Optimal Degree of Decentralisation in the Disposal of Waste: a Welfare Approach

Laura Levaggi1 Rosella Levaggi2 Carmine Trecroci2

1Faculty of Science and Technology
University of Bolzano

2Department of Economics and Management
University of Brescia

PET 15 Luxembourg
Motivation

- Waste prevention is the top aim of European policy’s ‘waste hierarchy’
- By 2020 waste generation should be in absolute decline, according to the EU’s Roadmap to a Resource Efficient Europe
- Still little evidence of permanent decoupling
Waste prevention is the top aim of European policy’s ‘waste hierarchy’

By 2020 waste generation should be in absolute decline, according to the EU’s Roadmap to a Resource Efficient Europe

Still little evidence of permanent decoupling
Waste prevention is the top aim of European policy’s ‘waste hierarchy’

By 2020 waste generation should be in absolute decline, according to the EU’s Roadmap to a Resource Efficient Europe

Still little evidence of permanent decoupling
Mostly empirical and related to the existence of decoupling

Theoretical literature does not agree on which Government level is more efficient to reduce the negative impacts of waste disposal activities
Mostly empirical and related to the existence of decoupling

Theoretical literature does not agree on which Government level is more efficient to reduce the negative impacts of waste disposal activities
Research Questions

- Which level of centralisation is more efficient from a welfare point of view?
- Final waste disposal across Regions should be encouraged?
Research Questions

- Which level of centralisation is more efficient from a welfare point of view?
- Final waste disposal across Regions should be encouraged?
Main findings.

- Centralisation in decision maximises total welfare, but it may not be the preferred solution from a Regional perspective.
- Waste disposal across Regions may improve welfare provided that the price takes spillovers into account.
- Marginal cost pricing may produce a “race to the bottom” effect.
Centralisation in decision maximises total welfare, but it may not be the preferred solution from a Regional perspective.

Waste disposal across Regions may improve welfare provided that the price takes spillovers into account.

Marginal cost pricing may produce a “race to the bottom” effect.
Centralisation in decision maximises total welfare, but it may not be the preferred solution from a Regional perspective.

Waste disposal across Regions may improve welfare provided that the price takes spillovers into account.

Marginal cost pricing may produce a “race to the bottom” effect.
The model (1)

- Community divided into two equally sized Regions 1 and 2 endowed with a fixed income Y and an environmental good z
- Income generates waste (q_i), w_i is the quantity disposed of in region i. Waste reduces the environmental good at rate v
- Waste can be treated to reduce environmental damage. Cost is region-specific and equal to p_i
- Pollution can be reduced by investing in a technology that lowers emissions by a quantity r_i.

$$v \left(w_i^2 - \alpha_i r_i w_i \right); \quad i = 1, 2$$ \hspace{1cm} (1)

$\alpha_i =$ productivity of the region-specific investment.
Community divided into two equally sized Regions 1 and 2 endowed with a fixed income Y and an environmental good z.

Income generates waste (q_i), w_i is the quantity disposed of in region i. Waste reduces the environmental good at rate ν.

Waste can be treated to reduce environmental damage. Cost is region-specific and equal to p_i.

Pollution can be reduced by investing in a technology that lowers emissions by a quantity r_i.

$$\nu (w_i^2 - \alpha_i r_i w_i) ; \quad i = 1, 2 \quad (1)$$

$\alpha_i =$ productivity of the region-specific investment.
Community divided into two equally sized Regions 1 and 2 endowed with a fixed income Y and an environmental good z.

Income generates waste (q_i), w_i is the quantity disposed of in region i. Waste reduces the environmental good at rate v.

Waste can be treated to reduce environmental damage. Cost is region-specific and equal to p_i.

