Domestic revenue mobilization is moving to the forefront of the development agenda and progress depends upon the design of efficient tax systems. To design such systems, policy makers must take into account the tax evasion opportunities and limits to enforcement faced by developing countries. Costa Rica offers a quasi experimental setting to study optimal tax rate and tax base under evasion for the corporate income tax. Using a novel methodology which combines bunching estimation with a discontinuity method we recover important behavioral parameters for optimal tax policy. First, the profit elasticity is very large which implies that the revenue maximizing corporate tax rate for SMEs is lower than in advanced economies. Second, the revenue elasticity is smaller than the cost elasticity which rationalizes the use of wide tax bases and revenue thresholds for tax enforcement across developing countries. Third, we show evidence that tax evasion drives the results and that real and avoidance response are limited. Finally, a simple model of tax evasion where firms can evade on both revenue and cost but where third party information bounds revenue evasion rationalizes the observed patterns.
1 Introduction

Domestic revenue mobilization is moving to the forefront of the development financing agenda. Taxation provides governments with the revenue needed to alleviate poverty and invest in public goods while strengthening state capacity and the social contract between government and citizens. It also alleviates aid dependance: in the last decade tax revenue increases have dwarfed foreign aid flows. Nonetheless, there remains an important margin for improvement as many countries still have tax to GDP ratios below 20%.

Designing tax systems which consider the constraints and lower capacity of developing countries tax administrations\(^1\) is a crucial area of progress. For the corporate income tax, the object of our study, choosing the tax rate and the width of the tax base are two essential elements of its design. When tax evasion and avoidance are primary concerns, tax elasticities can be large, which limits the revenue maximizing rate, and a tax base allowing many deductions might not be desirable since it provides numerous evasion opportunities.

In this paper we make three contributions. First, we show that even for a middle income country with solid institutions, the profit elasticity for SME is very large and the top of the Laffer curve is below 25%. Second, we separate the response between changes in declared revenue and declared costs and show that the revenue elasticity is substantially smaller than the cost elasticity. This novel result rationalizes the use of wide tax bases and policies determined by revenue, instead of profit, commonly observed across developing countries. Third, we provide evidence that tax evasion drives the results and that real responses appear to be limited.

Estimating the parameters needed for the design of tax policy in developing countries has been challenging. However, developments in public finance methods combined with the availability of large administrative datasets is increasing researchers capacity to address these questions. As part of this small but growing literature, we use Costa Rica’s corporate tax schedule as a quasi-

\(^1\)Those constraints include informality, difficulty to monitor transactions and low tax morale. A pessimistic view sees increases in tax to GDP as driven by the development process and the structure of the economy. Though partially true, experiences have shown that efficient designs and tax capacity development can lead to large increases in revenue collection for a given income level.
experiment to study the taxation of small and medium enterprises. The setting is attractive for numerous reasons. First, Costa Rica’s singular tax system allows us to estimate a profit elasticity and to separate it into a revenue and a cost elasticity. Many corporate tax systems tax profit at a flat rate. Instead, Costa Rica’s taxes profit with increasing average tax rates, where the rate is determined by revenue thresholds. Therefore firms with large revenue are taxed at a higher rate than firms with low revenue. This induces firms in the vicinity of the thresholds to reduce their revenue below the threshold in order to decrease the average tax rate they face on their profit. This revenue bunching generates modest but statistically significant revenue elasticities. However the most important finding is that of a large structural break in firm’s costs on either side of the revenue thresholds. Taking into account the previously estimated revenue elasticity we can estimate the cost elasticity from this discontinuity. Cost elasticities are two to four times larger than revenue elasticities and together manipulation in revenue and costs lead to large profit elasticities: above three for the first threshold and above two for the second threshold. Second, we have access to rich administrative datasets. In addition to the corporate tax returns used for the elasticity estimation, we take advantage of the central bank’s firm registry, social security data on wages and employees, sales taxes and audits to test different mechanisms for behavioral responses. We find evidence for tax evasion being the key driver of responses. On the one hand, variation in audits by sector and data on tax “corrections” supports the existence of large evasion responses. On the other hand, all statistical tests for real and avoidance responses are rejected: the social security data shows no discontinuity in the number of employees at the threshold, the subsample of monthly sales does not display evidence of revenue shifting across fiscal years and the corporate registry of economic groups held by the central bank only shows modest evidence of firms dividing themselves. Taken together these are innovative steps in a literature that often remained agnostic on the mechanisms driving behavioral responses. Third, the setting offers some advantages for external validity. By only relying on the (static) design of the tax system and not on tax reforms, we can abstract from the larger reform agenda often making results from tax reforms harder to interpret. In addition, Costa Rica is a middle-income country considered to have stable and well functioning institutions for its level of development. Therefore our results of large evasion opportunities and difficulties in enforcement might represent a lower bound and highlight the challenges faced by developing countries tax administrations..
Our work is relevant to several strands of the economic literature. First, we contribute to the literature on non-linear budget sets to recover structural parameters. The now standard method of estimating elasticities using kinks was developed by Saez (2010) and extended to notches by Kleven and Waseem (2013). Using the Pakistani profit notches of the personal income tax, Kleven and Waseem show large behavioral responses and use the dominated region of the tax schedule to estimate friction costs. They then show that by combining friction costs with bunching, researchers can identify the “structural” or long run tax elasticity. Almunia and Lopez-Rodriguez (2014) directly tests firms’ response to a size based policy. They show bunching at the revenue threshold of the Spanish large taxpayer unit which provides evidence that firms react to higher enforcement. Second, we build on a small but growing literature that analyzes firms response to the tax system and estimates corporate tax elasticities. Devereux et al. (2014) (2013) find a large elasticity for small firms in UK, while Best et al. (2013) show significant responses of small Pakistani firms to the alternative minimum tax scheme. Third, we link our findings to the tax evasion literature (Pomeranz 2013, Best 2014) and in particular to Carrillo et al. (2014) who study reporting responses of Ecuadorian firms to the tax authority’s revelation of its third-party revenue information. Responsive firms match revenue to the third-party levels but compensate by adjusting cost one for one, leaving declared profits unchanged. The authors point out the limitation of third party reporting, which arises due to the asymmetry between revenue and cost third party information.

