Banks and Liquidity Crises in Emerging Market Economies

Tarishi Matsuoka

Tokyo Metropolitan University

May, 2015
After financial liberalizations in the 1980s, crises have become more frequent and more costly events.

Emerging markets experienced a banking or currency crisis or both.

Examples:

Facts

1. Capital inflow increases the probability and size of a banking crisis.

2. Financial institutions take on significant amounts of short-term debt relative to liquid reserves.

3. A banking crisis is closely linked to an asset-price boom and burst.
“Sudden Stops”

Current Account Balance of ASEAN-5 (% of GDP)

- **Thailand**
- **Korea**
- **Indonesia**
- **Malaysia**
- **Philippines**
Too Much Short-Term Foreign Debt

- Short-Term Debt To International Reserves Ratio:

<table>
<thead>
<tr>
<th></th>
<th>Indonesia</th>
<th>Korea</th>
<th>Malaysia</th>
<th>Philippines</th>
<th>Thailand</th>
<th>Asia-5</th>
</tr>
</thead>
<tbody>
<tr>
<td>June 94</td>
<td>1.73</td>
<td>1.61</td>
<td>0.25</td>
<td>0.40</td>
<td>0.99</td>
<td>0.92</td>
</tr>
<tr>
<td>June 97</td>
<td>1.70</td>
<td>2.06</td>
<td>0.61</td>
<td>0.85</td>
<td>1.45</td>
<td>1.43</td>
</tr>
</tbody>
</table>

source: Chang and Velasco (1998)
Collapse of Asset Prices

Stock market capitalization to GDP (%)

Years

0 50 100 150 200 250 300

Stock market capitalization to GDP (%)

Thailand
Korea
Indonesia
Malaysia
Philippines
The aim of this paper

- Develop a theory with **financial markets** and **financial institutions**
- Show
 - how these interactions cause economy-wide banking crises.
 - capital inflow increases the asset price volatility and the size of a crisis
- Ask: Can public policies stabilize the financial system?
 - liquidity regulation
 - public deposit insurance
Main Results

- The model generates two types of equilibria:
 - a no-default equilibrium
 - banks have enough liquidity to pay all depositors during bank runs
 - all banks remain solvent.
 - a mixed-equilibrium.
 - ex ante identical banks choose different strategies
 - some banks default with positive probability
 - the asset price is more volatile.
 - defaulting banks increase as capital inflow increases

- Liquidity regulation may stabilize the financial system, but public deposit insurance may not.
Related Literature

- **Multiple equilibria:**

- **Fundamental bank runs:**
 - Allen & Gale (2000a,b)

- **Financial frictions:**
The Model

- Three periods, $t = 0, 1, 2$.
- A $[0, 1]$ continuum of ex ante identical agents.
- Each agent has an endowment only in $t = 0$.
- Diamond-Dybvig preferences:
 - “early consumer” (consume at $t = 1$) with prob. λ_θ
 - “late consumer” (consume at $t = 2$) with prob. $1 - \lambda_\theta$
- Aggregate uncertainty:
 \[
 \lambda_\theta = \begin{cases}
 \lambda_L \quad \text{with prob. } \pi, \\
 \lambda_H \quad \text{with prob. } 1 - \pi,
 \end{cases}
 \]
 where $0 < \lambda_L < \lambda_H$ and $0 < \pi < 1$.
Two types of assets:
- a short asset \((y)\) = less productive but liquid
- a long asset \((x)\) = productive but illiquid

Competitive (interbank) asset market at \(t = 1\).
- \(P_\theta\) = the price of the long asset
- **International capital market:**
 - international creditors are risk neutral.
 - the net interest rate is zero.

- **Assumptions:**
 - International creditors can not access to the domestic asset market.
 - Only banks can access to the international capital market.
 - Borrowing limit f
Banks offer \((c_1, c_{2L}, c_{2H})\) and collect funds at \(t = 0\).
- non-contingent (incomplete) deposit contract
- \(c_1\) is fixed at \(t = 0\).

Banks can access to the asset market at \(t = 1\)
- buy or sell the long asset
- agents are excluded

Banks can access to the international capital market at \(t = 0, 1, 2\)
- lend as much as possible
- borrow at most the amount \(f > 0\)
The timing of events

- **In period 0:**
 - agents deposit all their endowments
 - banks borrow funds in the international market
 - banks divide deposits between short and long assets.

- **In period 1:**
 - state and depositors’ types have been realized
 - the asset market opens.
 - some depositors receive payments \(c_1 \) from the banks.
 - banks repay short-term foreign debt \(b_{01} \) and borrow short term \(b_{1\theta} \).

