} that correspond to the original individuals in the top 1% of the capital income distribution receive an exogenous increase in capital income; thus, the set \mathcal{K} shifts upwards in the space (e^i, R^i), but still satisfying the restriction imposed by Assumption 2, that guarantees that none of the members of the set \mathcal{K} are the median voter (the new set is represented by the triangle above, in Figure 3). Notice that this experiment constitutes an increase in capital income inequality, since I maintain the capital income of all the other individuals unchanged and, hence, the capital income share of the top 1% is increased.\(^{13}\)

Under a right-skewed labor income distribution $y^m < \bar{y}$, and given (14) above then $\tau > 0$. As with Meltzer and Richard (1981) demand for redistribution stems from changes in the labor

\(^{13}\)It is not, however, a mean preserving spread in capital income. But lowering the capital income of the bottom 99% capital income earners in order to preserve the mean capital income would only reinforce our results.
income distribution. However, the labor income distribution may now change depending on the distribution of capital income as well as the productivity distribution.

To see the consequences of higher capital income inequality, notice that all the individuals in the set \(K \) will choose to work less, because they enjoy an increase in their capital income and leisure is a normal good. This will tend to lower the average labor income \(\bar{y} \), since I have that

\[
\bar{y} = p(K) \bar{y}(K) + (1 - p(K)) \bar{y}(\sim K),
\]

where \(\bar{y}(K) \) denotes the average labor income of the individuals in the set \(K \), \(\bar{y}(\sim K) \) denotes the average labor income of the individuals not in the set \(K \), and \(p(K) \) is the probability measure of the set of individuals \(K \). Notice that Assumption 2 guarantees that \(\bar{y}(K) > y_m \).

On the other hand, the reduction in \(\bar{y} \) implies that the individuals not in the set \(K \) will receive fewer transfers and, therefore, work more. From Assumption 2, the individual earning the median labor income is not in the set \(K \) and, thus, \(y_m \) will increase. The upshot is that \(m = \bar{y}/y_m \) is decreased. Hence, the effect of the increase in capital income going to the top capital-income recipients is to reduce the gap between taxable mean and median labor income. Hence an increase in overall income inequality can coexist with a reduction in labor income inequality. Since \(\frac{d\tau}{dm} > 0 \), it follows that an increase in capital income inequality unambiguously lowers the tax rate chosen.

Proposition 1 Suppose the top capital-income recipients are sufficiently productive that they also earn labor income above the median labor income (Assumption 2), and consider an increase in capital-income inequality represented by an increase in the capital income earned by the top capital-income recipients. Then the labor income tax rate \(\tau \) falls as capital income inequality rises.
The proof of Proposition 1 is in Appendix B. In direct contrast to Meltzer and Richard (1981) government size diminishes with increased capital income inequality. If inequality increases such that the share of capital income going to the top income recipients increases, then the preferred tax rate falls because the (capital) rich are supplying less taxable labor income and hence the capacity of the median voter to redistribute is reduced.

The key issue is the extent to which the median voter can effectively redistribute through the tax system. As discussed above there are good reasons to believe that taxation of relatively mobile capital is considerably more difficult than taxation of labor income. If the rich are rich primarily due to capital income, perhaps because of the rising capital share, and perhaps due to successful reclassification of their income streams, then the capacity of the median voter to redistribute is curtailed. Moreover if rising inequality translates into further reductions in the supply of taxable labor then it follows that the demand for redistribution will fall.

2.4 Capital Income Inequality and Growth

I now turn to the effect of capital income inequality on economic growth via the channel of redistribution. Combining (10) and the total derivative of \bar{y}, I have Lemma 1.

Lemma 1 The growth rate falls as the labor income tax rate τ rises, e.g.,

$$\frac{dg}{d\tau} = \frac{D}{\gamma + D} \frac{d\left(\int_0^\infty \int_0^\infty e^{i}\left[(1 - \tau)\epsilon^i, r, R^i \right] f(e^i, R^i) de^i dR^i + R\right)}{d\tau} < 0. \quad (17)$$

Thus all else equal, the higher is the labor income taxation, the lower is the growth rate.

The Appendix C contains more mathematical details.

From the properties of the g and τ functions derived above, I can obtain Lemma 2.

Lemma 2 A more unequal distribution of labor income decreases growth, e.g.,
\[
\frac{dg}{dm} = \frac{dg}{d\tau} \frac{d\tau}{dm} < 0.
\] (18)

This indicates that labor income inequality is harmful for growth which is identical in spirit to Persson and Tabellini (1994). Now consider the consequences of higher capital income inequality and the mechanism analyzed above.

Proposition 2 *The growth rate rises as capital income inequality rises.*

In direct contrast to Persson and Tabellini (1994) economic growth increases with increased capital income inequality. When income differences are driven by capital income, the capacity of the median voter to redistribute through taxation is reduced since the capital-rich supply less (taxable) labor. Such redistributive policies, financed by distortionary taxes, in principle, affect capital accumulation and growth-promoting activities which in turn is actually detrimental to growth. If capital income inequality increases such that the preferred labor income tax rate falls as the (capital-poor) median voter cannot effectuate redistribution, then the subsequent rate of economic growth increases because smaller size of redistributive policies are financed by less distortionary taxes. If declining distortionary taxes translate into further less restriction on aggregate capital accumulation then it follows that subsequent economic growth will increase.

3 Evidence

Given the conflicting results between inequality and redistribution, and between inequality and growth in the theoretical and empirical surveyed above, in this section, I first examine the effect of inequality on total government outlays, and then investigate the effect of inequality on subsequent economic growth rate by distinguishing between income inequality
induced by differences in labor productivity and income inequality induced by differences in capital income instead of aggregate inequality generally used in most well-known analyses of inequality.

3.1 The Effect of Inequality on Redistribution

The empirical analysis examines a panel of OECD countries over the period 1960-2007. Following Pickering and Rockey (2011) and Facchini et al. (2017), the dependent variable is total government outlays as a percentage share of GDP, extracted from the OECD Economic Outlook database. Figure 4 depicts these data, showing all countries experienced an upward trend in the earlier years followed by a period of stasis or even slight decline since around 1990. Table 1 contains descriptive statistics of all the variables used in the analysis.

Figure 5 depicts the top income share data for all 19 countries. Note that the increases in the top income share to some extent coincides with the reversal of the growth of government noted above. Clearly there are interesting differences across the countries, for instance stronger recent increases in the English-speaking countries as discussed by Piketty and Saez (2006). The argument advanced in this paper is the following: as the top income share increases, the supply of taxable labor of the rich falls, and hence support for taxation of labor income falls.

As noted above previous empirical literature has generally been unsupportive of the original Meltzer and Richard (1981) hypothesis. If the mechanism put forward in the present paper

14 Specifically the countries included are Australia, Canada, Denmark, Finland, France, Germany, Ireland, Italy, Japan, Korea, Netherlands, New Zealand, Norway, Portugal, Spain, Sweden, Switzerland, the United Kingdom, and the United States. Current data availability for the top income share precludes using other countries. The sample ends in 2007 due to the substantial toll on government outlays in many countries following the global financial crisis.
is important, and capital-income inequality and productivity differences are correlated with
each other, then arguably previous analyses have suffered from an omitted variable bias. A
measure of productivity heterogeneity is thus also included in the empirical analysis. This
measure is taken from the University of Texas Inequality Project’s Estimated Household
Income Inequality data. These data (denoted by UTIP) use Theil’s T statistic - measured
across sectors within each country - to estimate wage inequality. Assuming competitive labor
markets, then wage inequality should be capturing underlying heterogeneity in productivity.
Figure 6 depicts these data, which also exhibit increases in recent years, varying across
countries. This measure is thus close to Meltzer and Richard (1981) original conception of
the driver of the demand for redistribution - productivity-based inequality.

A natural objection here is that the top income share will also be picking up productivity-
induced inequality. Inevitably there is a correlation between productivity inequality as mea-
sured by UTIP and the income share of the top 1%, but this is somewhat weaker than
might be expected. Figure 7 depicts a scatter plot of the two series, exhibiting a correlation
coefficient of around 0.53. Hence there is meaningful separate information in the two series.
Our argument is that the top income share is especially informative about capital income
inequality rather than productivity-induced labor income inequality. The small sample of
countries depicted in Figure 1 discussed in the introduction lends some credence to this
argument.

