Did Medicare Decrease Diabetics’ Insulin Usage Until the Advent of Part D?

Daniel Kaliski1

1Department of Economics and Nuffield College, University of Oxford

Annual Conference on Taxation, 2017
Can moral hazard effects be averted with an appropriately targeted subsidy?
Motivation

Estimated 12-14% of US population has Type I or Type II diabetes (Menke et al., JAMA 2015)

Moreover, it is the fastest-growing non-communicable disease in low-to-middle-income countries

Source: International Diabetes Foundation (2009)
Motivation

- Health outcomes in this group are sensitive to their usage of preventive care
- Covering treatment and not prevention may decrease incentives to use prevention (moral hazard)
- In 2006 Part D began to subsidise insulin and diabetic medication
- Paying for prevention should offset moral hazard effects - but by how much?
Motivation

- Previous evidence that some diabetics forgo insulin to lose weight, for example (Rydall et al., NEJM 1997)

- Generally poor adherence to insulin - 59-77% (Weinger & Beverley 2010)

- Insulin complex to administer - most regimes require constant vigilance
Motivation

- Broader context: consensus that coverage generally improves health outcomes

“Insurance coverage increases access to care and improves a wide range of health outcomes. Arguing that health insurance coverage doesn’t improve health is simply inconsistent with the evidence”

- Sommers, Gawande & Baicker (JAMA, 2017)
What I Do

- Use a regression-discontinuity design with Medicare eligibility age (65) as the cutoff
What I Do

- Use a regression-discontinuity design with Medicare eligibility age (65) as the cutoff

- Examine whether there are significant differences above and below the cutoff in
 - Insulin usage
 - Dieting
 - Exercise
 - Medication adherence

Follow up individuals who were <65 in 1998 to see if the effect persists in later years
What I Do

- Use a regression-discontinuity design with Medicare eligibility age (65) as the cutoff

- Examine whether there are significant differences above and below the cutoff in
 - Insulin usage
 - Dieting
 - Exercise
 - Medication adherence

- Follow up individuals who were <65 in 1998 to see if the effect persists in later years
What I Find

- Insulin usage declines in 1998 when individuals reach age 65; other behaviours unaffected
What I Find

- Insulin usage declines in 1998 when individuals reach age 65; other behaviours unaffected

- This effect is reversed in 2006, the year when Medicare Part D is made available
Related Literature

- Card et al. (2008 AER, 2009 QJE) - Medicare as an RDD
- Cawley et al. (2017) - Impact of coverage on prevention
Data

- Health and Retirement Study - 3,043 individuals reporting diabetes in 1998

Key Result: Insulin Usage Decreases at Age 65 in 1998
Robustness Checks I

- Result remains even after
 - Excluding smokers and those who have had cancer (interacts with physiological response)
 - Excluding those on SSDI (only 10 individuals)

- No similar results found

- When using a placebo cutoff of 64 or 66
 - For other behaviours (diet, exercise, other medication use)
Robustness Checks II: Retirement

No similar discontinuity in proportion of individuals who are retired at 65, in line with Card et al. (2008 AER, 2009 QJE)
Following Up the Untreated Individuals

- Since I have panel data, I can see what happens to under-65s in 2000-2006

- In most years, the proportion who stop reporting insulin after turning 65 is larger than those who begin to report usage at that age:

<table>
<thead>
<tr>
<th>Year</th>
<th>% Ceased Using Insulin at 65</th>
<th>% Started Using Insulin at 65</th>
</tr>
</thead>
<tbody>
<tr>
<td>2000</td>
<td>12.50</td>
<td>4.31</td>
</tr>
<tr>
<td>2002</td>
<td>17.07</td>
<td>6.25</td>
</tr>
<tr>
<td>2004</td>
<td>11.90</td>
<td>9.00</td>
</tr>
<tr>
<td>2006</td>
<td>1.99</td>
<td>13.58</td>
</tr>
</tbody>
</table>
Following Up the Untreated Individuals

- Problem: any test of difference in means will lack power due to the small number of individuals either side of the cutoff

- Solution: pool years and estimate the equation:

\[l_{it} = \alpha l_{it-1} + \beta [\text{age} \in [63, 67]] + \gamma [t = 2006] + \delta [\text{age} \in [63, 67]] \cdot [t = 2006] + \eta_i + \xi_{it} \]
Random-Effects Probit Specification

- l_{it-1} is endogenous - contains η_i - so estimator for α biased

- η_i would be responsible for a statistically significant δ :: cohort effects (early childhood, Levemir)
Random-Effects Probit Specification