Pollution can be reduced by investing in a technology that lowers emissions by a quantity r_i.

\[v \left(w_i^2 - \alpha_i r_i w_i \right); \quad i = 1, 2 \quad (1) \]

α_i= productivity of the region-specific investment.
• Community divided into two equally sized Regions 1 and 2 endowed with a fixed income \(Y \) and an environmental good \(z \)

• Income generates waste \((q_i)\), \(w_i \) is the quantity disposed of in region \(i \). Waste reduces the environmental good at rate \(\nu \)

• Waste can be treated to reduce environmental damage. Cost is region-specific and equal to \(p_i \)

• Pollution can be reduced by investing in a technology that lowers emissions by a quantity \(r_i \).

\[
\nu \left(w_i^2 - \alpha_i r_i w_i \right); \quad i = 1, 2
\]

\[
\alpha_i = \text{productivity of the region-specific investment.}
\]
Community divided into two equally sized Regions 1 and 2 endowed with a fixed income Y and an environmental good z

- Income generates waste (q_i), w_i is the quantity disposed of in region i. Waste reduces the environmental good at rate v
- Waste can be treated to reduce environmental damage. Cost is region-specific and equal to p_i
- Pollution can be reduced by investing in a technology that lowers emissions by a quantity r_i.

$$v \left(w_i^2 - \alpha_i r_i w_i\right); \quad i = 1, 2 \tag{1}$$

α_i = productivity of the region-specific investment.
Pollution spillovers at rate k

the environmental good, net of the damage produced by waste disposal activities, can be written as:

$$z - v \left[(w_i^2 - \alpha_i r_i w_i) + k (w_j^2 - \alpha_j r_j w_j) \right]$$

Investment to protect the environment has a cost equal to

$$\frac{\theta_i}{2} r_i^2 w_i$$

where θ_i is a productivity parameter

α and r_i are positively correlated
Pollution spillovers at rate k

the environmental good, net of the damage produced by waste disposal activities, can be written as:

$$z - v \left[(w_i^2 - \alpha_i r_i w_i) + k (w_j^2 - \alpha_j r_j w_j) \right]$$

Investment to protect the environment has a cost equal to

$$\frac{\theta_i}{2} r_i^2 w_i$$

where θ_i is a productivity parameter

α and p_i are positively correlated
Pollution spillovers at rate k

the environmental good, net of the damage produced by waste disposal activities, can be written as:

$$z - v \left[(w_i^2 - \alpha_i r_i w_i) + k (w_j^2 - \alpha_j r_j w_j) \right]$$

Investment to protect the environment has a cost equal to $\frac{\theta_i}{2} r_i^2 w_i$ where θ_i is a productivity parameter

α and p_i are positively correlated
Pollution spillovers at rate k

the environmental good, net of the damage produced by waste disposal activities, can be written as:

$$z - n \left[(w_i^2 - \alpha_i r_i w_i) + k (w_j^2 - \alpha_j r_j w_j) \right]$$

Investment to protect the environment has a cost equal to $\frac{\theta_i}{2} r_i^2 w_i$ where θ_i is a productivity parameter

α and p_i are positively correlated
Welfare:

\[W_i = Y_i + \beta \left(z - v \left((w_i^2 - \alpha_i r_i w_i) + k (w_j^2 - \alpha_j r_j w_j) \right) \right) \]
\[\frac{\theta_i r_i^2 w_i}{2} - p_i w_i - m^c (q_i - w_i) \]

\(m \) = the price paid by each local authority for waste to be disposed of in the other region.
FB solution

Total welfare

\[
W^\text{FB} = \sum_{i=1}^{2} Y_i + z - \nu \left((w_i^2 - \alpha_i r_i w_i) + k \left(w_j^2 - \alpha_j r_j w_j \right) \right) - \frac{\theta_i r_i^2 w_i}{2} - p_i w_i - m^\text{FB} (q_i - w_i)
\]

\[
w_i = q + \frac{\beta \nu (1+k)}{8} \left(\frac{\alpha_i}{\theta_i} - \frac{\alpha_j}{\theta_j} \right) - \frac{1}{4} \frac{p_i - p_j}{\beta \nu (1+k)}
\]

\[
r_i = \frac{\beta \nu \alpha_i (1+k)}{\theta_i}
\]

\[
m^\text{FB} = 2q\beta \nu (1-k) + \frac{\beta^2 \nu^2 (3k^2 + 2k - 1)}{4} \left(\frac{\alpha_i^2}{\theta_i} + \frac{\alpha_j^2}{\theta_j} \right) + \frac{p_i + p_j}{2}
\]
Total welfare

\[W^{FB} = \sum_{i=1}^{2} Y_i + z - \nu \left((w_i^2 - \alpha_i r_i w_i) + k (w_j^2 - \alpha_j r_j w_j) \right) \]

