When is the Government Spending Multiplier Large?

Lawrence Christiano, Martin Eichenbaum, and Sergio Rebelo

Northwestern University

May 2009 (preliminary version)

Abstract

When the zero bound on nominal interest rates is binding.
1. Introduction

A classic question in macroeconomics is: what is the size of the government spending multiplier? There are very large empirical and theoretical literatures that grapple with this question. While substantial progress has been made, there is substantial disagreement about the size of the government spending multiplier. In the empirical literature authors such as Barro (1981) argue that the multiplier is around 0.8 while authors such as Ramey (2008) estimate the multiplier to be closer to 1.2. These differences primarily reflect different identifying assumptions required to isolate exogenous movements in government spending. Cogan, Cwik, Taylor, and Wieland (2009) report that in a widely used DSGE model the government spending multiplier is roughly one on impact and declines rapidly thereafter. An increase in government spending also increases output in frictionless real business cycle models. In these models the multiplier effect of temporary increases in government spending is typically less than one (see e.g. Baxter and King (1993), Burnside, Eichenbaum and Fisher (2004), Ramey and Shapiro (1998), and Ramey (2008)).

This paper argues that under certain circumstances the government spending multiplier can be much higher than would be anticipated from the existing literature. Building on insights in Eggertson and Woodford (2003) and Christiano (2004), we argue that, whenever the zero bound on nominal interest rates is binding, the government spending multiplier is much bigger than one. Indeed, in our examples the multiplier can, on impact, be as large as eight! Not surprisingly, in these examples it can be socially optimal to raise government spending in response to the shocks that make the zero bound on the nominal interest rate binding. In fact, it can be optimal to increase government spending even when agents do not value government consumption. We articulate this argument in a model in which
the government spending multiplier is quite modest when the zero bound is not binding.

Our analysis proceeds in two steps. First, we consider an economy with Calvo-style pricing frictions, no capital, and a monetary authority that follows a standard Taylor rule. We study the effects of a temporary, unanticipated rise in the discount factor of the representative agent. Other things equal, this shock increases desired savings. Absent capital, aggregate savings must be zero in equilibrium. When the shock is small enough, the real interest rate falls and there is a modest decline in output. However, when the shock is large enough, the zero bound becomes binding before the real interest rate falls by enough to make aggregate savings zero. The only force that can re-establish equilibrium is a large transitory fall in output.

The fall in output must be very large because hitting the zero bound creates a vicious cycle. A fall in output lowers marginal cost and generates expected deflation which leads to a rise in the real interest rate. This increase in the real interest rate leads to a rise in desired savings which partially undoes the effect of the fall in output. As a consequence, the total fall in output required to reduce savings to zero is very large. This scenario captures the paradox of thrift originally emphasized by Keynes (1936) and recently analyzed by Eggertson and Woodford (2003) and Christiano (2004). The government spending multiplier is large when the zero bound is binding because an increase in government spending lowers desired national savings and shortcuts the vicious cycle created by the paradox of thrift.

In the second step of our analysis we incorporate capital accumulation into the model. In addition to the discount factor shock we also allow for a neutral technology shock and an investment-specific shock. For computational reasons we consider temporary shocks that make the zero bound binding for a deterministic
number of periods. Once again, we find that the government spending multiplier is larger when the zero bound is binding. Allowing for capital accumulation has two effects. First, for a given size shock it reduces the likelihood that the zero bound becomes binding. Second, when the zero bound binds, the presence of capital accumulation tends to increase the size of the government spending multiplier.

The intuition for this result is that, in our model, investment is a decreasing function of the real interest rate. In the zero bound the real interest rate generally rises. So, other things equal, savings and investment diverge as the real interest rate rises, thus exacerbating the vicious cycle associated with the zero bound. As a result, the fall in output necessary to bring savings and investment into alignment is larger than in the model without capital.

An important lesson from the model with capital is that the likelihood of the zero bound binding depends very much on how costly it is to adjust the stock of capital. The higher these costs are, the more the economy resembles the no-capital model and the more likely it is that a given shock makes the zero bound bind. We can use an estimated DSGE model to back out the magnitude of the shocks that make the zero bound bind. In ongoing work we are estimating these magnitudes for different types of shocks using the model developed in Altig, Christiano, Eichenbaum, and Lindé (2005).

As emphasized by Eggertson and Woodford (2003), an alternative way to escape the negative consequences of a shock that makes the zero bound binding is for the central bank to commit to future inflation. We abstract from this possibility in this paper. We do so for a number of reasons. First, this theoretical possibility is well understood. Second, we do not think that it is easy in practice for the central bank to credibly commit to future high inflation. Third, the optimal trade-off between higher government purchases and anticipated inflation depends sensitively on how agents value government purchases and the costs of anticipated
inflation. Studying this issue is an important topic for future research.

Our paper is organized as follows. In section 2 we discuss the model without capital. In section 3 we extend the model to incorporate capital. In a future draft section 4 will study the size of the shocks required to make the zero bound binding and the associated fiscal multiplier in the model proposed by Altig, Christiano, Eichenbaum, and Lindé (2005). Section 5 concludes.

2. A model without capital

In this section we use a simple new-Keynesian model to provide intuition for why the government-spending multiplier can be large when the zero bound on the nominal interest rate is binding. We begin by discussing the “standard multiplier,” by which we mean the size of the government spending multiplier when the zero bound is not binding. We then discuss the “zero-bound multiplier,” by which we mean the size of the multiplier when the zero bound is binding.