- **In period 2:**
 - remaining depositors withdraw their deposits from the banks
 - they consume \(c_2 \).
 - banks repay short-term \(b_{1\theta} \) and long-term foreign debt \(b_{02} \).
The Model

Constrained Efficient Allocation

The planner’s problem

\[
\max E_\theta[\lambda u(c_1) + (1 - \lambda) u(c_{2\theta})],
\]

subject to

\[
\begin{align*}
x + y & \leq 1 + b_{01} + b_{02}, \\
\lambda c_1 + b_{01} & \leq y + b_{1\theta}, \\
(1 - \lambda)c_{2\theta} + b_{1\theta} + b_{02} & \leq R x + (y + b_{1\theta} - b_{01} - \lambda c_1), \\
b_{01} + b_{02} & \leq f, \\
b_{1\theta} + b_{02} & \leq f, \\
c_1 & \leq c_{2\theta}.
\end{align*}
\]
The Model

Constrained Efficient Allocation

Since $R > 1$, the international borrowing constraints are binding

\[b_{01} + b_{02} = f, \]
\[b_{1H} + b_{02} = f. \]

At the optimum,

\[\lambda_H c_1 = y + b_{1H} - b_{01} = y. \]

Then,

\[(1 - \lambda_H)c_{2H} = Rx - f. \]
Constrained Efficient Allocation

- FOC:
 \[
 \frac{\pi \lambda_L + (1 - \pi)\lambda_H}{\lambda_H} u' \left(\frac{y}{\lambda_H} \right) - \pi \left(R - 1 + \frac{\lambda_L}{\lambda_H} \right) u' \left(\frac{R(1 + f) - f - (R - 1 + \frac{\lambda_L}{\lambda_H})y}{1 - \lambda_L} \right) - R(1 - \pi) u' \left(\frac{R(1 + f - y) - f}{1 - \lambda_H} \right) = 0. \tag{1}
 \]

- Optimal levels of consumption:
 \[
 c_1^* = \frac{y^*}{\lambda_H}, \quad c_{2H}^* = \frac{R(1 + f - y^*) - f}{1 - \lambda_H}, \quad c_{2L}^* = \frac{R(1 + f) - f - (R - 1 + \frac{\lambda_L}{\lambda_H})y^*}{1 - \lambda_L}.
 \]

- Optimal foreign debt structure \((b_{01}, \{b_{1\theta}\}_{\theta=L,H}, b_{02})\) is indeterminate.
Decentralized Banking Economy

Two types of equilibria:
- a no-default equilibrium
 - all banks are symmetric and take a safe portfolio.
 - all banks remain solvent.
- a mixed-equilibrium.
 - ex ante identical banks choose different strategies
 - some banks default with positive probability
Consider first an equilibrium in which all banks offer a \textit{run-preventing contract}.

The problem of banks:

\[
\begin{align*}
\max & \quad E_\theta [\lambda_\theta u(c_1) + (1 - \lambda_\theta) u(c_{2\theta})], \\
\text{s.t.} & \quad x + y \leq 1 + b_{01} + b_{02}, \\
& \quad \lambda_\theta c_1 + b_{01} \leq y + b_{1\theta}, \quad \forall \theta, \\
& \quad (1 - \lambda_\theta) c_{2\theta} + b_{1\theta} + b_{02} \leq R \left(x + \frac{y + b_{1\theta} - b_{01} - \lambda_\theta c_1}{P_\theta} \right), \quad \forall \theta, \\
& \quad b_{01} + b_{02} \leq f, \\
& \quad b_{1\theta} + b_{02} \leq f, \quad \forall \theta, \\
& \quad c_1 \leq c_{2\theta}, \quad \forall \theta.
\end{align*}
\]
The no default equilibrium (2)

- **FOCs:**

\[\left[\pi \lambda_L + (1 - \pi) \lambda_H \right] u'(c_1) = \pi \lambda_L \frac{R}{P_L} u'(c_{2L}) + (1 - \pi) \lambda_H \frac{R}{P_H} u'(c_{2H}), \tag{2} \]
\[\pi \left(1 - \frac{1}{P_L}\right) u'(c_{2L}) \leq (1 - \pi) \left(\frac{1}{P_H} - 1\right) u'(c_{2H}), \tag{3} \]

with equality if \(y < 1 + f \)

- The asset market at period 1 clears if

\[\lambda_L c_1 < \lambda_H c_1 = y. \tag{4} \]

- Since \(\lambda_L c_1 < y \), excess liquidity at period 1 in state \(L \):

\[P_L = R. \tag{5} \]
The no default equilibrium (3)

- Combining (2)–(4) yields

\[
\pi \lambda_L + (1 - \pi) \lambda_H \frac{u'(y)}{\lambda_H} = \pi \left[\lambda_H (R - 1) + \lambda_L \right] u' \left(\frac{R(1 + f) - f - (R - 1 + \frac{\lambda_L}{\lambda_H})y}{1 - \lambda_L} \right) + \lambda_H R(1 - \pi) u' \left(\frac{R(1 + f - y) - f}{1 - \lambda_H} \right),
\]

which determines \(y \) uniquely.