\[- \frac{\theta_i r_i^2 w_i}{2} - p_i w_i - m^{FB} (q_i - w_i) \]

\[w_i = q + \frac{\beta \nu (1 + k)}{8} \left(\frac{\alpha_i}{\theta_i} - \frac{\alpha_j}{\theta_j} \right) - \frac{1}{4} \frac{p_i - p_j}{\beta \nu (1 + k)} \]

\[r_i = \frac{\beta \nu \alpha_i (1 + k)}{\theta_i} \]

\[m^{FB} = 2q \beta \nu (1 - k) + \frac{\beta^2 \nu^2 (3k^2 + 2k - 1)}{4} \left(\frac{\alpha_i^2}{\theta_i} + \frac{\alpha_j^2}{\theta_j} \right) + \frac{p_i + p_j}{2} \]
Centralisation

<table>
<thead>
<tr>
<th></th>
<th>No mobility</th>
<th>Mobility</th>
</tr>
</thead>
<tbody>
<tr>
<td>w_i</td>
<td>q</td>
<td>$q + \frac{\beta v (1+k)}{8} \left(\frac{\alpha_i}{\theta_i} - \frac{\alpha_j}{\theta_j} \right) - \frac{1}{4} \frac{p_i - p_j}{\beta v (1+k)}$</td>
</tr>
<tr>
<td>w_j</td>
<td>q</td>
<td>$2q - w_i$</td>
</tr>
<tr>
<td>r_i</td>
<td>$\frac{\beta v \alpha_i (1+k)}{\theta_i}$</td>
<td>$\frac{\beta v \alpha_i (1+k)}{\theta_i}$</td>
</tr>
<tr>
<td>r_j</td>
<td>$\frac{\beta v \alpha_j (1+k)}{\theta_j}$</td>
<td>$\frac{\beta v \alpha_j (1+k)}{\theta_j}$</td>
</tr>
</tbody>
</table>

Table: Optimal solution for the Centralised case

- Solution with mobility preferred to no mobility from a total welfare point of view
- For each Region the choice depends on the level of m chosen. If m equal to marginal cost, most efficient Region prefers no mobility to mobility
Centralisation

<table>
<thead>
<tr>
<th></th>
<th>No mobility</th>
<th>Mobility</th>
</tr>
</thead>
<tbody>
<tr>
<td>w_i</td>
<td>q</td>
<td>$q + \frac{\beta \nu (1+k)}{8} \left(\frac{\alpha_i}{\theta_i} - \frac{\alpha_j}{\theta_j} \right) - \frac{1}{4} \frac{p_i - p_j}{\beta \nu (1+k)}$</td>
</tr>
<tr>
<td>w_j</td>
<td>q</td>
<td>$2q - w_i$</td>
</tr>
<tr>
<td>r_i</td>
<td>$\frac{\beta \nu \alpha_i (1+k)}{\theta_i}$</td>
<td>$\frac{\beta \nu \alpha_i (1+k)}{\theta_i}$</td>
</tr>
<tr>
<td>r_j</td>
<td>$\frac{\beta \nu \alpha_j (1+k)}{\theta_j}$</td>
<td>$\frac{\beta \nu \alpha_j (1+k)}{\theta_j}$</td>
</tr>
</tbody>
</table>

Table: Optimal solution for the Centralised case

- Solution with mobility preferred to no mobility from a total welfare point of view
- For each Region the choice depends on the level of m chosen. If m equal to marginal cost, most efficient Region prefers no mobility to mobility
Centralisation

<table>
<thead>
<tr>
<th>No mobility</th>
<th>Mobility</th>
</tr>
</thead>
<tbody>
<tr>
<td>w_i</td>
<td>q</td>
</tr>
<tr>
<td>w_j</td>
<td>q</td>
</tr>
<tr>
<td>r_i</td>
<td>$\frac{\beta v \alpha_i (1+k)}{\theta_i}$</td>
</tr>
<tr>
<td>r_j</td>
<td>$\frac{\beta v \alpha_j (1+k)}{\theta_j}$</td>
</tr>
</tbody>
</table>

Table: Optimal solution for the Centralised case

- Solution with mobility preferred to no mobility from a total welfare point of view