The analysis includes control variables following Facchini et al. (2017). Controls include the
natural logarithm of GDP per capita in constant chained PPP US$ (ln(y)), taken from the
Penn World Tables (e.g. see Ram, 1987). Ideology (denoted IDEO) and its interaction with
income (denoted INTERACT) as used in Pickering and Rockey (2011), are also included
as standard. Following Facchini et al. (2017) the labor share of income (denoted SHARE)

\footnote{See Galbraith and Kum (2005).}
from the OECD database is also included to capture (falling) cost-push effects. Following Kau and Rubin (2002) and Winer et al. (2008) female participation (FP) in the labor force is also included. Further controls follow Persson and Tabellini (2003). Demographic effects are encapsulated in the percentage of the population between 15 and 64 years of age and the percentage over the age of 65 (denoted PROP1564 and PROP65), taken from the World Development Indicators (WDI) database. Following Rodrik (1998) the trade share (the sum of exports and imports as a percentage of GDP, denoted TRADE) is also employed in the regression analysis.

Total government outlays in OECD countries vary counter-cyclically. There may also be cyclical movements in inequality. To address this potential problem the regression analysis employs the Persson and Tabellini (2003) cyclical control variables - the output gap (denoted YGAP) and oil price effects (depending on whether or not the country is a net oil-exporter or importer, denoted OIL.EX and OIL.IM) are also included in the analysis when annual data are used. To summarize, the first approach to estimate the effect of inequality on total government outlays is to consider the following econometric model:

\[\text{OUTLAYS}_{i,t} = \beta_1 \text{TOPINC}_{i,t} + \beta_2 \text{UTIP}_{i,t} + x'_{i,t} \Gamma + \alpha_i + \eta_t + u_{i,t} \quad (19) \]

where \(i \) represents each country and \(t \) represents each time period, all control variables analyzed above are included in the vector \(x_{i,t} \), \(\alpha_i \) are country dummies, \(\eta_t \) are period dummies, and \(u_{i,t} \) is the error term.

Table 2 contains estimation results from fixed-effects panel regressions with total outlays as a percentage of GDP as the dependent variable. Column 1a represents the current consensus, augmenting the benchmark specification in Facchini et al. (2017) with productivity-induced inequality (UTIP), and finding it to be highly insignificant. This insignificance coheres with
the findings in Perotti (1996), Persson and Tabellini (2003), Mello and Tiongson (2006), and Shelton (2007). Column 1b further augments this specification with capital income inequality. The estimated coefficient for capital income inequality is negative, with a \(p \)-value of 1.7\% and the estimated relationship is sizable: A one standard deviation increase in capital income inequality is statistically associated with government size which is smaller by 2.63\% of GDP, consistent with the theoretical reasoning given here. It is also noteworthy that the coefficient estimate for productivity-induced labor income inequality increases substantially, though is still not statistically significant. Following Facchini et al. (2017) results are also presented (in columns 2a and 2b) using five-year averages of the data, and the results essentially duplicate those in column 1, establishing that the observed correlation is not caused by the cyclical features in the data.

Column 3 of table 2 contains Arellano-Bond dynamic panel estimation results extending the specification used in column 2 to include the lagged dependent variable (\(L.\text{OUTLAYS} \)). Here the negative relationship between government size and capital income inequality holds up, and indeed the coefficient estimate pertaining to labor income inequality is now positive, consistent with the Meltzer and Richard (1981) hypothesis, and significantly different from zero at the 5\% level. This evidence suggests that previous tests of the Meltzer and Richard (1981) hypothesis were hampered by the conflation of capital and labor income inequality.

3.2 Instrumental Variables Estimation

The empirical analysis presented above establishes a robust negative statistical association between government size and capital income inequality in the presence of a substantial set of controls. However, these results do not establish causality, insofar that the movements in capital income inequality may be endogenous to the size of government, or alternatively
both variables may co-move in response to an unobserved driver not accounted for in the controls. What is required for identification is a source of exogenous variation in capital income inequality. In this section I describe and deploy two potential instruments. An advantage of using two independent instruments is that it enables an overidentification test of the exclusion restriction that the instruments are not correlated with the error term in the second stage regression.

The first instrument is the number of internet users in percentage of the total population (**INTERNET**), encapsulating technological change.16 Skill-biased technological change has been advanced as a (if not the) principle driver of rising inequality in general terms (for example in Goldin and Katz, 2009). Conceivably this process has especially underpinned increasing capital income inequality.17 Atkinson et al. (2011) indeed document that a large part of the top income share derives from capital income.18

There are a number of channels through which advancing information technology could increase capital income inequality. One, as noted above is simply the mechanism advanced in Piketty (2014): if capital income rises with fixed ownership concentration, then capital inequality rises. Another stems from the observation that information technology is ‘weightless’ and in such circumstances the distinction between labor and capital income becomes somewhat arbitrary. Thus one can equally describe Mark Zuckerberg as being an extremely productive worker, or as having created a company with enormous capital value. Relatedly, information technology plausibly has allowed many diverse activities to upscale their

16Taken from the WDI database.

17Note that any effect of technological change through labor income inequality, or the labor share, is closed off due to these variables separately being included as controls in the analysis. It is still nonetheless possible that technology is correlated with the error term in the second-stage regression (i.e. violating the exclusion restriction), though the mechanism is not easy to see given the extensive set of controls. Moreover the exclusion restriction is tested below using the Hausman over-identification test.

18For instance in their figure 3 capital gains, capital income and business income represent well over half of the income of the top 0.1% in the US.
operations, resulting in significant increases in profitability which has in no small part been manifest in increased capital income for share owners or business partners. What is relevant for the theory above is liability for labor, as distinct from capital, income taxation. In particular in the case of new information technology, the new high earners face an interesting problem of how to classify their income.

Plausibly, and indeed empirically as observed above in related situations, they (or their accountants) will classify and organize their income so as to minimize taxation obligations. Given that it is almost universally the case that top marginal labor income taxes are higher than the (effective) top marginal capital income taxes, then income will likely be declared as capital income. To summarize, new technology has resulted in enormous rewards for a small number of people who have substantially registered these rewards in the form of capital income.

Our second instrument encapsulates exogenous variation in what I term as financial inclusiveness. By definition capital income requires capital ownership, and historically such ownership has not been widespread, even in the OECD. A necessary condition for mass ownership of capital assets and equity in particular is an established level of financial inclusion. A well developed financial system is one where it is easy, for all members of the population, to acquire (and sell) different types of capital assets. When financial inclusion is low, then conceivably at least some forms of asset ownership are not feasible for much of the population, and likely those with low income. Following this line of reasoning I conjecture that capital income inequality falls, conditionally, with financial inclusion.

The standard measure of financial inclusion is the ratio of stock market capitalization to GDP. However there are two problems with using this measure as an instrument in the context of our research objective. Firstly stock market capitalization is unlikely to be exogenous: a
large public sector by construction implies a small private sector, hence lower stock market capitalization all else equal. Secondly, and more prosaically, the standard source for these data (the World Bank Global Financial Development Database) provides data only from 1989. To uncover exogenous variation in financial inclusion I use the Chinn-Ito index for financial openness (KAOPEN), an institutional measure that Chinn and Ito (2006) establish leads to changes in financial development, and therefore financial inclusion once legal systems and institutions are sufficiently developed (conditions which apply in the OECD). Notably these authors rule out reverse causality from financial inclusion to financial openness hence the Chinn-Ito index more plausibly satisfies the exogeneity requirement. To summarize the argument: The Chinn and Ito (2006) index exogenously drives financial inclusion. Exogenous increases in financial inclusion permit wider asset ownership thereby causing capital income inequality to fall. Hence I posit that capital income inequality exogenously falls with increases in the Chinn-Ito index.19

Table 3 contains the results of the IV estimation. Column 1 contains results using only the INTERNET instrument, and column 2 contains results using only the KAOPEN instrument. The first-stage coefficient estimates for both instruments exhibit signs as hypothesized. Capital income inequality is estimated to (conditionally) increase with internet coverage, and the hypothesis that this particular instrument is weak can be rejected given that the \(F \)-statistic of the first stage regression exceeds 14. On the other hand capital income inequality is estimated to conditionally fall with capital market openness. The \(F \)-stat in this instance does not quite reach the threshold value of 10, but is not far off. Column 3 employs

19Dabla-Norris et al. (2015) find that overall inequality actually increases with financial openness. The mechanism discussed therein is skills-bias – financial openness productively adds especially to the highly-skilled, thus increasing wage-inequality. It should be clear that this is a distinct hypothesis from ours, which emphasizes access to capital markets. Note again that labor income inequality is controlled for in both the first and second stages of the IV estimation. Hence the estimated effect of the Chinn-Ito index on capital income inequality is already conditional on any effect it has on labor income inequality.
both instruments, with the advantage that this enables application of the overidentification test. The null hypothesis here is that the exclusion restriction is violated, and clearly the test statistic does not indicate rejection of this hypothesis. This test result thus supports the exclusion restriction that the instruments are not correlated with the second-stage error term.