- Eq. (1) is equivalent to (6).
The no default equilibrium (4)

Proposition 2

The no-default equilibrium is unique and achieves the constrained efficient allocation.

Equilibrium asset prices:

\[P_L = R > 1, \] \hspace{1cm} (7)

\[P_H = \frac{(1 - \pi)Ru'(c_{2H}^*)}{\pi(R - 1)u'(c_{2L}^*) + (1 - \pi)Ru'(c_{2H}^*)} < 1. \] \hspace{1cm} (8)
The mixed equilibrium

- In equilibrium, not all banks default simultaneously.

- Suppose that all banks default at $t = 1$.
 - all depositors try to withdraw their funds in state $\theta = H$
 - all banks sell the long assets at $t = 1$.
 - the price must be $P_H = 0$.
 - Given $P_H = 0$, a bank would hold enough liquidity at $t = 0$ and make a large capital gain by purchasing the long assets at $t = 1$.

- Thus, an equilibrium where banks can default must be *mixed*.
Two types of banks arise endogenously!

- **Safe banks** $[\rho]$:
 - hold a lot of the short asset at $t = 0$
 - offer deposit contracts promising low payments at $t = 1$ to remain solvent.

- **Risky banks** $[1 - \rho]$:
 - invest so much in the long asset
 - offer deposit contracts promising high payments at $t = 1$ that may cause defaults.
The optimization problem of the safe banks is similar to the one in the no default equilibrium.

The problem of the safe banks:

$$\max E_\theta [\lambda u(c_1^s) + (1 - \lambda) u(c_2^s)]$$

subject to

$$x^s + y^s \leq 1 + b_0^s + b_2^s,$$

$$\lambda c_1^s + b_0^s \leq y^s + b_1^s, \ \forall \theta$$

$$(1 - \lambda) c_2^s + b_1^s + b_2^s \leq R \left(x^s + \frac{y^s + b_1^s - b_0^s - \lambda c_1^s}{P_\theta} \right), \ \forall \theta$$

$$b_0^s + b_2^s \leq f,$$

$$b_1^s + b_2^s \leq f, \ \forall \theta$$

$$c_1^s \leq c_2^s \ \forall \theta.$$
Safe banks (2)

- Binding borrowing constraints:

\[b_{01}^s + b_{02}^s = f, \quad (9) \]
\[b_{1\theta}^s + b_{02}^s = f, \quad \forall \theta \quad (10) \]

Then,

\[x^s + y^s = 1 + f, \quad (11) \]
\[(1 - \lambda_\theta)c_{2\theta}^s + f = R \left(x^s + \frac{y^s - \lambda_\theta c_1^s}{P_\theta} \right), \quad (12) \]

- FOCs:

\[[\pi \lambda_L + (1 - \pi)\lambda_H]u'(c_1^s) = \pi \lambda_L \frac{R}{P_L} u'(c_{2L}^s) + (1 - \pi)\lambda_H \frac{R}{P_H} u'(c_{2H}^s), \quad (13) \]
\[\pi \left(1 - \frac{1}{P_L} \right) u'(c_{2L}^s) \leq (1 - \pi) \left(\frac{1}{P_H} - 1 \right) u'(c_{2H}^s), \quad (14) \]

with equality if \(x^s > 0 \).
Risky banks default in state $\theta = H$.

The problem of the risky banks:

$$\max \pi[\lambda_L u(c_1^r) + (1 - \lambda_L)u(c_{2L}^r)] + (1 - \pi)u\left(\frac{c_1^r}{c_1^r + (1 + r_1)b_{01}^r} (y^r + P_H x^r)\right),$$

subject to

$$x^r + y^r \leq 1 + b_{01}^r + b_{02}^r,$$

$$\lambda_L c_1^r + (1 + r_1)b_{01}^r \leq y^r + b_{1L}^r + P_L x^r,$$

$$(1 - \lambda_L)c_{2L}^r + b_{1L}^r + (1 + r_2)b_{02}^r \leq R\left(x^r - \frac{(1 + r_1)b_{01}^r + \lambda_L c_1^r - y^r - b_{1L}^r}{P_L}\right),$$

$$b_{01}^r + b_{02}^r \leq f,$$

$$b_{1L}^r + b_{02}^r \leq f,$$

$$c_1^r \leq c_{2L}^r.$$
Risky banks (2)