- If we condition on l_{i0} and assume (Wooldridge, 2005)

\[\eta_i = \phi_0 + \phi_1 l_{i0} + \epsilon_i \]
\[\epsilon_i | l_{i0} \sim N(0, \sigma_\epsilon^2) \]

Can estimate α and σ_ϵ^2 separately; restrict α to examine effect on δ
Random-Effects Probit Results

Dep. Var.: Using Insulin

<table>
<thead>
<tr>
<th>Coefficient</th>
<th>Constant</th>
<th>Insulin Used Two Years Prior</th>
<th>Insulin Used in 1998</th>
<th>Aged 63-67</th>
<th>2006</th>
<th>2006*Aged 63-67</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(\hat{\alpha}_u)</td>
<td>(\hat{\alpha} = 0)</td>
<td>(\hat{\alpha} = 0.1 \hat{\alpha}_u)</td>
<td>(\alpha = 0.5 \hat{\alpha}_u)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(t-stat)</td>
<td>(-21.52)</td>
<td>(-25.82)</td>
<td>(-24.88)</td>
<td>(-24.04)</td>
<td>(-2.28)</td>
<td>(-2.00)</td>
</tr>
<tr>
<td>Constant</td>
<td>-1.724***</td>
<td>-2.703***</td>
<td>-2.576***</td>
<td>-2.150***</td>
<td>1.939***</td>
<td>0</td>
</tr>
<tr>
<td>(t-stat)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(17.08)</td>
<td>(.)</td>
</tr>
<tr>
<td>Insulin Used Two Years Prior</td>
<td>1.939***</td>
<td>0</td>
<td>0.194</td>
<td>0.970</td>
<td>1.497***</td>
<td>5.230***</td>
</tr>
<tr>
<td>(t-stat)</td>
<td>(17.08)</td>
<td>(.)</td>
<td>(.)</td>
<td>(.)</td>
<td>(6.45)</td>
<td>(26.56)</td>
</tr>
<tr>
<td>Insulin Used in 1998</td>
<td>-0.171*</td>
<td>-0.202*</td>
<td>-0.201*</td>
<td>-0.194*</td>
<td>-0.171*</td>
<td>-0.202*</td>
</tr>
<tr>
<td>(t-stat)</td>
<td>(-2.28)</td>
<td>(-2.00)</td>
<td>(-2.03)</td>
<td>(-2.17)</td>
<td>(-2.28)</td>
<td>(-2.00)</td>
</tr>
<tr>
<td>2006</td>
<td>0.318***</td>
<td>0.764***</td>
<td>0.713***</td>
<td>0.527***</td>
<td>0.318***</td>
<td>0.764***</td>
</tr>
<tr>
<td>(t-stat)</td>
<td>(4.27)</td>
<td>(9.06)</td>
<td>(8.55)</td>
<td>(6.68)</td>
<td>(4.27)</td>
<td>(9.06)</td>
</tr>
<tr>
<td>2006*Aged 63-67</td>
<td>0.362*</td>
<td>0.375</td>
<td>0.378*</td>
<td>0.384*</td>
<td>0.362*</td>
<td>0.375</td>
</tr>
<tr>
<td>(t-stat)</td>
<td>(2.36)</td>
<td>(1.95)</td>
<td>(2.00)</td>
<td>(2.18)</td>
<td>(2.36)</td>
<td>(1.95)</td>
</tr>
</tbody>
</table>
Why Shouldn’t $\alpha = 0$?

- A priori: should be *some* state dependence in insulin usage

- Otherwise need to attribute lots of explanatory power to unobserved heterogeneity ($\delta = \alpha = 0$!)

- Statistical: OLS is biased upwards for α, FE biased downwards (Nickell, 1981)

- The interval for consistent estimators produced by these estimates does not contain 0
Summary

- In 1998, Medicare eligibility decreases the proportion of diabetics using insulin

- In 2006, this effect is offset by the availability of subsidies for insulin and diabetic medication

- These effects are difficult to explain via changes in retirement status, availability of long-acting insulin, or cohort effects
What Should Universal Health Care Pay For?

- If individuals don’t bear the costs of treatment, but do bear the costs of prevention, less reason for them to pay for the latter:

- Double moral hazard effect where penalised for actions that avoid costly outcomes

- Preventive care is currently under-utilised by the less educated, poorer, and more vulnerable

- Future work: optimal mix of subsidies for prevention (self-insurance) and coverage to minimise financial risk and/or adverse health outcomes