Using the results from column 3, the coefficient estimate for \textit{TOPINC} in the second stage indicates that a one standard deviation increase in this variable \textit{all else equal} causes a fall in the size of government of about 6\% (i.e. using the data in Table 1 around 60\% of a standard deviation). Importantly the assumption that all else is equal here is strong: I have already documented the positive correlation between \textit{TOPINC} and labor income inequality (\textit{UTIP}), and indeed the coefficient estimate for the latter variable suggests an offsetting effect if both types of inequality simultaneously increase. What is clear from these results is that the effects of inequality in general terms are more complex than implied in the original Meltzer and Richard (1981) model. Labor income inequality now positively affects government size - consistent with Meltzer and Richard (1981). The top income share - which I interpret as a proxy especially for capital income inequality - negatively affects the size of government. This is consistent with the theoretical reasoning in this paper. When it is difficult to tax capital income, then those who rely on labor income become averse to labor income taxation.

Columns 4 and 5 contain estimation results using 5-year averages of the data. For these regressions the lag of the top income share is used as an instrument, because \textit{INTERNET} and \textit{KAOPEN} are not sufficiently strong in this setting, where much of the time variation is averaged out. In column 4 \textit{TOPINC} is again estimated to have a significantly negative impact on government size, whilst labor income inequality (\textit{UTIP}) remains positive and statistically significant. The negative impact of \textit{TOPINC} survives the addition of the
lagged dependent variable in column 5, though the impact of productivity-induced labor income inequality is here reduced.

3.3 The Effect of Inequality on Growth

This section estimates growth as a function of initial inequality, income level, human capital, and market distortions, which is similar to that used in most empirical work on inequality and growth (e.g. Forbes, 2000). The change from Forbes’s model is to include capital income inequality ($TOPINC$) and productivity-induced labor income inequality ($UTIP$) instead of aggregate inequality.

Following Forbes (1996), the dependent variable is the average rate of growth of income per capita over five-year period as yearly growth rates incorporate short-run disturbances. For example, this means that growth rate in period 2 is averaged over 1971-1975 and is regressed on explanatory variables measured during period 1 (1966-1970). In practice, each explanatory variable is measured in 1970, except capital income inequality and productivity-induced labor income inequality, which are sometimes not available in a specific year and is taken from the year closest to 1970. This reduces yearly serial correlation from business cycles.

The analysis includes control variables following Forbes (2000). Controls include per capita GDP in constant chained PPP US$ (denoted y). Per capita GDP y and the resultant growth rates are taken from the Penn World Tables (e.g. Ram, 1987). Following most empirical studies of income distribution and growth (e.g. Alesina and Rodrik, 1994; Persson and Tabellini, 1994) human capital effects are also included, and are represented by average years of secondary schooling in the male and female population aged over 25 (denoted $MEDU$ and $FEDU$), drawn from the data set compiled in Barro and Lee (1996). These two schooling
variables proxy for the stock of human capital at the beginning of each of the estimation
periods. The price level of investment (the PPP of investment over exchange rate relative
to the United States, denoted \(PPPI\)) as used in Perotti (1996) are also employed in the
regression analysis to capture market distortions that affect the cost of investment, also
taken from the Penn World Tables. Finally, the country dummies are employed to control
for time-invariant omitted-variable bias, and the period dummies are employed to control
for global shocks that may affect aggregate growth in any periods but are not captured by
other explanatory variables.

It is clearly possible to include a set of additional variables. However, as in Perotti (1996) and
Forbes (2000) this paper mainly focuses on this simple specification for three considerations.
First, in order to estimate the impact of inequality on growth it is important to make as
few discrepancy as possible relative to typical growth model. Second, as the number of
observations is limited by the availability of inequality data, this simplified specification will
help maximize the number of degrees of freedom. Third, since some control variables used
in standard-growth model (e.g. government expenditure) may be endogenous, focusing on
stock variables measured at the start of each periods instead of flow variables measured
throughout each periods can reduce the potential endogeneity problem. To summarize, the
growth model central to this section is

\[
GROWTH_{i,t} = \beta_1 TOPINC_{i,t-1} + \beta_2 UTIP_{i,t-1} + \beta_3 y_{i,t-1} + \beta_4 MEDU_{i,t-1} \\
+ \beta_5 FEDU_{i,t-1} + \beta_6 PPPI_{i,t-1} + \alpha_i + \eta_t + u_{i,t}
\]

(20)

where \(i\) represents each country and \(t\) represents each time period, \(GROWTH\) is average
annual growth, \(\alpha_i\) are country dummies, \(\eta_t\) are period dummies, and \(u_{i,t}\) is the error term.

Table 4 contains estimation results from fixed-effects panel regressions with average annual

27
growth rate as the dependent variable. Column 1 examines the original Persson and Tabellini (1994) hypothesis using five-year periods, applying the benchmark specification in Forbes (2000) with productivity-induced inequality (UTIP), and finding its coefficient to be insignificant but importantly positive. This positive sign coheres with the results in Forbes (2000). Column 2 further augments this specification with capital income inequality. The estimated coefficient for capital income inequality is positive, with a \(p \)-value of 2.0\% and the estimated relationship is sizable: A one standard deviation increase in capital income inequality is statistically correlated with a 0.9\% increase in average annual growth over the next five years,20 consistent with the theoretical reasoning given here. It is also noteworthy that the coefficient estimate for productivity-induced labor income inequality is now negative, though is still not statistically significant. Following Forbes (2000) results are also presented (in columns 4 and 5) using ten-year panels, and the results essentially duplicate those in columns 1 and 2, establishing that this observed short-term, positive relationship is not dampened over time.

Column 6 of Table 4 contains Arellano-Bond dynamic panel estimation results extending the specification used in columns 4 and 5 to include the lagged dependent variable (\(GROWTH \)). Here the positive relationship between capital income inequality and growth holds up, and indeed the coefficient estimate pertaining to labor income inequality is negative and significantly different from zero at the 10\% level, consistent with the Persson and Tabellini (1994) hypothesis. This evidence suggests that previous tests of the Persson and Tabellini (1994) hypothesis were hampered by the conflation of capital and labor income inequality. Columns 7-9 again test 1-3 using extended sample of 1965-2010 and duplicate their results.

Most of the coefficient estimates of control variables agree with those traditionally reported in

20Note, however, that it is unlikely that any country’s top income share could rise by this magnitude in a short period of time.
typical literature. As indicated by models considering conditional convergence, the coefficient on initial income level is negative and statistically significant. Note also that the opposite signs on the coefficients of $MEDU$ and $FEDU$ are in line with the findings in Barro and Sala-I-Martin (2003) and Perotti (1996), who obtain the results based on a larger sample. For a given male attainment, an increase in initial female attainment leads to less backwardness and thus slower subsequent growth since the economy converges toward steady state (see Barro and Sala-I-Martin, 2003).

Previous work on the effect of income inequality on economic growth (Forbes, 2000) discusses the necessity to deal with potential endogeneity. Following the specification by Forbes (2000), column 1 of Table 5 applies difference GMM by Arellano and Bond (1991) to a panel covering 18 OECD countries during 1965-2010 in five-year periods. The basic difference GMM regression, eliminating the fixed effects and using lags of the endogenous variables as instruments, produces similar results presented in Table 4, in particular, significant and positive coefficient on lagged capital income inequality. While heightening the concern is the problem of weak instruments in difference GMM, which led to the development of system GMM by Arellano and Bover (1995) and Blundell and Bond (1998), and could reinforce endogeneity bias. The perfect p-value of 1.00 for the Hansen test is a classic sign of instrumental proliferation.

The remaining columns 2-5 of Table 5 examine the sensitivity of the results to reducing the number of instruments. Column 2 firstly collapses the instruments. Columns 3-4 use two different lags from the instrument set, and column 5 combines the two modification. It should also be noted that the AR(2) test and the Hansen J test show that there is no further serial correlation, and the overidentifying restrictions are not rejected. As difference GMM can suffer from the problem of weak instrument, the rest columns of Table 5 utilise the benefit of system GMM, which augments the equation estimated by difference GMM, simultaneously estimating an equation in levels with suitable lagged differences of endogenous
variables as instruments. Therefore, columns 6-10 mimic columns 1-5 whilst instead using system GMM and produce similar results, which reinforce the proposed theory. Throughout Table 5 the positive coefficients on capital income inequality lose significance as the number of instruments falls.