2 Tax system and revenue elasticity framework

2.1 Costa Rica’s corporate tax

Figure 1 presents the Costa Rican corporate tax schedule. A corporation pays an average tax rate of 10%, 20% or 30% on its profit as a function of its revenue. As a firm increases its revenue past the first threshold its average tax rate jumps from 10 to 20% and as it passes the second threshold from 20 to 30% . By generating discontinuous increases in tax liability past each threshold the tax system generates strong incentives for firms to declare revenue below the thresholds. In addition, conditional on being within a given revenue interval, the different average tax rates can generate different cost reporting behavior.

2 The threshold are at 50 and 100 Millions Colones. This approximately corresponds to 150,000 and 300,000 USD in Purchasing Power Parity
Figure 2 shows the theoretical distribution of firms by revenue. Below the first threshold, the observed distribution matches the counterfactual distribution, corresponding to a flat 10% tax rate. At the threshold, some firms with counterfactual revenue above the threshold bunch, which generates an excess density. However firms only bunch if their cost are sufficiently low since their incentives to bunch are proportional to the tax base. For example, a firm with zero profit does not have any tax liability and hence no incentives to change its revenue. More generally, incentives to bunch increase as firms’ costs decrease, holding revenue constant. Contrarily to other studies using notches, the strictly dominated revenue interval past the threshold is firm specific and not deterministic. Therefore, even in a frictionless world, some firms with counterfactual revenue past the threshold will not bunch due to large costs. Taking optimization frictions into account, reduces further the number of firms bunching. To summarize, we expect to observe three types of behavior around the threshold:

- **Bunchers** locate at the threshold. These are firms whose counterfactual revenue is either close to the threshold or whose costs are very low such that their tax base is high.

- **Rational Non-Bunchers** locate past the threshold. These are firms whose cost are large enough such that given their revenue they have no incentives to bunch.

- **Frictional Non-Bunchers** locate past the threshold. These are firms facing optimization frictions and who would bunch absent frictions.

2.2 Revenue and cost relation

In section 3.2, we use bunching at the revenue thresholds to estimate revenue elasticities. Contrarily to the standard bunching methodology, incentives to bunch depend on both revenue and cost. Therefore we need to make an assumption about the revenue and cost relation. Let’s consider two different scenarios: locally constant marginal cost and fixed cost. A constant marginal cost implies a proportional relation between revenue and cost. This imposes the restriction that the revenue elasticity equals the profit elasticity. With this assumption we can use the Kleven and Waseem (2013) notch formula to obtain the revenue and profit elasticity\(^3\). However, we show in

\(^3\) Appendix A shows that the the model with a constant marginal cost generates exactly the same formula as in Kleven and Waseem. Intuitively, an increase in revenue generates a proportional increase in profit. Elasticities capture percentage changes and therefore are the same for two variables linked by a multiplicative term.
section 3 that the data strongly rejects an equal revenue and profit elasticity. In addition, it relies on the response being driven by changes in production (real responses), but we show in Section 4 that the empirical test for real response is insignificant and that revenue responses are driven by tax evasion. In turn, fixed cost seem like a more reasonable assumption for an evasion driven response: production decisions have been realized by the time of the reporting decision and in the neighborhood of the threshold the firm has incentives to evade on the revenue margin. Ultimately none of these assumptions is critical to the results but a discussion is needed to present the revenue elasticity estimation.

2.3 Revenue elasticity framework

We assume that each firm is owned by a single individual who provides costly effort. This formulations embeds small firms into the standard consumption-earnings model used for individuals (Saez, 2010). By treating the firm as a self-employed individual we ignore issues of corporate structure and management which have been shown to be important for large firms (Chetty and Saez, 2010). However this assumption seems realistic in this setting where firms only have a couple of employees and where profits directly correspond to the owners consumption. The main difference with the standard model is that the tax base (profit) and the determinant of the tax rate (revenue) are different. For the reduced form estimation, we assume that cost are already realized or fixed.

The Main Assumption is that cost is fixed at some level \bar{c}. Business costs are fully deductible but there are effort costs (for example of evasion) such that:

Profits are: $\pi(y) = y - \bar{c}$, where y is the firm's declared revenue.

The utility of firm owner of type n is given by:

$$U_i(y) = y - \bar{c} - T(y) - \frac{n}{1 + \frac{1}{n}} (\frac{y}{n})^{1 + \frac{1}{n}} \tag{1}$$

Under a flat profit tax, tax liability is $T(y) = t \times (y - \bar{c})$

The First order conditions with respect to revenue is: $y = n[(1 - t)]^{\epsilon}$

$$\log y = \log n + \epsilon \log (1 - t)$$

4 In the case of a fixed cost model, we obtain an elasticity equation that has a small adjustment term for costs but that otherwise is the Kleven and Waseem formula. Since the marginal buncher is very profitable the adjustment term is small. Therefore the cost assumption is not critical to the revenue estimation. See 2.3
Therefore the resulting revenue elasticity is $\epsilon_{y,1-t}$.

We assume an underlying distribution of types n, with CDF $F(n)$ & PDF $f(n)$ and introduce a proportional tax notch at revenue y^* such that for all $y > y^*$ the average tax rate jumps from t to $t + \Delta t$. Then there exists $\Delta y^* \& \Delta y^D$ with $\Delta y^* \geq \Delta y^D$ such that:

- All firms with $(y^*, y^* + \Delta y^D]$ are strictly dominated and would increase utility by locating at the threshold under any elasticity.

- All firms with $(y^*, y^* + \Delta y^D]$ bunch at threshold and the marginal buncher is indifferent between y^* and y^{Interior}.

The marginal buncher, with ability $n^* + \Delta n^*$, is indifferent between locating at the threshold versus in the interior: $U^{\text{Threshold}} = U^{\text{Interior}}$

\[
U^{\text{Threshold}} = (1 - t)(y^* - \bar{c}) - \frac{(n^* + \Delta n^*)^{1 + \frac{1}{\epsilon}}}{1 + \frac{1}{\epsilon}} (y^*)^{1 + \frac{1}{\epsilon}} \tag{2}
\]

\[
U^{\text{Interior}} = (n^* + \Delta n^*)[(1 - t - \Delta t)]^{1+\epsilon}(\frac{1}{1 + \epsilon}) - (1 - t - \Delta t)\bar{c} \tag{3}
\]