- FOCs:

\[
\begin{align*}
 u'(c_1^r) + \frac{1 - \pi}{\pi \lambda_L} u' \left(\frac{c_1^r(y^r + P_H x^r)}{c_1^r + (1 + r_1)b_{01}^r} \right) \frac{(y^r + P_H x^r)(1 + r_1)b_{01}^r}{(c_1^r + (1 + r_1)b_{01}^r)^2} &= \frac{R}{P_L} u'(c_{2L}^r), \\
 \pi R \left(1 - \frac{1}{P_L} \right) u'(c_{2L}^r) &= (1 - \pi) u' \left(\frac{c_1^r(y^r + P_H x^r)}{c_1^r + (1 + r_1)b_{01}^r} \right) \frac{c_1^r(1 - P_H)}{c_1^r + (1 + r_1)b_{01}^r} + \mu_8,
\end{align*}
\]

(15)

(16)

\[
\begin{align*}
 \pi \left(r_2 - \frac{R}{P_L} r_1 \right) u'(c_{2L}^r) &= (1 - \pi) u' \left(\frac{c_1^r(y^r + P_H x^r)}{c_1^r + (1 + r_1)b_{01}^r} \right) \frac{(y^r + P_H x^r)(1 + r_1)c_1^r}{(c_1^r + (1 + r_1)b_{01}^r)^2} \\
 &\quad - \mu_5 - \mu_6 + \mu_7,
\end{align*}
\]

(17)

where \(\mu_5, \mu_6, \mu_7, \mu_8 \) are the multipliers on the non-negativity constraints for \(b_{1L}^r, b_{01}^r, b_{02}^r, \) and \(y^r \).
The mixed equilibrium

- The depositors must be indifferent between depositing their funds in a safe or risky bank
 \[W^s = W^r \] \hspace{1cm} (18)

- The market clearing conditions
 \[
 \rho (y^s + b^s_{1L} - \lambda_L c^s_1 - b^s_{01}) = (1 - \rho) ((1 + r_1)b^r_{01} + \lambda_L c^r_1 - y^r - b^r_{1L}), \hspace{1cm} (19)
 \]
 \[
 \rho (y^s + b^s_{1H} - \lambda_H c^s_1 - b^s_{01}) = (1 - \rho) P_H x^r. \hspace{1cm} (20)
 \]

- No-arbitrage conditions are:
 \[
 1 = \pi (1 + r_1) + (1 - \pi) \frac{(1 + r_1)(y^r + P_H x^r)}{c^r_1 + (1 + r_1)b^r_{01}}, \hspace{1cm} (21)
 \]
 \[
 1 = \pi (1 + r_2). \hspace{1cm} (22)
 \]
Term structure of interest rates

\[r_1 < r_2. \]

The mixed equilibrium is characterized by the vector

\[(c^s_1, \{ c^s_{2θ} \}, \{ b^s_{0t} \}, \{ b^s_{1θ} \}, y^s, c^r_1, c^r_{2L}, \{ b^r_{0t} \}, \{ b^r_{1θ} \}, y^r, \{ P_θ \}, \{ r_t \}, ρ) \]

satisfying (7)–(20).
Existence of Equilibria

- I analyze the parameter space in which two types of equilibria exist.
- Are the strategies of the risky banks optimal?
 - the no default equilibrium exists if no bank finds it optimal to default given P_L and P_H.
 - the mixed equilibrium exists if some banks a risky portfolio.
Consider a problem of a bank that tries to choose a risky portfolio in the no-default equilibrium.

The deviating bank offers a risky contract to depositors given P_L and P_R defined by (7) and (8).

$$\max \pi [\lambda_L u(c_1^d) + (1 - \lambda_L) u(c_{2L}^d)] + (1 - \pi) u \left(\frac{c_1^d}{c_1^d + (1 + r_1)b_{01}^d} (y^d + P_H x^d) \right)$$

subject to

$$x^d + y^d = 1 + b_{01}^d + b_{02}^d,$$

$$\lambda_L c_1^d + (1 + r_1)b_{01}^d \leq y^d + b_{1L}^d + P_L x^d,$$

$$(1 - \lambda_L)c_{2L}^d + b_{1L}^d + (1 + r_2)b_{02}^d \leq R \left(x^d - \frac{(1 + r_1)b_{01}^d + \lambda_L c_1^d - y^d - b_{1L}^d}{P_L} \right),$$

$$b_{01}^d + b_{02}^d \leq f,$$

$$b_{1L}^d + b_{02}^d \leq f,$$

$$c_1^d \leq c_{2L}^d.$$
Let W^d denote the corresponding maximized expected utility that the deviating bank can offer.