3.4 Sensitivity Analysis

Table 6 tests the robustness and contains estimation results from fixed-effects panel regressions using five-year periods. Column 1 uses the same specification as column 2 of Table 4 but excluding Asian countries (e.g. Japan and Korea) to examine whether the regional coverage of sample affects results. Apart from the regional coverage, not surprisingly, the representative of very poor countries is extremely limited due to the unavailability of the top income share statistics. However, the relationship between capital income inequality and growth may depend on the stage of development of a country. I split the sample into wealthy and poor countries based on initial income level in 1965, and then reestimate equation (20) for two groups (reported in columns 2 and 3). Note that no matter which sample selection is utilized, the relationship between capital income inequality and growth remains positive and statistically significant.

Column 4 of Table 6 includes the percentage of population over the age of 65 (denoted \textit{PROP65}) as an additional control variable for reasons related to the work of fiscal policy approach as with Perotti (1996). This demographic variable may be correlated with income inequality as among retirees both average income and inequality are lower. In turn, if the population in a country is older, then the demand for social security is higher and hence, more taxation distortions and slower subsequent growth. The coefficient on this demographic variable is negative and statistically significant at the 5% level, supporting
the mechanism proposed. Further, inequality stemming from capital income is likely to be correlated with the labor share of income (denoted $SHARE$). As in Facchini et al. (2017) a recent declining labor share has played a part in explaining the slowdown in the growth of government size and therefore, less distortions and higher growth. In fact, no matter whether I control for $PROP$65 or the labor share, as in columns 4 and 5, the coefficient on capital income inequality is positive and statistically significant at the 5% level. Note also that throughout columns (1)-(5) of Table 6 the coefficient estimates for labor income inequality are consistently negative (though not significant). The estimated effect of capital income inequality on growth remains sizable: An increase in $TOPINC$ by one standard deviation is associated with an increase in average rate of growth of GDP per capita by around 0.7%. Columns 6-10 again test 1-5 using extended sample of 1965-2010 and present similar results.

In the model, I theorize that greater capital income inequality leads to smaller tax burden on labor and thus higher subsequent economic growth. However, this implicitly indicates a negative relationship between government size and subsequent growth. Therefore, I test this relationship in Table 7 which presents regressions of average annual per capita growth rate on the lagged total government outlays. Column 1 includes the initial income level on the right-hand side, and I can see a negative and significant relationship. The rest of the table investigates the robustness of this relationship. Column 2 includes the initial male and female education, while column 3 instead adds initial market distortions on the right-hand side. Column 4 includes all controls mentioned above, and with these controls the relationship between total outlays and growth remains negative and statistically significant at 10 percent. Column 5 in addition includes $TOPINC$ and $UTIP$, thus allowing for robustness check of how inequality affects growth. In this case, controlling for the lagged total outlays again yields positive relationship between capital income inequality and growth, in support of the mechanism proposed in this paper. Moreover, columns 6-10 mimic columns
1-5 and show that the broad picture is also similar when I focus on the ten-year panel data.

4 Conclusion

This paper analyzes how inequality in the capital income distribution affects the rate of economic growth. Capital income is quite distinct from labor income. I define it as rental income, and also model it as untaxed, hence redistribution is financed solely by taxation applied to labor income, and voters have preferences over the tax rate based on their position in the capital income distribution. Despite the fact that there are two underlying sources of heterogeneity in the populations, the median voter is still the unique Condorcet winner because tax preferences are monotonic in labor income.

The result relating growth to capital income inequality is novel. In contrast to Persson and Tabellini (1994) increased capital-income inequality now leads to higher growth. Agents who are endowed with capital income are less averse to labor-income taxation. If the share of capital income of the rich increases such that their taxable labor supply falls and the preferred tax rate falls as the median voter has a reduced capacity to redistribute through taxation, then the subsequent rate of economic growth increases because smaller size of redistributive policies are financed by less distortionary taxes.

The relationship between the size of government and inequality is tested in a panel of OECD countries, augmenting the analysis of Pickering and Rockey (2011) and Facchini et al. (2017) to include capital income inequality as an additional explanatory variable. The measure of capital income inequality in the analysis is the top 1% income share. Consistent with the theory, government size is found to be negatively associated with capital income inequality. Moreover controlling for the top income share renders a consistently positive estimate for the
impact of labor income inequality on government size, in line with the original Meltzer and Richard (1981) hypothesis. The negative impact of capital income inequality on government size survives a variety of econometric specifications, including when capital income inequality is instrumented with variables encapsulating technology and access to the capital market.

I also test the relationship between inequality and growth in a panel of OCED countries, augmenting the analysis of Forbes (2000). Findings indicate that in the short and medium term, an increase in capital income inequality has a significant positive relationship with subsequent economic growth in fixed effects with period dummies. Moreover, controlling for capital income inequality yields a negative relationship between labor income inequality and growth, as originally conjectured in Persson and Tabellini (1994). The negative impact of capital income inequality on growth holds in various econometric specifications, including when difference and system GMM estimations are employed.
Appendix

A Derivation of Equations (13) and (14)

The problem of the median voter \(m \) is to choose the tax rate so as to maximize

\[
v_t^m = U\left[\frac{\gamma}{\gamma + D}((1 - \tau_t)n^m e^m k_t + \tau_t \bar{y}_t + R^m k_t), 1 - n^m, \frac{\gamma}{\gamma + D}((1 - \tau_t)n^m e^m k_t + \tau_t \bar{y}_t + R^m k_t)\right],
\]

(A.1)

and the first-order condition for the median voter with respect to the tax rate is

\[
(\bar{y}_t - y_t^m + \tau_t \frac{d\bar{y}_t}{d\tau_t})(\frac{\gamma}{\gamma + D}U_c + \frac{\gamma D}{\gamma + D}U_d)
+ \left(\frac{\gamma}{\gamma + D}(1 - \tau_t)e^m k_tU_c - U_t + \frac{\gamma D}{\gamma + D}(1 - \tau_t)e^m k_tU_d\right)\frac{dn^m}{d\tau_t} = 0.
\]

(A.2)

Thus, making use of equation (4), the tax rate chosen by the median voter must satisfy

\[
\bar{y}_t - y_t^m + \tau_t \frac{d\bar{y}_t}{d\tau_t} = 0.
\]

(A.3)

For a given labor income inequality, the political equilibrium \(\tau \) is constant over time, so that the time subscript \(t \) is suppressed henceforth. Changes in the tax rate \(\tau \) affect average income via two channels: its effect on the opportunity cost of leisure, and its effect on transfers (from the government’s budget constraint \(r = \tau \bar{y} \)). In particular, I have that

\[
\frac{d\bar{y}}{d\tau} = \frac{\partial \bar{y}}{\partial r} \frac{dr}{d\tau} + \frac{\partial \bar{y}}{\partial \theta} \frac{d\theta}{d\tau},
\]

\[
= \frac{\partial \bar{y}}{\partial r}(\bar{y} + \tau \frac{d\bar{y}}{d\tau}) - \frac{\partial \bar{y}}{\partial \theta}
\]

(A.4)
with $\theta = 1 - \tau$. Thus, the total derivative of average labor income with respect to changes in the tax rate is given by

$$\frac{d\bar{y}}{d\tau} = \frac{\bar{y}_r\bar{y} - \bar{y}_\theta}{1 - \tau\bar{y}_r} < 0,$$

with $\bar{y}_r = \frac{\partial \bar{y}}{\partial r}$ and $\bar{y}_\theta = \frac{\partial \bar{y}}{\partial \theta}$. Finally, substituting (A.5) into (A.3) I have

$$0 = \bar{y} - y^m + \tau \frac{\bar{y}_r\bar{y} - \bar{y}_\theta}{1 - \tau\bar{y}_r},$$

$$= (\bar{y} - y^m)(1 - \tau) + \frac{\eta_r\bar{y}(1 - \tau) - \eta_\theta \bar{y} \tau}{1 - \eta_r},$$

where $\eta_r = \bar{y}_r \bar{y}$ and $\eta_\theta = \bar{y}_\theta \bar{y}$ are the partial elasticities of average income. Solving the above equation for τ, yields

$$\tau = \frac{m - 1 + \eta_r}{m - 1 + \eta_r + m\eta_\theta}$$

with $m = \frac{\bar{y}}{y^m}$.

B Proof of Proposition 1

I begin with the following decomposition of average income

$$\bar{y} = p(\mathcal{K}) \bar{y}(\mathcal{K}) + (1 - p(\mathcal{K})) \bar{y}(\sim \mathcal{K}),$$

where $\bar{y}(\mathcal{K})$ is the average income of the individuals in set \mathcal{K} and $\bar{y}(\sim \mathcal{K})$ is the average income of the individuals not in set \mathcal{K}. From Assumption 2 I have that $\bar{y}^\mathcal{K} > y^m$.