Equating equations (2) and (3) and using the mapping between the ability distribution and the revenue distribution $n^* + \Delta n^* = \frac{y^* + \Delta y^*}{(1 - t)}$, we obtain the following formula:

\[
\left(\frac{1}{1 + \frac{\Delta y^*}{y^*}}\right) + \frac{(1 - t - \Delta t)\bar{c}}{(y^* + \Delta y^*) (1 - t)} = \frac{1}{1 + \epsilon} \left(1 - \frac{\Delta t}{1 - t}\right)^{1+\epsilon} + \frac{1}{1 + \frac{1}{\epsilon}} \left(\frac{1}{1 + \frac{\Delta y^*}{y^*}}\right)^{1+\frac{1}{\epsilon}} \tag{4}
\]

Equation (4) links the elasticity ϵ to the net of tax rate $1 - t$, the change in average tax rate $\frac{\Delta t}{1 - t}$, the revenue threshold y^* and the reduction in revenue from the marginal buncher compared to the flat tax counterfactual Δy^*. The change in the average tax rate $\frac{\Delta t}{1 - t}$ is known and we can estimate the counterfactual earnings of the last buncher $\frac{\Delta y^*}{y^*}$ using the bunching methodology. Since the marginal buncher has very low costs \bar{c}, equation (4) is almost equivalent to the Kleven and Waseem, 2013 formula. We can numerically solve the above expression to obtain the elasticity of reported revenue with respect to the next of tax rate $1 - t$.

7
3 Behavioral responses and tax elasticities

3.1 Data and methodology

We use the universe of yearly corporate tax returns over the 2008 to 2014 period. Firms are required to submit tax declaration D101(“Declaracion jurada del impuesto sobre la renta”) which contains profit, revenue and cost in addition to industrial classification and location. The corporate income tax raises around 3% of GDP and 20% of total tax revenue. The firms we study are micro and small enterprises with yearly revenue below 130 Million Costa Rican Colones ($400,000 in PPP). These represent 80% of the ninety thousand firms filling taxes, 25% of declared profits and 13% of corporate tax revenue.

Figure 3 presents the key features of the data by revenue bins of half million CRC, pooling together the 2008 to 2014 data. Panel A shows the number of firms by revenue bins. We observe a clear excess mass at each revenue threshold as predicted by the incentives of the tax system. Panel B shows the average profit margin by revenue, where profit margin is defined as \(\frac{\text{revenue} - \text{cost}}{\text{revenue}} \). Profit margin by revenue looks almost like a step function: relatively constant in a given threshold interval and displaying large discontinuities on either side of the thresholds. The novel, reduced form identification strategy combines those two distributions to estimate the profit elasticity and separate it between a revenue and a cost response. In a first step we use the bunching methodology to estimate a revenue elasticity. In a second step we use the discontinuity in profit margin on either side of the thresholds to estimate the profit elasticity. Specifically, we estimate the discontinuity in average cost at the threshold, using the estimated revenue elasticity to correct the revenue of firms past the threshold. The second step provides the cost elasticity, which together with the revenue elasticity generates the profit elasticity.

3.2 Revenue elasticity estimation

To estimate the revenue elasticity we look at the distribution of firms by revenue bins and use the point of convergence method described in Kleven and Waseem (2013).\(^5\) We slice the data in bins of half million CRC for the first threshold and 1 Million CRC for the second threshold. To obtain a counterfactual density we fit a flexible polynomial of degree five excluding the intervals affected

\(^5\)The notch method builds upon the kink method of Saez(2010) and Chetty et al (2011)
by bunching. To the left of the threshold the revenue level at which excess density appears serves as the lower limit, \(z_l \), such that excess bunching is the difference between the observed density and the counterfactual density on the interval \([z_l, z^*]\). The counterfactual sales of the last bunchers \(z_u = z^* + \Delta z^* \) is identified using the identity that the excess bunching mass to the left of the threshold has to equal the missing mass to the right of the threshold. We iteratively increase \(z_u \) until the excess mass equals the missing mass in the interval \([z^*, z_u]\). We bootstrap the standard errors by resampling from the distribution 1,000 times and repeating the estimation procedures. Once \(z_u \) is estimated, we numerically solve equation (4) and obtain the corresponding elasticity. In this case, the method is robust to changes in the polynomial’s degree and the size of the interval over which we fit the polynomial.

Figure 4 presents the bunching estimation separately for each threshold. The key parameters are displayed at the top right of each figure. At the first threshold (Panel A), the excess mass is 2.2 times the counterfactual meaning that there is 3.2 times the density that should be expected. In the absence of the notch, the marginal buncher would have an income of 60.3 millions CRC, 10.5 million higher than the threshold, which generates a tax revenue elasticity of 0.25. At the second threshold (Panel B), the excess mass is 0.6 times the counterfactual, while the marginal buncher has revenue of 111 M CRC generating an elasticity estimate of 0.07.

Despite being graphically compelling, the large behavioral responses to the revenue notches only produce modest revenue elasticities. Three points are worth mentioning. First, these are revenue elasticities: on a small profit base a small change in revenue can still generate a large profit elasticity. Second, notches generate very large implicit changes in marginal tax rate and therefore large behavioral responses are consistent with modest elasticities. Third, we have not explored cost heterogeneity which is important for the Costa Rican tax system. As previously discussed the incentives to bunch are proportional to the base. In particular a firm with zero or negative profit\(^7\) has no incentive to bunch since paying a lower rate on zero does not generate any savings. We therefore break down the analysis by reported profit groups. Figure ?? shows in Panel A the distribution of zero declared profit firms and positive profit firms. Zero profit firms have no

\(^6\)This is decided by the researchers but has no impact on the estimates

\(^7\)Loss carry forwards are not allowed in Costa Rica, except for the agricultural and manufacturing sector, for a three year period. In Appendix XX we look at the behavior of firms declaring losses in those sectors and potential "reverse bunching": firms locating just past the threshold in a loss year to increase their tax refund. We do not find evidence of this behavior.
incentive to bunch, and we observe a continuous distribution for those firms. Panel B plots the density of firms with positive profit, separating by profit amount. We observe a clear increase in bunching for firms with larger tax bases, indicating that the profit-bunching relation applies more generally. As expected by theory we observe selection into bunching as a function of cost, implying that on average firms at the threshold are very profitable firms while firms just past the threshold are not profitable. Currently we assume that cost are fixed, in Section 5 we model the firm as having realized its production decision but allow for it to jointly determined its declared revenue and cost, consistent with an evasion response driven model.