Proposition 3

If $W^N > W^d$, then there exists a no-default equilibrium.
Utility function:

\[u(c) = \log(c). \]

Parameters:

\[\lambda_L = 0.8, \quad \lambda_H = 0.81, \quad \text{and} \quad R = 1.5. \]
Basic Examples (2)

<table>
<thead>
<tr>
<th>Ex.</th>
<th>π</th>
<th>f</th>
<th>Types of eqm.</th>
<th>Price volatility (P_L/P_H)</th>
<th>ρ</th>
<th>$E[u]$</th>
</tr>
</thead>
<tbody>
<tr>
<td>1A</td>
<td>0.6</td>
<td>0.3</td>
<td>No default</td>
<td>$1.5000/0.6628=2.2631$</td>
<td>1.0000</td>
<td>0.1728</td>
</tr>
<tr>
<td>1B</td>
<td>0.6</td>
<td>0.5</td>
<td>No default</td>
<td>$1.5000/0.6628=2.2631$</td>
<td>1.0000</td>
<td>0.2316</td>
</tr>
<tr>
<td>1C</td>
<td>0.6</td>
<td>0.7</td>
<td>No default</td>
<td>$1.5000/0.6628=2.2631$</td>
<td>1.0000</td>
<td>0.2872</td>
</tr>
<tr>
<td>2A</td>
<td>0.8</td>
<td>0.3</td>
<td>Mixed</td>
<td>$1.2620/0.5189=2.4321$</td>
<td>0.9723</td>
<td>0.1741</td>
</tr>
<tr>
<td>2B</td>
<td>0.8</td>
<td>0.5</td>
<td>Mixed</td>
<td>$1.2947/0.4905=2.6396$</td>
<td>0.9707</td>
<td>0.2328</td>
</tr>
<tr>
<td>2C</td>
<td>0.8</td>
<td>0.7</td>
<td>Mixed</td>
<td>$1.3296/0.4646=2.8618$</td>
<td>0.9700</td>
<td>0.2883</td>
</tr>
</tbody>
</table>

Table: Numerical examples
Basic Examples (3)

<table>
<thead>
<tr>
<th>Ex.</th>
<th>π</th>
<th>f</th>
<th>(y, x)</th>
<th>(c_1, c_{2L}, c_{2H})</th>
<th>$(b_{01}, b_{1L}, b_{1H}, b_{02})$</th>
</tr>
</thead>
<tbody>
<tr>
<td>1A</td>
<td>0.6</td>
<td>0.3</td>
<td>(0.8888, 0.4112)</td>
<td>(1.0973, 1.6389, 1.6674)</td>
<td>indeterminate</td>
</tr>
<tr>
<td>1B</td>
<td>0.6</td>
<td>0.5</td>
<td>(0.9427, 0.5573)</td>
<td>(1.1638, 1.7379, 1.7682)</td>
<td>indeterminate</td>
</tr>
<tr>
<td>1C</td>
<td>0.6</td>
<td>0.7</td>
<td>(0.9966, 0.7034)</td>
<td>(1.2304, 1.8370, 1.8689)</td>
<td>indeterminate</td>
</tr>
</tbody>
</table>

Table: Allocations in the no-default equilibrium
Basic Examples (4)

Table: Allocations in the mixed equilibrium

<table>
<thead>
<tr>
<th>Ex.</th>
<th>π</th>
<th>f</th>
<th>(y^s, x^s)</th>
<th>$(c^s_1, c^s_{2L}, c^s_{2H})$</th>
<th>$(b^s_{01}, b^s_{1L}, b^s_{1H}, b^s_{02})$</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>(y^r, x^r)</td>
<td>$(c^r_1, c^r_{2L}, y^r + P_H x^r)$</td>
<td>$(b^r_{01}, b^r_{1L}, b^r_{1H}, b^r_{02})$</td>
</tr>
<tr>
<td>2A</td>
<td>0.8</td>
<td>0.3</td>
<td>(0.9085, 0.3915)</td>
<td>(1.0979, 1.6155, 1.8040)</td>
<td>indeterminate</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(0.0000, 1.3000)</td>
<td>(1.3251, 1.5750, 0.6746)</td>
<td></td>
</tr>
<tr>
<td>2B</td>
<td>0.8</td>
<td>0.5</td>
<td>(0.9652, 0.5348)</td>
<td>(1.1643, 1.7068, 1.9473)</td>
<td>indeterminate</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(0.0000, 1.5000)</td>
<td>(1.4026, 1.6250, 0.7358)</td>
<td></td>
</tr>
<tr>
<td>2C</td>
<td>0.8</td>
<td>0.7</td>
<td>(1.0212, 0.6788)</td>
<td>(1.2306, 1.7984, 2.0899)</td>
<td>indeterminate</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(0.0000, 1.7000)</td>
<td>(1.4848, 1.6750, 0.7898)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(0.0000, 0.0000, 0.0000, 0.3000)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(0.0000, 0.0000, 0.0000, 0.5000)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(0.0000, 0.0000, 0.0000, 0.7000)</td>
<td></td>
</tr>
</tbody>
</table>
The ratio of short term debt to international liquidity reserves