Taking the total derivative of \bar{y} with respect to $R(\mathcal{K})$, the capital income of the individuals
in set \mathcal{K} in equation B.1 I obtain

$$\frac{d\bar{y}}{dR(\mathcal{K})} = p(\mathcal{K}) \left(\frac{\partial \bar{y}(\mathcal{K})}{\partial R(\mathcal{K})} + \frac{\partial \bar{y}(\mathcal{K})}{\partial r} \frac{d\bar{y}}{dR(\mathcal{K})} \tau \right) + (1 - p(\mathcal{K})) \left(\frac{\partial \bar{y}(\sim \mathcal{K})}{\partial r} \frac{d\bar{y}}{dR(\mathcal{K})} \tau \right),$$

(B.2)

where I used the fact that $\eta_r = \frac{\partial \bar{y}}{\partial r \bar{y}} = \frac{\partial \bar{y}}{\partial r} \tau = \frac{\partial \bar{y}}{\partial r} \tau$. Using (B.2) to solve for $\frac{d\bar{y}}{dR(\mathcal{K})}$, I obtain

$$\frac{d\bar{y}}{dR(\mathcal{K})} = \frac{p(\mathcal{K})}{1 - \eta_r \frac{\partial \bar{y}}{\partial R(\mathcal{K})}} \frac{\partial \bar{y}(\mathcal{K})}{\partial R(\mathcal{K})} < 0,$$

(B.3)

since leisure is a normal good. Thus, average income \bar{y} must fall.

In turn, I have that

$$\frac{dy^m}{dR(\mathcal{K})} = \frac{\partial y^m}{\partial r} \frac{\partial \bar{y}}{\partial r} \tau > 0.$$

(B.4)

Thus, I have established that \bar{y} must fall and y^m must increase following an increase in the capital-income going to the top capital-income recipients. Therefore, $m = \bar{y}/y^m$ falls and the increase in capital income inequality lowers labor income inequality. The upshot is that the increase in the capital income going to the top capital-income recipients results in a lower τ, the labor income tax chosen by the median voter.
C Derivation of Equation (17)

For the average individual in (1) and (2), I have

\[k_{t+1} = y_t + R k_t - c_t, \]

\[= y_t + R k_t - \frac{d_{t+1}}{D}, \]

\[= y_t + R k_t - \frac{\gamma k_{t+1}}{D}. \]

(C.1)

Solving the above equation for \(k_{t+1} \), yields

\[k_{t+1} = \frac{D(y_t + R k_t)}{\gamma + D}. \]

(C.2)

Combining the above equation and (8), the growth rate of \(k \) can be obtained

\[g_t = \frac{k_{t+1} - k_t}{k_t}, \]

\[= \frac{D\left(\int_0^\infty \int_0^\infty e^{in[(1 - \tau_t)e^i, r_t]} f(e^i, R^i)e^i dR^i + R\right)}{\gamma + D} - 1. \]

(C.3)

Again for a given labor income inequality, the political equilibrium \(\tau \) and \(g \) are constant over time, so that the time subscript \(t \) is suppressed henceforth. Thus, the effect of taxation on growth, making use of (A.5), yields

\[\frac{dg}{d\tau} = \frac{D}{\gamma + D} \frac{d\left(\int_0^\infty \int_0^\infty e^{in[(1 - \tau)e^i, r]} f(e^i, R^i)e^i dR^i + R\right)}{d\tau}, \]

\[= \frac{D}{\gamma + D} \frac{1}{k} \frac{dy}{d\tau} < 0. \]

(C.4)
Figure 1: Capital income inequality versus top 1% income share
Figure 2: Capital income and productivity joint distribution (Assumption 2)
Figure 3: Increase in capital income inequality
The Size of Government 1960-2007

Figure 4: The size of government, 1960-2007
Figure 5: Capital income inequality, 1960-2007
Figure 6: Labor income inequality, 1960-2007
Figure 7: Labor income inequality and capital income inequality, 1960-2007
Table 1: Descriptive statistics

<table>
<thead>
<tr>
<th></th>
<th>obs</th>
<th>mean</th>
<th>std. dev.</th>
<th>min</th>
<th>max</th>
</tr>
</thead>
<tbody>
<tr>
<td>OUTLAYS</td>
<td>861</td>
<td>39.98</td>
<td>10.65</td>
<td>12.8</td>
<td>72.4</td>
</tr>
<tr>
<td>TOPINC</td>
<td>738</td>
<td>7.88</td>
<td>2.35</td>
<td>3.49</td>
<td>18.3</td>
</tr>
<tr>
<td>UTIP</td>
<td>746</td>
<td>35.18</td>
<td>3.54</td>
<td>27.42</td>
<td>44.12</td>
</tr>
<tr>
<td>SHARE</td>
<td>548</td>
<td>67.97</td>
<td>6.03</td>
<td>44.74</td>
<td>82.10</td>
</tr>
<tr>
<td>FP</td>
<td>622</td>
<td>57.73</td>
<td>12.94</td>
<td>27.96</td>
<td>82.46</td>
</tr>
<tr>
<td>y</td>
<td>969</td>
<td>20.71</td>
<td>9.37</td>
<td>1.07</td>
<td>53.77</td>
</tr>
<tr>
<td>IDEO</td>
<td>683</td>
<td>0.043</td>
<td>0.117</td>
<td>-0.266</td>
<td>0.337</td>
</tr>
<tr>
<td>PROP1564</td>
<td>720</td>
<td>65.20</td>
<td>2.62</td>
<td>57.63</td>
<td>69.89</td>
</tr>
<tr>
<td>PROP65</td>
<td>720</td>
<td>12.79</td>
<td>2.84</td>
<td>5.73</td>
<td>21.02</td>
</tr>
<tr>
<td>TRADE</td>
<td>710</td>
<td>53.58</td>
<td>28.40</td>
<td>8.93</td>
<td>178.25</td>
</tr>
<tr>
<td>YGAP</td>
<td>720</td>
<td>0.262</td>
<td>1.34</td>
<td>-4.75</td>
<td>5.83</td>
</tr>
<tr>
<td>OIL_EX</td>
<td>720</td>
<td>4.60</td>
<td>12.05</td>
<td>0</td>
<td>72.36</td>
</tr>
<tr>
<td>OIL_IM</td>
<td>720</td>
<td>15.06</td>
<td>15.86</td>
<td>0</td>
<td>72.36</td>
</tr>
<tr>
<td>INTERNET</td>
<td>720</td>
<td>10.91</td>
<td>22.50</td>
<td>0</td>
<td>87.76</td>
</tr>
<tr>
<td>KAOPEN</td>
<td>564</td>
<td>1.41</td>
<td>1.22</td>
<td>-1.89</td>
<td>2.39</td>
</tr>
<tr>
<td>MEDU</td>
<td>190</td>
<td>3.02</td>
<td>1.38</td>
<td>0.32</td>
<td>6.59</td>
</tr>
<tr>
<td>FEDU</td>
<td>190</td>
<td>2.64</td>
<td>1.41</td>
<td>0.14</td>
<td>5.84</td>
</tr>
<tr>
<td>PPPI</td>
<td>864</td>
<td>85.88</td>
<td>25.20</td>
<td>34.58</td>
<td>179.06</td>
</tr>
</tbody>
</table>

Notes:

- **OUTLAYS** denotes total government outlays as a percentage of GDP - taken from the OECD Economic Outlook database.
- **TOPINC** is the top 1% income share - taken from the WID.
- **UTIP** is the University of Texas Inequality Project’s Estimated Household Income Inequality.
- **SHARE** is the business sector labor share - taken from the OECD database.
- **FP** is the female labor force as a percentage of the female population between 15 and 64 - also taken from the OECD database.
- **y** is real GDP per capita in $000s of 2005 prices - taken from the Penn World Tables.
- **IDEO** is ideology used in Pickering and Rockey (2011).
- **PROP1564** and **PROP65** are respectively the proportion of the population aged between 15 and 64, and 65 and above - taken from WDI database.
- **TRADE** is the sum of exports and imports as a percentage of GDP.
- **YGAP** is the difference between the actual output and its trend value in percentage - also taken from WDI database.
- **OIL_EX** and **OIL_IM** are respectively the oil price times a dummy variable equal to 1 if net exports of oil are positive; and the oil price times a dummy variable equal to 1 if net exports of oil are negative - taken from US Energy Information Administration.
- **INTERNET** is the number of internet users per 100 people - also taken from WDI database.
- **KAOPEN** is the Chinn and Ito (2006) index for financial openness.
- **MEDU** and **FEDU** are respectively the average years of secondary schooling in the male and female population aged over 25 - taken from Barro and Lee (1996).
- **PPPI** is the price level of investment measured as the PPP of investment over exchange rate relative to the United States - taken from the Penn World Tables.
Table 2: Panel estimation results with fixed effects – total government outlays