3.3 Cost discontinuity

To estimate a cost and a profit elasticity we return to Figure 3, Panel B which plots average profit margin by revenue bin. Profit margin is the pre-tax difference between revenue and cost, divided by revenue. Before the first threshold the average profit margin is constant by revenue at around 16%, increases up to 23% at the threshold and then drops to 7-8% below the threshold, where it stays fairly constant until it jumps again at the second threshold above 8% and falls below 5% past the second threshold. As previously discussed the increase in profit margin at the threshold is a result of the selection of firms into bunching as a function of their cost. However the two most striking features of this figure are the large discontinuity in profit margins on either side of the thresholds and the stability of the profit margin on each threshold interval. To study how declared cost are responding to the increase in the average tax rate we first need to correct for the revenue response. To illustrate revenue correction, let’s consider firms at the 60M revenue bin: their average cost corresponds to a higher revenue bin, since all firms past the threshold have decreased their reported revenue by more than firms below the threshold. Using the estimated revenue elasticity, we correct for the revenue response by calculating the counterfactual revenue, absent the notch, for firms observed at revenue of 60M:

\[
\text{revenue}_{\text{counterfactual}} = 60 + \epsilon_y \cdot \frac{dy}{1-t} = 60 + 0.25 \cdot y \cdot \frac{0.1}{0.9} \approx 61.7
\]

Figure 5, Panel A plots average cost by revenue bins at the first threshold. For firms past the threshold we apply the revenue correction term, which shifts the cost line downwards. We then fit separate lines to the right and to the left of the threshold, excluding the interval affected
by bunching responses between \(z_l \) and \(z_u \). The line extrapolation to the threshold on either side provides a counterfactual average cost. In Panel B, we examine the discontinuity in the predicted average cost at the threshold. We observe a large jump in average cost of 2.37 Million on a cost base of 42 Million. Given the net of tax rate increase of 11\%, the cost elasticity is -0.51, four times larger than the revenue elasticity. It is important to note that had we estimated larger revenue elasticities, the revenue correction would have shifted the cost line further downwards, potentially explaining the full cost and profit margin discontinuity. However the revenue correction only explains 30\% of the cost discontinuity at the first threshold. At the second threshold cost jump by 1 Million on a 92 Million base. The net of tax rate increase of 12.5\% generates a cost elasticity of -0.1 about twice the revenue elasticity (Appendix B). The use of the linear extrapolation is justified by the stability and linearity of the revenue and cost relationship in all threshold intervals. In appendix B we show that the coefficient of a quadratic specifications is not significantly different than zero in the regions past the first threshold, before the second threshold and past the second threshold. The region before the first threshold displays marginally significant increasing returns (Figure 2 , Appendix B). The linear extrapolation would then underestimate the jump in cost, and therefore reenforce the results that the cost elasticity is larger than the revenue elasticity.

3.4 Profit elasticity

By combining the revenue and cost elasticities we can estimate the profit elasticity. This is the central parameter to set optimal tax rates and a sufficient statistic for revenue analysis in a flat corporate tax system. The profit elasticity is

\[
\epsilon_{\pi, 1-t} = \frac{\% \text{change profit}}{\% \text{change (net of tax rate)}} = \frac{\Delta \pi}{\Delta (1-t)},
\]

where \(\Delta \pi = \Delta y - \Delta c \). We already estimated the threshold change in cost \(\Delta c \) and compute the change in revenue \(\Delta y \) using the revenue elasticity, since \(\Delta y = y \ast \epsilon_{y, 1-t} \ast \frac{1-t}{1-t} \).

Table 1 summarizes all elasticity estimates. At the first threshold we estimate a profit elasticity of 3.8 and at the second of 2.1. These very large elasticities imply that small firms should face low tax rates. The rate maximizing tax revenue\(^8\) is around 20\% for micro firms and 30\% for small firms. Any rate above is on the wrong side of the Laffer curve and Pareto dominated. Another novel result is the ratio of cost to revenue elasticity, \(\frac{\epsilon_c}{\epsilon_y} \), around 4 at the first threshold and 2 at the second threshold. This implies that declared cost reacts stronger to changes in the tax rate

\(^{8}\text{Under a flat corporate tax, the government revenue maximizing rate is }\tau^* = \frac{1}{1+\epsilon_{\pi}}\)
than declared revenue.

These large elasticities are a function of the current policy environment and in particular of evasion and avoidance opportunities, which we investigate in detail in section 4. Given the current institutions, a large tax rate on small firm would generate a fall in government revenue as the base diminishes faster than the rate increases. In addition, the high ratio of cost to revenue elasticity, confirms anecdotical evidence from tax authorities that revenue is less elastic than cost and might justify the use of size based policies that determine liability or enforcement based on revenue, the least elastic base.

3.5 Robustness and heterogeneity

We discuss three important dimensions of robustness and heterogeneity: elasticity estimates, distributional results and industry variation.

The two step method generates a robust profit elasticity. The reason is the strong negative correlation between the revenue elasticity estimate and the cost elasticity which arise due to the revenue correction term: a larger revenue elasticity, implies a larger revenue correction term and a smaller cost elasticity. Intuitively, the large drops in average profit margins on either side of the threshold is the key identifying variation and the two step estimation only decomposes this variation into revenue and cost responses. Therefore an underestimate of the revenue elasticity would lead to an over estimate of the cost elasticity and hardly change the profit elasticity. Using the same logic, the cost to revenue ratio estimate is less robust. It is also possible that the static bunching technique underestimates the true revenue elasticity since notches might not be as salient as tax reforms. Therefore the relative magnitudes of the revenue and cost elasticities should be taken with more caution than the profit elasticity estimate.

Figure 7 shows profit margin quartiles for each revenue bin. The median profit margin drops from 5% to 2% below the threshold and we observe similar drops at the 25th percentile and 75th percentile. Distributional observations reenforce the previous results: drops in profit margin arise from an entire downward shift of the distribution of profit margin and not only by a change in profit of a few high profitability firms.

Finally, some of the results could be driven by industry variation. Figure ?? plots the within industry density (left axis) and average profit margin (right axis) by revenue bins for the nine largest
industries at the first threshold. First, all industries display some bunching, however sectors often thought of as having high evasion potential such as construction, real estate and consultancies exhibit particularly large bunching when compared to retailers or manufacturers. Second and most importantly, average profit margin drops discontinuously for all industries. The proportional downward fall is homogeneous and not more pronounced for those industries with high evasion potential. This points to limitations in the manipulation of revenue that might not apply to cost. Those limitations might be linked to the availability of third party information and the detection capacity of each type of evasion. In section 5 we present a simple model that breaks the symmetry of revenue and cost reporting, using the asymmetry of the value of third party information between revenue and cost for evasion detection.