\[
\eta \equiv \frac{\rho(\bar{\lambda}c_1^s + b_{01}^s) + (1 - \rho)(\bar{\lambda}c_1^r + (1 + r_1)b_{01}^r)}{\rho y^s + (1 - \rho)y^r},
\]

where \(\bar{\lambda} \equiv \pi \lambda_L + (1 - \pi)\lambda_H \).

Setting \(b_{01}^s = 0.2f \) and \(b_{02}^s = (1 - 0.2)f \)

In Example 2, \(\eta \) is increasing in \(f \).

- \(\eta = 1.0686 \) when \(f = 0.3 \)
- \(\eta = 1.1062 \) when \(f = 0.5 \)
- \(\eta = 1.1396 \) when \(f = 0.7 \)

Consistent with empirical evidence!
Extension (1): Risk Aversion

- CRRA utility function:

\[u(c) = \frac{c^{1-\sigma}}{1 - \sigma}, \]

where \(\sigma \geq 1 \).

<table>
<thead>
<tr>
<th>Ex.</th>
<th>(\sigma)</th>
<th>(\pi)</th>
<th>(f)</th>
<th>Types of eqm.</th>
<th>Price volatility ((P_L/P_H))</th>
<th>(\rho)</th>
<th>(E[u])</th>
</tr>
</thead>
<tbody>
<tr>
<td>2A</td>
<td>1</td>
<td>0.8</td>
<td>0.3</td>
<td>Mixed</td>
<td>1.2620/0.5189=2.4321</td>
<td>0.9723</td>
<td>0.1741</td>
</tr>
<tr>
<td>2B</td>
<td>1</td>
<td>0.8</td>
<td>0.5</td>
<td>Mixed</td>
<td>1.2947/0.4905=2.6396</td>
<td>0.9707</td>
<td>0.2328</td>
</tr>
<tr>
<td>2C</td>
<td>1</td>
<td>0.8</td>
<td>0.7</td>
<td>Mixed</td>
<td>1.3296/0.4646=2.8618</td>
<td>0.9700</td>
<td>0.2883</td>
</tr>
<tr>
<td>3A</td>
<td>2</td>
<td>0.8</td>
<td>0.3</td>
<td>Mixed</td>
<td>1.5000/0.3952=3.7955</td>
<td>0.9888</td>
<td>-0.8465</td>
</tr>
<tr>
<td>3B</td>
<td>2</td>
<td>0.8</td>
<td>0.5</td>
<td>Mixed</td>
<td>1.5000/0.4012=3.7388</td>
<td>0.9918</td>
<td>-0.7981</td>
</tr>
<tr>
<td>3C</td>
<td>2</td>
<td>0.8</td>
<td>0.7</td>
<td>Mixed</td>
<td>1.5000/0.4049=3.7046</td>
<td>0.9936</td>
<td>-0.7550</td>
</tr>
<tr>
<td>4A</td>
<td>3</td>
<td>0.8</td>
<td>0.3</td>
<td>No default</td>
<td>1.5000/0.4237=3.5402</td>
<td>1.0000</td>
<td>-0.3598</td>
</tr>
<tr>
<td>4B</td>
<td>3</td>
<td>0.8</td>
<td>0.5</td>
<td>No default</td>
<td>1.5000/0.4237=3.5402</td>
<td>1.0000</td>
<td>-0.3198</td>
</tr>
<tr>
<td>4C</td>
<td>3</td>
<td>0.8</td>
<td>0.7</td>
<td>No default</td>
<td>1.5000/0.4237=3.5402</td>
<td>1.0000</td>
<td>-0.2862</td>
</tr>
</tbody>
</table>

Table: Numerical examples for CRRA utility function.
Suppose that no long-term borrowing is allowed at period 0.