<table>
<thead>
<tr>
<th></th>
<th>(1a)</th>
<th>(1b)</th>
<th>(2a)</th>
<th>(2b)</th>
<th>(3)</th>
</tr>
</thead>
<tbody>
<tr>
<td>L.OUTLAYS</td>
<td>0.423</td>
<td>0.48</td>
<td>0.41</td>
<td>0.47</td>
<td></td>
</tr>
<tr>
<td>TOPINC</td>
<td>-1.079</td>
<td>-1.134</td>
<td>-0.632</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.401)***</td>
<td>(0.367)***</td>
<td>(0.361)*</td>
<td></td>
<td></td>
</tr>
<tr>
<td>UTIP</td>
<td>0.139</td>
<td>0.132</td>
<td>0.497</td>
<td>0.932</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.460) (0.496)</td>
<td>(0.408)</td>
<td>(0.375)**</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SHARE</td>
<td>0.473</td>
<td>0.364</td>
<td>0.522</td>
<td>0.696</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.155)*** (0.127)***</td>
<td>(0.200)***</td>
<td>(0.163)***</td>
<td>(0.164)***</td>
<td></td>
</tr>
<tr>
<td>FP</td>
<td>-0.064</td>
<td>-0.019</td>
<td>-0.055</td>
<td>-0.096</td>
<td>0.141</td>
</tr>
<tr>
<td></td>
<td>(0.192) (0.221)</td>
<td>(0.257)</td>
<td>(0.112)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ln(y)</td>
<td>3.771*</td>
<td>3.786</td>
<td>4.222</td>
<td>4.419</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(4.501)</td>
<td>(4.222)</td>
<td>(4.419)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>IDEO</td>
<td>-53.942</td>
<td>-38.339</td>
<td>-34.991</td>
<td>-7.101</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(22.948)** (23.633)</td>
<td>(24.511)</td>
<td>(19.769)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>INTERACT</td>
<td>1.434</td>
<td>0.516</td>
<td>0.388</td>
<td>0.145</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.877) (0.918)</td>
<td>(0.805)*</td>
<td>(0.723)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PROP1564</td>
<td>0.593</td>
<td>0.885</td>
<td>0.549</td>
<td>0.168</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.503) (0.579)</td>
<td>(0.591)</td>
<td>(0.358)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PROP65</td>
<td>1.967</td>
<td>1.926</td>
<td>1.318</td>
<td>0.160</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.620)*** (0.609)*</td>
<td>(0.604)***</td>
<td>(0.572)**</td>
<td>(0.388)</td>
<td></td>
</tr>
<tr>
<td>TRADE</td>
<td>-0.026</td>
<td>-0.031</td>
<td>-0.087</td>
<td>-0.057</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.047) (0.054)</td>
<td>(0.053)</td>
<td>(0.065)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>YGAP</td>
<td>-0.682</td>
<td>-0.562</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.158)*** (0.180)***</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>OIL_EX</td>
<td>0.031</td>
<td>0.003</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.049)</td>
<td>(0.036)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>OIL_IM</td>
<td>0.052</td>
<td>0.045</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.030)</td>
<td>(0.024)*</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Notes: Panel regressions of government outlays as a percentage share of GDP including fixed effects, SHARE, FP, ln(y), IDEO, INTERACT, PROP1564, PROP65, TRADE, YGAP, OIL_EX, OIL_IM as control variables. Column (3) contains Arellano-Bond estimation with lagged values of both the predetermined and endogenous variables as instruments. Robust standard errors are shown in parentheses. Standard errors are clustered by country. *, **, and *** respectively denote significance levels at 10%, 5% and 1%.
Table 3: Instrumental variable estimation results – total government outlays

<table>
<thead>
<tr>
<th></th>
<th>(1)</th>
<th>(2)</th>
<th>(3)</th>
<th>(4)</th>
<th>(5)</th>
</tr>
</thead>
<tbody>
<tr>
<td>L.OUTLAYS</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.523</td>
</tr>
<tr>
<td>*(T.O)</td>
<td>−4.105</td>
<td>−2.462</td>
<td>−3.404</td>
<td>−1.754</td>
<td>−0.653</td>
</tr>
<tr>
<td>TOPINC</td>
<td>(1.186)***</td>
<td>(1.213)**</td>
<td>(0.903)**</td>
<td>(0.392)**</td>
<td>(0.326)**</td>
</tr>
<tr>
<td>*(T.O)</td>
<td>1.932</td>
<td>1.420</td>
<td>1.753</td>
<td>0.836</td>
<td>0.269</td>
</tr>
<tr>
<td>UTIP</td>
<td>(0.485)***</td>
<td>(0.460)***</td>
<td>(0.370)***</td>
<td>(0.350)**</td>
<td>(0.280)</td>
</tr>
<tr>
<td>*(T.O)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Obs</td>
<td>462</td>
<td>457</td>
<td>457</td>
<td>112</td>
<td>112</td>
</tr>
<tr>
<td>Countries</td>
<td>15</td>
<td>15</td>
<td>15</td>
<td>15</td>
<td>15</td>
</tr>
<tr>
<td>Method</td>
<td>IV</td>
<td>IV</td>
<td>IV</td>
<td>IV</td>
<td>IV</td>
</tr>
<tr>
<td>Data</td>
<td>Annual</td>
<td>Annual</td>
<td>Annual</td>
<td>5-year</td>
<td>5-year</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>averages</td>
<td>averages</td>
</tr>
</tbody>
</table>

INTERNET					
*(T.O)	0.015	0.015	0.015	0.015	0.015
KAOPEN	−0.246	−0.246	−0.246	−0.246	−0.246
*(T.O)	(0.004)***	(0.004)***	(0.004)***	(0.004)***	(0.004)***
L.TOPINC	0.801	0.801	0.801	0.825	0.825
*(T.O)	(0.056)**	(0.056)**	(0.056)**	(0.062)***	(0.062)***
L.TOPINC	−0.208	−0.208	−0.208	−0.208	−0.208
*(T.O)	(0.082)**	(0.082)**	(0.082)**	(0.082)**	(0.082)**
F	14.78	9.038	10.64	205.3	177.9
p_χ²	0.359	0.359	0.359	0.359	0.359

Notes: IV is estimated by two-stage-least squares. First stage coefficients are reported below the named instruments in the Instruments row. *F* is an *F*-statistic for the statistical significance of the instruments in the first stage regression. *p_χ²* is the *p*-value for the Chi-squared test of overidentifying restrictions. See also notes for table 2 for other details.
Table 4: Panel estimation results with fixed effects – average annual per capita growth rate