4 Mechanisms: understanding behavioral responses

Behavioral responses generated by real, avoidance and evasion responses have similar consequences for government revenue but entail different policy responses. The type of response also implies differences in the efficiency cost of taxation. Nonetheless, the literature has had very limited success in separating the different mechanisms. We discussed how the reduced form cost discontinuity of section 3 indicates avoidance or evasion responses. However revenue response could still be generated by changes in real economic activity. In this section we empirically test for potential mechanisms, using additional data sources. We find support for evasion responses but none for real responses and surprisingly little for avoidance responses.

4.1 Real and avoidance responses

Real responses are reductions in economic activity while avoidance responses are legal means of reducing tax liability. We provide three empirical tests, using additional data sources. First we test for division of firms into smaller entities within the same economic group. Second we investigate revenue shifting across time using monthly sales data. Third we test for discontinuity in labor inputs.
4.1.1 Firm division

Given the design of the corporate tax system, it seems an attractive option for a firm to create a small subsidiary on which to “offload” its profits. The small subsidiary has high profits on which it pays a 10% tax rate, while the larger firm has low profits on which it pays a 30% tax rate. To test for the importance of firm division we use the registry of economic groups compiled by the central bank of Costa Rica. This dataset has been carefully constructed for statistical purposes only, by linking corporate groups and their subsidiaries, using the corporate registry of owners, the census and direct visits to firm’s offices. It links firms together by generating an economic group variable indicating same ownership. In addition, we calculate the “tax savings” that arise from belonging to an economic group. Tax savings is the difference between the counterfactual tax liability of the economic group as a whole (which almost always belongs to the top bracket) and the sum of tax payments from the firms within the group. Figure 9, top panel shows the percentages of firms belonging to an economic group by revenue bins. We separately fit a quadratic relation on each side of the threshold, excluding revenue bins in the bunching and dominated intervals. At both thresholds, bunching firms show a small increase in the probability of belonging to an economic group, from 6% to 7% at the first threshold and 9% to 10% at the second threshold. This 15% increase in the probability of being a subsidiary is in each case at the margin of significance at the 5% level. In the bottom panel we investigate average tax savings by revenue, conditional on being a subsidiary. Tax savings increase by almost 50% compared to the baseline and this increase is statistically significant at both thresholds. However the tax savings is very small on average and only reaches a hundred and fifty thousand Colones at the threshold. The 50% increase in tax savings is the same as the increase in profitability at the threshold: subsidiaries at the threshold are more profitable than subsidiary firms before the threshold but by the same proportion as all firms: furthermore subsidiaries are actually less profitable than the average firm at each revenue bin.

As a second test we look at the frequency of repeated bunchers: within the 2008-2013 period how many times did a given firm locate close and below the threshold. If a subsidiary has been set for tax optimization by a larger firm it should often appear in the threshold vicinity.

To summarize, we only find modest evidence of firms dividing themselves and gaming the tax
system which can’t explain the excess bunching nor the large difference in profitability on each side of the thresholds. This surprising result might be a combination of three factors. First there are monetary and non-monetary costs of setting up a corporation and keeping it active9. Second, the relative ease of evading taxes might make this avoidance strategy suboptimal. Third, despite the Central Bank’s efforts, the data certainly does not capture all economic groups and the Central Bank’s dataset is a (large) subset of the universe of tax filling corporations10.

4.1.2 Timing response

Another attractive option is to reduce revenue in the last months of the fiscal year or shift some revenue to the beginning of the next fiscal year in order to fall under the threshold. For example firms could close their operations in September, the last month of the fiscal year or date September contracts and sales in October. We use the subsample of firms reporting monthly sales taxes11 to study bunchers monthly revenue reporting. Table 2 shows that bunchers do not exhibit a different revenue behavior in September or October than slightly smaller and larger firms. We therefore have no evidence of base shifting from one fiscal year to the next. A small caveat is the non applicability of sales tax to all transactions. The subsample of sales tax liable firms belong to sectors with relatively less bunching (retail, restaurants and hotels, car dealers)12.

4.1.3 Labor input

To test for response in labor inputs we look for discontinuities in the number of employees and wage bill using data provided by the Central Bank and not available on the tax returns. The Central Bank data combines social security to corporate tax returns from 2010-2013 for a large subset of firms. There are reasons to believe that labor inputs are better reported. First, employees have incentives for correct reporting of their wages as this provides them benefits and social security is generous in Costa Rica. Second evasion on labor income and the personal income tax is estimated to be much lower than evasion on other margins13. Third, the sum of personal income taxes and payroll taxes is always larger than the CIT. Therefore a firm evading on its wage bill has incentives

9In addition to a large quantity of paperwork, Costa Rica has a registration fee and a yearly stamp duty payment.
10The Central Bank’s subset contains around 75% of firms filling a tax declaration. See Data appendix for details.
11Costa Rica does not have a VAT but a sales tax with some aspects of a VAT.
12See Data Appendix.
13IMF 2012 study.
to under-report labor, event though it increase its corporate tax bill.

Figure 8 shows the average number of employees and wage bill by revenue bins. We separately fit a linear relation on each side of the threshold, excluding revenue bins in the bunching and dominated intervals. Bunchers’ employment is not different than that of smaller firms around either thresholds nor is the wage bill at the first threshold. The only possible indication of real responses and/or labor evasion is the significantly lower wage bill at the second threshold. Overall the absence of a dip in employment suggest that firms are not distorting their production to stay below the threshold nor evading on labor inputs. This is important since it minimizes the role of real responses in our bunching results.

4.2 Evasion responses

Tax evasion is an illegal reduction in tax liability. Firms can evade by declaring lower revenue or higher cost than realized. We first discuss Costa Rica’s enforcement environment and auditing practices and then present two tests of tax evasion. First, The share of firms receiving tax correction notifications, generated by cross checks of third-party information, is larger at the threshold. Second, audit variation at the sector level suggests that bunchers strongly react to an increase in their audit probability by reporting higher revenue but also by substituting evasion away from revenue and toward costs.