- \(b_{02} = 0 \) or \(r_2 = \infty \).
- Transaction costs, information costs

<table>
<thead>
<tr>
<th>Ex.</th>
<th>(\pi)</th>
<th>(f)</th>
<th>Types of eqm.</th>
<th>Price volatility ((P_L/P_H))</th>
<th>(\rho)</th>
<th>(E[u])</th>
</tr>
</thead>
<tbody>
<tr>
<td>5A</td>
<td>0.8</td>
<td>0.3</td>
<td>Mixed</td>
<td>1.3743/0.4579=3.0013</td>
<td>0.9831</td>
<td>0.1734</td>
</tr>
<tr>
<td>5B</td>
<td>0.8</td>
<td>0.5</td>
<td>Mixed</td>
<td>1.4433/0.4271=3.3793</td>
<td>0.9846</td>
<td>0.2320</td>
</tr>
<tr>
<td>5C</td>
<td>0.8</td>
<td>0.7</td>
<td>Mixed</td>
<td>1.5000/0.4063=3.6919</td>
<td>0.9856</td>
<td>0.2874</td>
</tr>
</tbody>
</table>

Table: Numerical examples for foreign short-term debt
“Sudden Stop”
- capital net outflow at period 0:
 \[-f < 0.\]
- capital net outflow at period 1 in state H:
 \[
 \rho b_{01}^s + (1 - \rho)(1 - \varphi)(y^r + P_H x^r) - (\rho b_{1H}^s + (1 - \rho)b_{1H}^r)
 \]
 \[
 = (1 - \rho)(1 - \varphi)(y^r + P_H x^r) > 0.
 \]
 where \(\varphi = c_1^r/(c_1^r + (1 + r_1)f).\)
Q. Is the mixed equilibrium constrained efficient?

<table>
<thead>
<tr>
<th>Ex.</th>
<th>π</th>
<th>f</th>
<th>mixed eqm., $E[u]$</th>
<th>constrained efficient, $E[u]$</th>
</tr>
</thead>
<tbody>
<tr>
<td>2A</td>
<td>0.8</td>
<td>0.3</td>
<td>0.1741</td>
<td>0.1729</td>
</tr>
<tr>
<td>2B</td>
<td>0.8</td>
<td>0.5</td>
<td>0.2328</td>
<td>0.2318</td>
</tr>
<tr>
<td>2C</td>
<td>0.8</td>
<td>0.7</td>
<td>0.2883</td>
<td>0.2873</td>
</tr>
</tbody>
</table>

A. No. The mixed equilibrium attains higher welfare than the planner.

Why?

- Default relaxes the constraint of non-contingent contracts.
- No justification for policy interventions!
Realistic features that are not modeled here can justify the policy.
- a crisis may have significant negative impacts on the real sector.
- e.g., increasing unemployment, decreasing output, etc.

Q. Can the government eliminate a crisis at the expense of welfare?

Two policies:
- Liquidity regulation
- Public deposit insurance
Liquidity Regulation

- Liquidity regulation:

\[y \geq \xi(1 + f), \quad 0 \leq \xi \leq 1 \]

<table>
<thead>
<tr>
<th>Ex.</th>
<th>(\pi)</th>
<th>(f)</th>
<th>(\xi)</th>
<th>Types of eqm.</th>
<th>Price volatility ((P_L/P_H))</th>
<th>(\rho)</th>
<th>(E[u])</th>
</tr>
</thead>
<tbody>
<tr>
<td>2A</td>
<td>0.8</td>
<td>0.3</td>
<td>0</td>
<td>Mixed</td>
<td>1.2620/0.5189=2.4321</td>
<td>0.9723</td>
<td>0.1741</td>
</tr>
<tr>
<td>2B</td>
<td>0.8</td>
<td>0.5</td>
<td>0</td>
<td>Mixed</td>
<td>1.2947/0.4905=2.6396</td>
<td>0.9707</td>
<td>0.2328</td>
</tr>
<tr>
<td>2C</td>
<td>0.8</td>
<td>0.7</td>
<td>0</td>
<td>Mixed</td>
<td>1.3296/0.4646=2.8618</td>
<td>0.9700</td>
<td>0.2883</td>
</tr>
<tr>
<td>5A</td>
<td>0.8</td>
<td>0.3</td>
<td>0.2</td>
<td>Mixed</td>
<td>1.3114/0.4802=2.7309</td>
<td>0.9619</td>
<td>0.1739</td>
</tr>
<tr>
<td>5B</td>
<td>0.8</td>
<td>0.5</td>
<td>0.2</td>
<td>Mixed</td>
<td>1.3265/0.4371=3.0348</td>
<td>0.9600</td>
<td>0.2325</td>
</tr>
<tr>
<td>5C</td>
<td>0.8</td>
<td>0.7</td>
<td>0.2</td>
<td>Mixed</td>
<td>1.4526/0.4007=3.6252</td>
<td>0.9593</td>
<td>0.2879</td>
</tr>
<tr>
<td>6A</td>
<td>0.8</td>
<td>0.3</td>
<td>0.5</td>
<td>No default</td>
<td>1.5000/0.4243=3.5352</td>
<td>1.0000</td>
<td>0.1729</td>
</tr>
<tr>
<td>6B</td>
<td>0.8</td>
<td>0.5</td>
<td>0.5</td>
<td>No default</td>
<td>1.5000/0.4243=3.5352</td>
<td>1.0000</td>
<td>0.2318</td>
</tr>
<tr>
<td>6C</td>
<td>0.8</td>
<td>0.7</td>
<td>0.5</td>
<td>No default</td>
<td>1.5000/0.4243=3.5352</td>
<td>1.0000</td>
<td>0.2873</td>
</tr>
</tbody>
</table>