<table>
<thead>
<tr>
<th></th>
<th>1965-2005</th>
<th></th>
<th></th>
<th></th>
<th></th>
<th>1965-2010</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(1)</td>
<td>(2)</td>
<td>(3)</td>
<td>(4)</td>
<td>(5)</td>
<td>(6)</td>
<td>(7)</td>
<td>(8)</td>
<td>(9)</td>
</tr>
<tr>
<td>L.GROWTH</td>
<td>-0.0324</td>
<td>(0.0911)</td>
<td></td>
<td></td>
<td></td>
<td>-0.0442</td>
<td>(0.203)</td>
<td></td>
<td>-0.00593</td>
</tr>
<tr>
<td></td>
<td>0.412**</td>
<td>(0.161)</td>
<td></td>
<td></td>
<td></td>
<td>0.529***</td>
<td>(0.140)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>L.TOPINC</td>
<td></td>
<td></td>
<td>0.491***</td>
<td></td>
<td></td>
<td>0.539***</td>
<td>(0.187)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.119</td>
<td>(0.113)</td>
<td>-0.108</td>
<td></td>
<td></td>
<td>-0.0668</td>
<td>(0.143)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>L.UTIP</td>
<td>0.198*</td>
<td>(0.0974)</td>
<td></td>
<td></td>
<td></td>
<td>-0.265*</td>
<td>(0.120)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.491***</td>
<td>(0.165)</td>
<td></td>
<td></td>
<td></td>
<td>0.424**</td>
<td>(0.179)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>L.y</td>
<td>-0.459***</td>
<td>(0.155)</td>
<td>-0.612***</td>
<td>-0.828***</td>
<td>-0.557***</td>
<td>-0.610***</td>
<td>-0.792***</td>
<td>-0.336**</td>
<td>-0.544***</td>
</tr>
<tr>
<td></td>
<td>-0.108</td>
<td>(0.130)</td>
<td>-0.127</td>
<td></td>
<td></td>
<td>0.0964</td>
<td>(0.113)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>L.MEDU</td>
<td>0.433</td>
<td>(0.504)</td>
<td>0.412</td>
<td></td>
<td></td>
<td>0.915</td>
<td>(0.123)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.412</td>
<td>(0.165)</td>
<td>0.100</td>
<td></td>
<td></td>
<td>1.038</td>
<td>(0.113)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>L.FEDU</td>
<td>-0.369</td>
<td>(0.774)</td>
<td>-0.439</td>
<td></td>
<td></td>
<td>-0.462</td>
<td>(0.827)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>-0.021</td>
<td>(0.615)</td>
<td>1.181</td>
<td></td>
<td></td>
<td>-1.051</td>
<td>(0.595)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>L.PPPI</td>
<td>-0.00908</td>
<td>(0.00690)</td>
<td>-0.00397</td>
<td>-0.00215</td>
<td>0.00212</td>
<td>0.0263**</td>
<td>-0.00737</td>
<td>0.00171</td>
<td>0.00220</td>
</tr>
<tr>
<td></td>
<td>-0.00397</td>
<td>(0.0124)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>-0.00212</td>
<td>(0.00954)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Obs</td>
<td>138</td>
<td>125</td>
<td>92</td>
<td>70</td>
<td>63</td>
<td>32</td>
<td>154</td>
<td>141</td>
<td>118</td>
</tr>
<tr>
<td>Countries</td>
<td>19</td>
<td>19</td>
<td>18</td>
<td>19</td>
<td>19</td>
<td>17</td>
<td>19</td>
<td>19</td>
<td>18</td>
</tr>
<tr>
<td>Periods</td>
<td>5-year</td>
<td>5-year</td>
<td>5-year</td>
<td>10-year</td>
<td>10-year</td>
<td>10-year</td>
<td>5-year</td>
<td>5-year</td>
<td>5-year</td>
</tr>
<tr>
<td>R^2 (within)</td>
<td>0.523</td>
<td>0.631</td>
<td>0.595</td>
<td>0.736</td>
<td></td>
<td>0.524</td>
<td>0.626</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Notes: Panel regressions of average annual per capita growth rate including fixed effects, L.TOPINC, L.UTIP, L.y, L.MEDU, L.FEDU, L.PPPI, and period dummies as control variables. Columns (3) and (6) contain Arellano-Bond estimation with lagged values of both the predetermined and endogenous variables as instruments. Columns (7)-(9) again test (1)-(3) using extended sample 1965-2010. Robust standard errors are shown in parentheses. Standard errors are clustered by country. *, **, and *** respectively denote significance levels at 10%, 5%, and 1%.
Table 5: Difference and system GMM regressions – average annual per capita growth rate

<table>
<thead>
<tr>
<th></th>
<th>(1)</th>
<th>(2)</th>
<th>(3)</th>
<th>(4)</th>
<th>(5)</th>
<th>(6)</th>
<th>(7)</th>
<th>(8)</th>
<th>(9)</th>
<th>(10)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1965-2010</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$L.\text{TOPINC}$</td>
<td>0.386**</td>
<td>0.441***</td>
<td>0.387**</td>
<td>0.480**</td>
<td>0.359</td>
<td>0.115*</td>
<td>0.211</td>
<td>0.0803</td>
<td>0.115*</td>
<td>0.459</td>
</tr>
<tr>
<td></td>
<td>(0.160)</td>
<td>(0.167)</td>
<td>(0.188)</td>
<td>(0.203)</td>
<td>(0.341)</td>
<td>(0.0626)</td>
<td>(0.136)</td>
<td>(0.0622)</td>
<td>(0.0626)</td>
<td>(0.292)</td>
</tr>
<tr>
<td>$L.\text{UTIP}$</td>
<td>-0.147</td>
<td>-0.285</td>
<td>-0.123</td>
<td>-0.160</td>
<td>-0.0492</td>
<td>-0.0351</td>
<td>-0.204*</td>
<td>-0.0210</td>
<td>-0.0351</td>
<td>-0.469</td>
</tr>
<tr>
<td></td>
<td>(0.169)</td>
<td>(0.224)</td>
<td>(0.240)</td>
<td>(0.169)</td>
<td>(0.437)</td>
<td>(0.0449)</td>
<td>(0.110)</td>
<td>(0.0454)</td>
<td>(0.0449)</td>
<td>(0.358)</td>
</tr>
<tr>
<td>$L.y$</td>
<td>-0.507***</td>
<td>-0.786***</td>
<td>-0.862***</td>
<td>-0.651***</td>
<td>-0.366</td>
<td>-0.170**</td>
<td>-0.211*</td>
<td>-0.134*</td>
<td>-0.170**</td>
<td>-0.330**</td>
</tr>
<tr>
<td></td>
<td>(0.0958)</td>
<td>(0.0912)</td>
<td>(0.121)</td>
<td>(0.104)</td>
<td>(0.947)</td>
<td>(0.0788)</td>
<td>(0.110)</td>
<td>(0.0770)</td>
<td>(0.0788)</td>
<td>(0.164)</td>
</tr>
<tr>
<td>$L.\text{MEDU}$</td>
<td>-0.457</td>
<td>-0.726</td>
<td>-0.766</td>
<td>-0.608</td>
<td>-3.286</td>
<td>0.390</td>
<td>-0.437</td>
<td>-0.134</td>
<td>0.390</td>
<td>-2.115</td>
</tr>
<tr>
<td></td>
<td>(0.460)</td>
<td>(1.020)</td>
<td>(0.972)</td>
<td>(0.533)</td>
<td>(4.913)</td>
<td>(0.492)</td>
<td>(0.745)</td>
<td>(0.499)</td>
<td>(0.492)</td>
<td>(1.322)</td>
</tr>
<tr>
<td>$L.\text{FEDU}$</td>
<td>0.832*</td>
<td>0.882</td>
<td>0.727</td>
<td>0.971</td>
<td>3.536</td>
<td>-0.162</td>
<td>0.900</td>
<td>0.195</td>
<td>-0.162</td>
<td>2.475**</td>
</tr>
<tr>
<td></td>
<td>(0.490)</td>
<td>(1.295)</td>
<td>(1.121)</td>
<td>(0.662)</td>
<td>(5.658)</td>
<td>(0.452)</td>
<td>(0.827)</td>
<td>(0.387)</td>
<td>(0.452)</td>
<td>(1.258)</td>
</tr>
<tr>
<td>$L.\text{PPPI}$</td>
<td>0.000338</td>
<td>0.0166</td>
<td>0.00672</td>
<td>0.000378</td>
<td>-0.000266</td>
<td>-0.0177**</td>
<td>-0.0166</td>
<td>-0.0220***</td>
<td>-0.0177**</td>
<td>-0.0139</td>
</tr>
<tr>
<td></td>
<td>(0.00628)</td>
<td>(0.0129)</td>
<td>(0.0117)</td>
<td>(0.00728)</td>
<td>(0.00242)</td>
<td>(0.00724)</td>
<td>(0.0134)</td>
<td>(0.00750)</td>
<td>(0.00724)</td>
<td>(0.0147)</td>
</tr>
</tbody>
</table>

Obs	118	118	118	118	118	141	141	141	141	141
Countries	18	18	18	18	18	19	19	19	19	19
Periods	5-year									
Hansen test	4.44	9.57	7.16	5.55	exactly identified	3.31	4.52	11.93	5.54	2.34
AR(2) p-value	0.366	0.322	0.264	0.300	0.997	0.749	0.710	0.863	0.749	0.720
Estimator	difference	difference	difference	difference	difference	system	system	system	system	system
Method to reduce count	collapse	lags 1-1	lags 1-2	collapse & lags 1-1	collapse	lags 1-1	lags 1-2	collapse & lags 1-1		

Notes: In columns (1)-(5) estimations use the difference GMM of Arellano and Bond (1991), with robust standard errors. In columns (6)-(10) estimations use the system GMM of Arellano and Bover (1995) and Blundell and Bond (1998), with robust standard errors. “collapse” stands for collapsed instruments; “lags” stands for restricting the number of lags used in generating instruments from the endogenous variables. Year dummies are included in all regressions. Endogenous variables used as instruments: $L.\text{TOPINC}$, $L.\text{UTIP}$, $L.y$, $L.\text{MEDU}$, $L.\text{FEDU}$, $L.\text{PPPI}$. *, **, and *** respectively denote significance levels at 10%, 5%, and 1%.
Table 6: Sensitivity analysis – average annual per captia growth rate