4.2.1 Institutional details of tax enforcement in Costa Rica

Costa Rica audits around 500 taxpayers each year and 300 of those are firms. Therefore audits only cover 0.35% of all firms. Taxpayers are selected following a risk based analysis, that incorporates information from third parties, deviation from industry averages and the history of tax declarations. Figure 11 shows the number of audits performed and the percentage of firms audited for revenue bins of 40M Colones, over the 2009-2010 period. The small firms we study have revenue to the very left of the graph and are rarely audited: just above 100 audits over two years and a 0.2 percentage of audited firms. The percentage of audited firms strongly increases with firm revenue to reach over 3% for large firms.

\[14\text{ We are not currently controlling for average profitability (Work in Progress), which could minimize the significant lower tax bill estimated at the 2nd threshold.}\]
The scarcity of audits is particularly surprising in the light of their large average returns: the audit department directly recovers 10 times its budget. Although we can not measure the marginal return of audits, the homogeneous large percentage of profits evaded evaluated through audits indicates large marginal returns. Therefore why so few audits? Anecdotically, year to year constraints on the budget force the few auditors to maximize recovered tax revenue and focus their efforts on larger firms. This might maximize the direct amount recovered from audits in a one-shot game but ignores the indirect effects on reporting behavior and risk perception of the many smaller firms. Another possibility is the relative lack of trust of the population in its institutions and in the ministry of finance. As a result, the power granted to auditors for unpopular and partially discretionary decisions is limited. Finally it should be noted that despite their scarcity, audits can generate large cost and be very disruptive for the taxpayer. The tax administration has also recently seen its power to sanction fraud increase a lot, with added sanctions such as store closures, increased fines and asset seizing.

4.2.2 Tax corrections

The low capacity to conduct full audits is somewhat mitigated by a more extensive automatic warning system: auditors send notification letters to firms raising “red flags” in the internal data process. During discussions with the audit department, we have heard of two specific tools to raise those flags. First flags are raised anytime there is a discrepancy between self-declared revenue and revenue based on third-parties reports. Second, a presumptive profit is calculated based on third party information and linked to economic activity. The system assumes (not without false positives) that purchases translate into later sales at the going industry markup. An important part of third-party information is collected via tax declaration D151, which requires all firms to declare purchases or sales of a value within the tax year superior to 2,000,000 Colones ($4,000) and any commission, professional fee or rental agreement superior to 50,000 Colones ($100). Sales tax retentions, credit card payments, insurance policies and travel information also enter the database. The letters sent by tax auditors ask for a correction or justification of the tax declaration in order to match the amount assessed by the tax administration. Importantly this process does not consider firms around the threshold differently. For legal reasons this information can not be linked to the individual tax records, however we can plot the number of correction letters sent by revenue bins for
the year 2012. Figure 10 shows the proportion of firms receiving a letter by revenue bins of 2,000,000 Colones ($4000). The green line shows the linear fit excluding the zones around the threshold. First around a third of small Costa Rican firms receive correction letters highlighting the high evasion environment. Second, bunchers display large and significant increase in the probability of receiving correction letters: respectively 8.3% and 11.5% more likely at the first and second threshold. Third, firms just past the threshold (potentially dominated firms) are less likely to get flagged and the joint test of significance is positive at both thresholds. The buncher’s high ratio could represent a mix of a larger absolute amount of evasion but also increased evasion on revenue compared to costs, which might be more salient to the tax authority.

4.2.3 Sectors of special audit attention

A second test for tax evasion uses the variation in audit probability generated at the industry level by the program of “Sectors of special audit attention”. Since 2012 the tax agency determines during the first semester of the calendar year a list of industries assigned to special audit attention, posted on the ministry of finance website. In practical terms, this implies that those sectors get a dedicated group of auditors. Sectors are not randomly selected but determined by their underlying evasion risk and sectors’ growth compared to their tax revenue growth. The twelve sectors selected in 2012 are real estate, private education, hoteling and tourist agencies, transport of merchandise, sale of vehicles, sports team, production of pineapple, yuca, flowers and plants, casinos & betting, performances and recycling. The difference in difference analysis of firms within the audit sectors versus other sectors shows significant growth in reported profits following the assignment of the sector to “special audit attention”. However it is difficult to establish causality due to the selection mechanism mentioned above. Instead we use a triple difference in difference strategy: comparing the change in revenue and profit reporting of bunchers in the sectors of special audit attention versus bunchers in other sectors and non-bunchers in the same sectors. The starting hypothesis is that bunchers are evading more revenue compared to smaller firms and dominated firms. Therefore, when faced with a higher audit probability bunching firms should adjust revenue by more than non-bunchers, since they were initially declaring a lower share of their true revenue.

We estimate the following equation:

\[Y_{ijt} = \beta \ast Bunch_{i,t=2011} \ast Audit_j \ast Post_t + \gamma \ast Bunch_i \ast Post_t + \delta \ast Audit_j \ast Post_t + Post_t + \alpha_i \]
Where depending on the specification Y_{ijt} is revenue, cost or profit of firm i in sector j at time t. $Bunch$ is a firm level variable equal to 1 if the firm declared revenue in the 2,000,000 Colones interval below the threshold in 2011 and zero otherwise. $Audit$ is a sector level variable that takes the value 1 if the firm belongs to the sectors of special audit attention and zero otherwise. $Post$ is 1 in 2012 and 2013 and 0 in 2011. Table 3 presents the triple difference analysis, using firms too small to bunch (2011 declared revenue 4 to 8 M Colones below the threshold) as a control group in columns (1)-(3) and dominated firms (2011 declared revenue 0 to 3 M Colones above the threshold) as a control group in columns (4)-(6). Columns (1) and (4) presents the main result: bunchers in special audit sectors increase revenue by 10% or more of their initial size compared to non-bunchers. However they also simultaneously increase their reported costs by a large amount in columns (2) and (5), leading to a statistical significant decrease in declared profits of above 1 M Colones column (3) and (6). Placebo treatment effects for previous years are not significant on any of the three margin.

Those results support the idea that bunching firms are evading revenue since bunchers belonging to audit sectors increase their declared revenue substantially more than control groups following an increase in audit probability. Interestingly, reported cost also increase by a large margin, suggesting an important substitution in the evasion technology from revenue under reporting to cost over reporting. A firm with true revenue just above the threshold is motivated to switch to sales evasion in order to decrease both its tax base and its tax rate, while for a firm with true revenue further past the threshold it is equivalent to under-report revenue or over-report costs which only decreases the tax base. This large substitution effect suggests that cost evasion is less costly in terms of detection probability than revenue evasion. In turn this supports the tax auditors experience that detecting added costs is difficult, since firms owner can shift private consumption onto the firm’s costs. This result links our research to the recent papers by Carrillo et al. (2014) showing that sales evasion is fully substituted by cost evasion following letter threats in Ecuador.
5 A model of tax evasion with two margins of response

5.1 Key moments

The reduced form tax elasticity estimates of section 3 did not take into account the simultaneity of the revenue and cost declaration while the evidence on the mechanisms motivates a model of tax evasion. To provide both a rational for the observed patterns and a simultaneous estimation of the elasticities we need a model of tax evasion that can match the four key moments of the data, presented together in figure 12:

1. **Profitability away from the thresholds.** Away from the thresholds, profit margins are much larger to the left of each threshold than to the right of each threshold. To the left of the first threshold, before the pick, the average profit margin is 14-15% and to the right of the threshold only 6-7%. To the left of the second threshold, the average profit margin is 6% and to the right of the threshold 4%. This relation is the key observation of the paper and importantly can not be explained by the very slightly decreasing profit-size relation.