Table: The effects of liquidity regulations: \(y \geq \xi(1 + f) \)
In state H at period 1, the government

- imposes a lump-sum tax on the safe banks, τ.
- transfer ϕ to the depositors of the risky banks.

$$ (1 - \rho)\phi = \rho\tau. $$
Public Deposit Insurance (2)

<table>
<thead>
<tr>
<th>Ex.</th>
<th>π</th>
<th>f</th>
<th>$\text{DI}(\phi, \tau)$</th>
<th>Eqm.</th>
<th>P_L/P_H</th>
<th>ρ</th>
<th>$E[u]$</th>
</tr>
</thead>
<tbody>
<tr>
<td>2A</td>
<td>0.8</td>
<td>0.3</td>
<td>(0.0000, 0.0000)</td>
<td>Mixed</td>
<td>1.2620/0.5189=2.4321</td>
<td>0.9723</td>
<td>0.1742</td>
</tr>
<tr>
<td>2B</td>
<td>0.8</td>
<td>0.5</td>
<td>(0.0000, 0.0000)</td>
<td>Mixed</td>
<td>1.2947/0.4905=2.6396</td>
<td>0.9707</td>
<td>0.2321</td>
</tr>
<tr>
<td>2C</td>
<td>0.8</td>
<td>0.7</td>
<td>(0.0000, 0.0000)</td>
<td>Mixed</td>
<td>1.3296/0.4646=2.8618</td>
<td>0.9700</td>
<td>0.2888</td>
</tr>
<tr>
<td>7A</td>
<td>0.8</td>
<td>0.3</td>
<td>(0.1000, 0.0084)</td>
<td>Mixed</td>
<td>1.1704/0.5794=2.0200</td>
<td>0.9222</td>
<td>0.1721</td>
</tr>
<tr>
<td>7B</td>
<td>0.8</td>
<td>0.5</td>
<td>(0.1000, 0.0069)</td>
<td>Mixed</td>
<td>1.2190/0.5251=2.3215</td>
<td>0.9356</td>
<td>0.2311</td>
</tr>
<tr>
<td>7C</td>
<td>0.8</td>
<td>0.7</td>
<td>(0.1000, 0.0060)</td>
<td>Mixed</td>
<td>1.2638/0.4854=2.6036</td>
<td>0.9431</td>
<td>0.2878</td>
</tr>
<tr>
<td>8A</td>
<td>0.8</td>
<td>0.3</td>
<td>(0.2000, 0.0553)</td>
<td>Mixed</td>
<td>1.1350/0.5493=2.0663</td>
<td>0.7834</td>
<td>0.1662</td>
</tr>
<tr>
<td>8B</td>
<td>0.8</td>
<td>0.5</td>
<td>(0.2000, 0.0339)</td>
<td>Mixed</td>
<td>1.1836/0.5050=2.3438</td>
<td>0.8550</td>
<td>0.2281</td>
</tr>
<tr>
<td>8C</td>
<td>0.8</td>
<td>0.7</td>
<td>(0.2000, 0.0249)</td>
<td>Mixed</td>
<td>1.2286/0.4701=2.6135</td>
<td>0.8894</td>
<td>0.2842</td>
</tr>
</tbody>
</table>

Table: The effects of government deposit insurance
Conclusion

This paper have developed a small-open-economy version of a banking model with financial market.

The model generates two types of equilibria:
- the no-default equilibrium
- the mixed equilibrium

The model matches many features of East Asia crisis in 1997.

Liquidity regulation may stabilize the financial system, but public deposit insurance may not.