<table>
<thead>
<tr>
<th></th>
<th></th>
<th>1965-2005</th>
<th></th>
<th>1965-2010</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(1)</td>
<td>(2)</td>
<td>(3)</td>
<td>(4)</td>
<td>(5)</td>
</tr>
<tr>
<td></td>
<td>(6)</td>
<td>(7)</td>
<td>(8)</td>
<td>(9)</td>
<td>(10)</td>
</tr>
<tr>
<td>L.TOPINC</td>
<td>0.304**</td>
<td>0.350**</td>
<td>0.466*</td>
<td>0.325**</td>
<td>0.440**</td>
</tr>
<tr>
<td></td>
<td>(0.114)</td>
<td>(0.146)</td>
<td>(0.209)</td>
<td>(0.132)</td>
<td>(0.171)</td>
</tr>
<tr>
<td>L.UTIP</td>
<td>-0.0493</td>
<td>-0.0460</td>
<td>-0.179</td>
<td>-0.0611</td>
<td>-0.126</td>
</tr>
<tr>
<td></td>
<td>(0.121)</td>
<td>(0.129)</td>
<td>(0.195)</td>
<td>(0.108)</td>
<td>(0.134)</td>
</tr>
<tr>
<td>L.y</td>
<td>-0.439***</td>
<td>-0.455***</td>
<td>-0.676*</td>
<td>-0.616***</td>
<td>-0.738***</td>
</tr>
<tr>
<td></td>
<td>(0.119)</td>
<td>(0.0712)</td>
<td>(0.302)</td>
<td>(0.107)</td>
<td>(0.0999)</td>
</tr>
<tr>
<td>L.MEDU</td>
<td>0.460</td>
<td>0.786</td>
<td>0.451</td>
<td>-0.162</td>
<td>0.316</td>
</tr>
<tr>
<td></td>
<td>(0.460)</td>
<td>(0.964)</td>
<td>(1.358)</td>
<td>(0.706)</td>
<td>(0.617)</td>
</tr>
<tr>
<td>L.FEDU</td>
<td>0.339</td>
<td>0.0446</td>
<td>-0.855</td>
<td>0.327</td>
<td>0.0651</td>
</tr>
<tr>
<td></td>
<td>(0.509)</td>
<td>(1.018)</td>
<td>(2.694)</td>
<td>(0.711)</td>
<td>(0.661)</td>
</tr>
<tr>
<td>L.PPPI</td>
<td>0.000104</td>
<td>0.00300</td>
<td>0.00235</td>
<td>0.00495</td>
<td>0.00433</td>
</tr>
<tr>
<td></td>
<td>(0.00806)</td>
<td>(0.00851)</td>
<td>(0.0279)</td>
<td>(0.00863)</td>
<td>(0.00769)</td>
</tr>
<tr>
<td>L.PROP65</td>
<td>-0.463**</td>
<td>(0.216)</td>
<td>-0.0550</td>
<td>(0.0561)</td>
<td>-0.0658</td>
</tr>
<tr>
<td>L.SHARE</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Obs</td>
<td>113</td>
<td>63</td>
<td>62</td>
<td>125</td>
<td>108</td>
</tr>
<tr>
<td>Countries</td>
<td>17</td>
<td>9</td>
<td>10</td>
<td>19</td>
<td>18</td>
</tr>
<tr>
<td>Data</td>
<td>Excluding Asia</td>
<td>Higher income</td>
<td>Lower income</td>
<td>Full</td>
<td>Full</td>
</tr>
<tr>
<td>Periods</td>
<td>5-year</td>
<td>5-year</td>
<td>5-year</td>
<td>5-year</td>
<td>5-year</td>
</tr>
<tr>
<td>R^2 (within)</td>
<td>0.634</td>
<td>0.608</td>
<td>0.769</td>
<td>0.659</td>
<td>0.676</td>
</tr>
</tbody>
</table>

Notes: Regression specification is the same as column (2) of Table 4. Column (1) excludes Asian countries. Columns (2) and (3) respectively correspond to higher and lower levels of initial income in 1965. Column (4) includes Prop65 as a further control, and column (5) includes Share as a further control. Columns (6)-(10) again test (1)-(5) using extended sample 1965-2010.
Table 7: Sensitivity analysis – average annual per capita growth rate

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(1)</td>
<td>(2)</td>
<td>(3)</td>
<td>(4)</td>
<td>(5)</td>
</tr>
<tr>
<td>L.OUTLAYS</td>
<td>-0.0781*</td>
<td>-0.0812**</td>
<td>-0.0714</td>
<td>-0.0747*</td>
<td>-0.0718**</td>
</tr>
<tr>
<td></td>
<td>(0.0403)</td>
<td>(0.0383)</td>
<td>(0.0419)</td>
<td>(0.0403)</td>
<td>(0.0457)</td>
</tr>
<tr>
<td>L.y</td>
<td>-0.408***</td>
<td>-0.415***</td>
<td>-0.389**</td>
<td>-0.396***</td>
<td>-0.363**</td>
</tr>
<tr>
<td></td>
<td>(0.140)</td>
<td>(0.134)</td>
<td>(0.134)</td>
<td>(0.115)</td>
<td>(0.135)</td>
</tr>
<tr>
<td>L.MEDU</td>
<td>-0.485</td>
<td>-0.507</td>
<td>-0.425</td>
<td>-0.485</td>
<td>0.222</td>
</tr>
<tr>
<td></td>
<td>(0.607)</td>
<td>(0.636)</td>
<td>(0.477)</td>
<td>(0.607)</td>
<td>(0.744)</td>
</tr>
<tr>
<td>L.FEDU</td>
<td>0.580</td>
<td>0.640</td>
<td>0.769</td>
<td>0.580</td>
<td>0.0558</td>
</tr>
<tr>
<td></td>
<td>(0.633)</td>
<td>(0.639)</td>
<td>(0.513)</td>
<td>(0.633)</td>
<td>(0.686)</td>
</tr>
<tr>
<td>L.PPPI</td>
<td>-0.00886</td>
<td>-0.00888</td>
<td>0.00616</td>
<td>0.00616</td>
<td>-0.00578</td>
</tr>
<tr>
<td></td>
<td>(0.00670)</td>
<td>(0.00727)</td>
<td>(0.00760)</td>
<td>(0.00670)</td>
<td>(0.00497)</td>
</tr>
<tr>
<td>L.TOPINC</td>
<td>0.412**</td>
<td>0.412**</td>
<td>0.412**</td>
<td>0.412**</td>
<td>0.00314</td>
</tr>
<tr>
<td></td>
<td>(0.180)</td>
<td>(0.180)</td>
<td>(0.180)</td>
<td>(0.180)</td>
<td>(0.114)</td>
</tr>
<tr>
<td>L.UTIP</td>
<td>-0.142</td>
<td>-0.142</td>
<td>-0.142</td>
<td>-0.142</td>
<td>0.0378</td>
</tr>
<tr>
<td></td>
<td>(0.170)</td>
<td>(0.170)</td>
<td>(0.170)</td>
<td>(0.170)</td>
<td>(0.0891)</td>
</tr>
</tbody>
</table>

Notes: Panel regressions of average annual per capita growth rate including fixed effects, L.OUTLAYS, L.y, L.MEDU, L.FEDU, L.PPPI, and robust standard errors clustered by country in parentheses. Year dummies are included in all regressions. Column (5) includes L.TOPINC and L.UTIP. Columns (6)-(10) test (1)-(5) using 10-year panel data. *, **, and *** respectively denote significance levels at 10%, 5%, and 1%.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(6)</td>
<td>(7)</td>
<td>(8)</td>
<td>(9)</td>
<td>(10)</td>
</tr>
<tr>
<td>Obs</td>
<td>179</td>
<td>179</td>
<td>177</td>
<td>177</td>
<td>135</td>
</tr>
<tr>
<td>Countries</td>
<td>19</td>
<td>19</td>
<td>19</td>
<td>19</td>
<td>19</td>
</tr>
<tr>
<td>Periods</td>
<td>5-year</td>
<td>5-year</td>
<td>5-year</td>
<td>5-year</td>
<td>5-year</td>
</tr>
<tr>
<td></td>
<td>10-year</td>
<td>10-year</td>
<td>10-year</td>
<td>10-year</td>
<td>10-year</td>
</tr>
<tr>
<td>R^2 (within)</td>
<td>0.591</td>
<td>0.593</td>
<td>0.593</td>
<td>0.595</td>
<td>0.655</td>
</tr>
<tr>
<td></td>
<td>0.699</td>
<td>0.704</td>
<td>0.699</td>
<td>0.705</td>
<td>0.741</td>
</tr>
</tbody>
</table>
References