2. **Profitability around the thresholds.** The profitability of firms just before the threshold is very large and falls dramatically just past the threshold: the average profit margin peaks at 23% and falls dramatically at around 7% just past the first threshold. Similarly at the second threshold the average profit margin peaks at above 7% to then fall at 4%.

3. **Excess density.** Before each threshold there is a large excess firm density: we observe two to three times the number of firms expected under a smooth density.

4. **Dominated regions.** The “bunchers” come from an interval of 10 to 15M after the threshold, and as expected we observe a triangular shaped missing mass past the threshold. However even in the interval just past the threshold where very few firms should be located, there are 70-80% of the expected firms. This points to adjustment costs on revenue.

5.2 Model set up

The firm has true revenue and cost y_i and c_i, which are exogenously given. It chooses reported revenue and cost \hat{y}_i and \hat{c}_i such that revenue evasion is $E_y = y_i - \hat{y}_i$ and cost evasion $E_c = \hat{c}_i - c_i$.
To evade income the firm incurs a cost \(g(E_y, E_c) \). This cost can be thought of as a reduced form equivalent of the audit probability model of Allingham and Sandmo (1972). The cost embeds the probability of being audited and the sanctions that might arise in addition to the effort cost of evasion.

The firm objective is:

\[
\max_{\{\hat{y}_i, \hat{c}_i\}} (1 - t)(y_i - c_i) + t[E_{y_i} + E_{c_i}] - \frac{p}{1 + \frac{1}{\epsilon}}[E_{y_i} + E_{c_i}]^{1 + \frac{2}{\epsilon}}
\]

Subject to the following constraints:

- \(\hat{y}_i \geq y_{3P_i} \), reported revenue must be above third party reported revenue.
- \(\hat{y}_i - \hat{c}_i \geq 0 \), reported profit can not be negative.
- \(y_i \geq \hat{y}_i \), reported revenue are below real revenue.
- \(\hat{c}_i \geq c_i \), reported cost are above real cost.

Where the cost of evasion is \(g(E_y, E_c) = \frac{p}{1 + \frac{1}{\epsilon}}[E_{y_i} + E_{c_i}]^{1 + \frac{2}{\epsilon}} \). \(\epsilon \) is the elasticity of evasion with respect to the net of tax rate and \(p \) an evasion shifter. In the model, evasion on revenue and on cost is equivalent in terms of the cost incurred and therefore the two margins are perfect substitutes from the firm’s prospective. This is the most natural formulation, since it remains agnostic about the exact auditing strategy of the tax administration and only considers that the cost of evasion increases with the total amount evaded. However, the constraint that declared revenue has to be as large as third party revenue breaks the symmetry between revenue and cost evasion. The amount of third party revenue binds the firm to a given level of revenue reporting: once that limit is reached any extra evasion has to occur on cost. This constraint exploits the fundamental asymmetry between third-party information on revenue and third-party information on cost, discussed in Carrillo et al. (2014). On the one hand, an auditor who observes third party revenue above declared revenue automatically knows that the firm is evading revenue, third party revenue is a lower bound on true revenue. On the other hand, third party cost is only a lower bound on cost. If auditors observe third party cost below declared cost they do not know if it is cost over-reporting or incompleteness of third party information.

5.3 GMM estimation (In Progress)

We assume that the difference between true revenue and third party revenue is uniformly distributed between zero and \(\alpha \): \(y_i - y_{3p} \sim U[0, \alpha] \). The model’s two key parameters are therefore \(\alpha \) which
determines how binding is third party revenue and ϵ the elasticity of evasion. Note that the respective revenue and cost elasticities are a function of α and ϵ: the smaller α the more often is third party revenue binding and the more evasion is substituted to cost.

We estimate the model with a Generalized Method of Moments estimator that minimizes the distance between the empirical moments and the model’s moments.

6 Policy and simulations (In progress)

7 Conclusion

Using the design of the Corporate tax system in Costa Rica as a quasi experiment and a novel methodology that combines bunching and discontinuities, we estimate the tax elasticity of profit for small firms and decompose it into a revenue and cost elasticity. First, the profit elasticity estimates are very large ($\epsilon_{\pi,1-t} \simeq 3$). Second the cost elasticity is much larger than the revenue elasticity ($\epsilon_c > \epsilon_y$). Third, we show that the behavioral response is driven by evasion and that real responses and avoidance responses such as firm division and time shifting of profits are minimal. Fourth we show how a simple model of tax evasion can rationalize the observed patterns. The key insight is the asymmetric value of information generated by third party revenue and cost estimates: observing third party revenue above reported revenue is a direct sign of evasion while observing cost below declared cost might just be caused by incomplete information.

These results are novel in the public finance and development literature, as it is to our knowledge the first estimate of a corporate tax elasticity for a developing country and the first study to separately identify the revenue and cost responses. In addition, previous studies have typically remained agnostic about the sources of behavioral responses whereas we are able to test several mechanisms. We find evidence for tax evasion but none for real responses or avoidance strategies.