- For each Region the choice depends on the level of m chosen. If m equal to marginal cost, most efficient Region prefers no mobility to mobility
<table>
<thead>
<tr>
<th></th>
<th>No mobility</th>
<th>Mobility</th>
</tr>
</thead>
<tbody>
<tr>
<td>(w_1)</td>
<td>(q)</td>
<td>(q + \frac{\beta v}{8} \left(\frac{\alpha_1^2}{\theta_1} - \frac{\alpha_2^2}{\theta_2} \right) + \frac{p_2 - p_1}{4v\beta})</td>
</tr>
<tr>
<td>(w_2)</td>
<td>(q)</td>
<td>(q + \frac{\beta v}{8} \left(\frac{\alpha_2^2}{\theta_2} - \frac{\alpha_1^2}{\theta_1} \right) + \frac{p_1 - p_2}{4v\beta})</td>
</tr>
<tr>
<td>(r_i)</td>
<td>(\frac{\beta v\alpha_i}{\theta_i})</td>
<td>(\frac{\beta v\alpha_i}{\theta_i})</td>
</tr>
<tr>
<td>(m^d)</td>
<td>n.a.</td>
<td>(2q\beta v - \frac{\beta^2 v^2}{4} \left(\frac{\alpha_2^2}{\theta_2} + \frac{\alpha_1^2}{\theta_1} \right) + \frac{p_1 + p_2}{2})</td>
</tr>
</tbody>
</table>

Table: Optimal solution for the decentralised case

- Environmental protection is not optimal
- Total welfare always lower. At regional level:
 - Welfare of the less efficient Region always lower
 - No mobility: also more efficient Region is a loser
 - Mobility: if \(m = \) market price more efficient Region may be better off
Table: Optimal solution for the decentralised case

<table>
<thead>
<tr>
<th>No mobility</th>
<th>Mobility</th>
</tr>
</thead>
<tbody>
<tr>
<td>w_1</td>
<td>q</td>
</tr>
<tr>
<td>w_2</td>
<td>q</td>
</tr>
<tr>
<td>r_i</td>
<td>$\frac{\beta v \alpha_i}{\theta_i}$</td>
</tr>
<tr>
<td>m^d</td>
<td>n.a.</td>
</tr>
</tbody>
</table>

- Environmental protection is not optimal
- Total welfare always lower. At regional level:
 - Welfare of the less efficient Region always lower
 - No mobility: also more efficient Region is a loser
 - Mobility: if $m = \text{market price}$ more efficient Region may be better off
Decentralisation

<table>
<thead>
<tr>
<th>No mobility</th>
<th>Mobility</th>
</tr>
</thead>
<tbody>
<tr>
<td>w_1</td>
<td>q</td>
</tr>
<tr>
<td>w_2</td>
<td>q</td>
</tr>
<tr>
<td>r_i</td>
<td>$\frac{\beta v\alpha_i}{\theta_i}$</td>
</tr>
<tr>
<td>m^d</td>
<td>n.a.</td>
</tr>
</tbody>
</table>

Table: Optimal solution for the decentralised case

- Environmental protection is not optimal
- Total welfare always lower. At regional level:
 - Welfare of the less efficient Region always lower
 - No mobility: also more efficient Region is a loser
 - Mobility: if $m = \text{market price}$ more efficient Region may be better off
Centralised solution maximises environmental protection but it might not be what each Region prefers.

Waste mobility across Regions minimises costs but the price should be carefully chosen.

Price should take into account environmental costs to be optimal.

Bargaining between the Regions with environmental protection set at central level is not FB.
Centralised solution maximises environmental protection but it might not be what each Region prefers.

Waste mobility across Regions minimises costs but the price should be carefully chosen.

Price should take into account environmental costs to be optimal.

Bargaining between the Regions with environmental protection set at central level is not FB.
Centralised solution maximises environmental protection but it might not be what each Region prefers.

Waste mobility across Regions minimises costs but the price should be carefully chosen.

Price should take into account environmental costs to be optimal.

Bargaining between the Regions with environmental protection set at central level is not FB.
Centralised solution maximises environmental protection but it might not be what each Region prefers.

Waste mobility across Regions minimises costs but the price should be carefully chosen.

Price should take into account environmental costs to be optimal.

Bargaining between the Regions with environmental protection set at central level is not FB.