The results have implications for optimal taxation under imperfect enforcement. First, in such an environment high corporate tax rates for small firms are counterproductive since the profit base is very responsive to the tax rate. Second, the relative inelasticity of revenue compared to cost justifies the use of size-based policies: tax and enforcement thresholds determined by revenue and presumptive taxation which uses revenue as the tax base. Third, the efficiency cost of those policies is small since evasion responses dominate even in a corporate tax system as distortive
as the Costa Rican one. However this is endogenous to the relative ease of evasion: increasing enforcement and detection capacity might generate a substitution response away from evasion and towards avoidance or real responses. Finally, the incompleteness of information on transaction in the economy is particularly penalizing for the corporate income tax which traditionally allows for many deductions and therefore multiple margins of evasion. Alternative designs might be advisable for developing and middle income countries.
References

Figure 1: Costa Rica’s Corporate tax schedule

![Figure 1: Costa Rica’s Corporate tax schedule](image)

Figure 2: Bunching illustration

![Figure 2: Bunching illustration](image)
Figure 3 presents the key patterns of the corporate tax returns, pulling together the years 2008 to 2014. Panel A shows the number of firms by revenue bins of 575,000 CRC. Panel B displays the average profit margin for each revenue bin. Profit margin is defined as revenue minus cost divided by revenue.
Figure 4: Revenue bunching estimation

Panel A: First threshold

Panel B: Second threshold
Figure 5 plots the average declared cost for each revenue bin around the first threshold. The large discontinuity at the threshold allows us to identify the cost elasticity. We first correct for the revenue responses past the threshold: firms declaring revenue above the threshold have on average changed their declared revenue by more than firms below the threshold. We therefore horizontally shift the cost plot by a factor proportional to the elasticity of revenue. For example given the elasticity of revenue of 0.25 and a firm with revenue of 60M:

$$\text{revenue}_{\text{counterfactual}} = 60 + \epsilon_y \cdot r \cdot \frac{dt}{\bar{r}} = 60 + 0.25 \times 60 \times \frac{1}{1.1} \approx 61.6.$$

We obtain separate linear fits of cost on revenue, one below and one above the threshold. In each case we exclude revenue bins affected by bunching behavior. We then extrapolate the linear fits to the threshold. The resulting cost discontinuity at the threshold, is the average increase in declared cost for a firm at the threshold resulting from an increase in the tax rate from 10 to 20%. This 2.37 Mil increase in cost can then be used to estimate the cost elasticity.
Figure 6

Industry: within sector density (Blue) and avg profit margin (Green)
Figure 7

Quartiles of profit margin

Median Profit margin

Revenue (Mil CRC)

25th percentile of Profit margin

75th percentile of Profit margin

Profit margin (25th pct)

Profit margin (75th pct)
Figure 8

Employment, 1st Threshold

Average employment

Revenue difference (Mil CRC)

-0.01 (.05)

0 (.04)

Employment, 2nd Threshold

Average employment

Revenue difference (Mil CRC)

-0.02 (.08)

2 (.06)

Wage bill, 1st Threshold

Average wage bill (Mil CRC)

Revenue difference (Mil CRC)

0.1 (.55)

-0.07 (.34)

Wage bill, 2nd Threshold

Average wage bill (Mil CRC)

Revenue difference (Mil CRC)

-1.2 (.45)

-0.39 (.5)
Figure 9

Subsidiaries, 1st Threshold

% subsidiary firms
−20 −10 0 10 20
Revenue difference (Mil CRC)

.81 (.46)

.99 (.45)

Tax savings, 1st Threshold

Tax savings (Mil CRC)
−20 −10 0 10 20
Revenue difference (Mil CRC)

.04 (.02)

0 (.01)

Subsidiaries, 2nd Threshold

% subsidiary firms
−20 −10 0 10 20
Revenue difference (Mil CRC)

1.20 (.68)

.25 (.93)

Tax savings, 2nd Threshold

Tax savings (Mil CRC)
−20 −10 0 10 20
Revenue difference (Mil CRC)

.05 (.02)

.01 (.02)
Figure 12

- **Moment 1**: Profit margin Jump
- **Moment 2**: Excess profit at threshold
- **Moment 3**: Excess mass at threshold
- **Moment 4**: Optimization frictions
Table 1: Elasticity estimates

<table>
<thead>
<tr>
<th>z</th>
<th>Δt</th>
<th>1-t</th>
<th>Δz</th>
<th>Elasticity</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>Revenue</td>
<td>Cost</td>
</tr>
<tr>
<td>49.6</td>
<td>0.1</td>
<td>0.9</td>
<td>10.5</td>
<td>0.25</td>
</tr>
<tr>
<td></td>
<td>(1.5)</td>
<td></td>
<td>(0.06)</td>
<td>(0.08)</td>
</tr>
<tr>
<td>99.7</td>
<td>0.1</td>
<td>0.8</td>
<td>20</td>
<td>0.07</td>
</tr>
<tr>
<td></td>
<td>(2.6)</td>
<td></td>
<td>(0.04)</td>
<td>(0.05)</td>
</tr>
</tbody>
</table>

Table 2: Monthly revenue for subsample reporting sales tax

<table>
<thead>
<tr>
<th></th>
<th>Monthly Sales</th>
<th>Monthly Sales</th>
</tr>
</thead>
<tbody>
<tr>
<td>Buncher*Sept</td>
<td>111,851</td>
<td>(120,066)</td>
</tr>
<tr>
<td>Buncher*Oct</td>
<td>-24,765</td>
<td>(121,734)</td>
</tr>
<tr>
<td>Sept</td>
<td>-45,013</td>
<td>(40,075)</td>
</tr>
<tr>
<td>Oct</td>
<td>-123,104</td>
<td>(45,176)**</td>
</tr>
<tr>
<td>Observations</td>
<td>596,705</td>
<td>596,705</td>
</tr>
<tr>
<td>Firm FE</td>
<td>YES</td>
<td>YES</td>
</tr>
</tbody>
</table>
Table 3: Effect of audit threat at the industry level

<table>
<thead>
<tr>
<th></th>
<th>Control 1: Too small to bunch</th>
<th>Control 2: Dominated firms</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(1) Revenue</td>
<td>Costs</td>
</tr>
<tr>
<td>BunchAuditPost</td>
<td>4,869,525</td>
<td>6,434,446</td>
</tr>
<tr>
<td></td>
<td>(2,386,323)**</td>
<td>(2,240,915)**</td>
</tr>
<tr>
<td>Bunch*Post</td>
<td>-216,725</td>
<td>-482,479</td>
</tr>
<tr>
<td></td>
<td>(2,134,280)**</td>
<td>(1,997,322)**</td>
</tr>
<tr>
<td>Audit*Post</td>
<td>5,548,303</td>
<td>5,878,526</td>
</tr>
<tr>
<td></td>
<td>(3,100,493)**</td>
<td>(3,005,681)**</td>
</tr>
<tr>
<td>Firm FE</td>
<td>yes</td>
<td>yes</td>
</tr>
<tr>
<td>Observations</td>
<td>7203</td>
<td>7203</td>
</tr>
</tbody>
</table>