2.1. The standard multiplier

In this subsection we present a simple new-Keynesian model and analyze its implications for the size of the standard multiplier.

Households The economy is populated by a representative household, whose life-time utility, U, is given by:

$$ U = E_0 \sum_{t=0}^{\infty} \beta^t \left[\frac{[C_t^\gamma (1 - N_t)^{1-\gamma}]^{1-\sigma} - 1}{1 - \sigma} + v(G_t) \right]. \quad (2.1) $$

Here E_0 is the conditional expectation operator, and C_t, G_t, and N_t denote time-t consumption, government consumption, and hours worked, respectively. We assume that $\sigma > 0$, $\gamma \in (0, 1)$, and that $v(.)$ is a concave function.
The household budget constraint is given by:

\[P_t C_t + B_{t+1} = B_t (1 + R_t) + W_t N_t + T_t, \]

(2.2)

where \(T_t \) denotes firms’ profits net of lump-sum taxes paid to the government. The variable \(B_{t+1} \) denotes the quantity of one-period bonds purchased by the household at time \(t \). Also, \(P_t \) denotes the price level and \(W_t \) denotes the nominal wage rate. Finally, \(R_t \) denotes the one-period nominal rate of interest that pays off in period \(t \). The household’s problem is to maximize utility given by equation (2.1) subject to the budget constraint given by equation (2.2) and the condition \(E_0 \lim_{t \to \infty} B_{t+1}/[(1 + R_0)(1 + R_1)\ldots(1 + R_t)] \geq 0. \)

Firms The final good is produced by competitive firms using the technology,

\[Y_t = \left(\int_0^1 Y_t (i) \frac{\xi - 1}{\xi} di \right)^\frac{\xi}{\xi - 1}, \quad \varepsilon > 1, \]

(2.3)

where \(Y_t (i) \), \(i \in [0, 1] \) denotes intermediate good \(i \).

Profit maximization implies the following first-order condition for \(Y_t (i) \):

\[P_t (i) = P_t \left(\frac{Y_t}{Y_t (i)} \right)^\frac{\varepsilon}{\xi}, \]

(2.4)

where \(P_t (i) \) denotes the price of intermediate good \(i \) and \(P_t \) is the price of the homogeneous final good.

The intermediate good, \(Y_t (i) \), is produced by a monopolist using the following technology:

\[Y_t (i) = N_t (i), \]

where \(N_t (i) \) denotes employment by the \(i^{th} \) monopolist. We assume there is no entry or exit into the production of the \(i^{th} \) intermediate good. The monopolist
is subject to Calvo-style price-setting frictions and can optimize its price, \(P_t (i) \), with probability \(1 - \theta \). With probability \(\theta \) the firm sets:

\[
P_t (i) = P_{t-1} (i).
\]

The discounted profits of the \(i^{th} \) intermediate good firm are:

\[
E_t \sum_{j=0}^{\infty} \beta^{t+j} v_{t+j} \left[P_{t+j} (i) Y_{t+j} (i) - (1 - \nu) W_{t+j} N_{t+j} (i) \right],
\]

where \(\nu = 1/\varepsilon \) denotes an employment subsidy which corrects in the steady state the inefficiency created by the presence of monopoly power. The variable \(v_{t+j} \) is the multiplier on the household budget constraint in the Lagrangian representation of the household problem. The variable \(W_{t+j} \) denotes the nominal wage.

Firm \(i \) maximizes its discounted profits, given by equation \(2.5 \), subject to the Calvo price-setting friction, the production function, and the demand function for \(Y_t (i) \), given by equation \(2.4 \).

Monetary policy We assume that monetary policy follows the rule:

\[
R_{t+1} = \max(Z_{t+1}, 0),
\]

where

\[
Z_{t+1} = \frac{1}{\beta} (1 + \pi_t)^{\phi_1} (Y_t / Y)^{\phi_2} (R_t / R)^{\rho_R} - 1.
\]

The variable \(Y \) denotes the steady-state level of output. The variable \(\pi_t \) denotes the time-\(t \) rate of inflation. We assume that the \(\phi_1 > 1 \) and \(\phi_2 \in (0, 1) \).

According to equation \(2.6 \) the monetary authority follows a Taylor rule as long as the implied nominal interest rate is non-negative. Whenever the Taylor rule implies a negative nominal interest rate, the monetary authority simply sets the nominal interest rate to zero. For convenience we assume that steady-state inflation is zero. This assumption implies that the steady-state nominal interest rate is \(1/\beta - 1 \).
\textbf{Fiscal policy} As long as the zero bound on the nominal interest rate is not binding, government spending evolves according to:

\[G_{t+1} = (1 - \rho)G + \rho G_t + \varepsilon_{t+1}. \]

Here \(G \) is the level of government spending in the non-stochastic steady state and \(\varepsilon_{t+1} \) is an i.i.d. shock with zero mean. When the zero bound on the nominal interest rate is binding, government spending is constant at a level \(G^l \):

\[G_t = G^l. \]

To simplify our analysis, we assume that government spending and the employment subsidy are financed with lump-sum taxes. The exact timing of these taxes is irrelevant because under our assumptions Ricardian equivalence holds.

\textbf{Equilibrium} The economy’s resource constraint is:

\[C_t + G_t = Y_t. \] \hspace{1cm} (2.7)

A ‘monetary equilibrium’ is a collection of stochastic processes,

\[\{C_t, N_t, W_t, P_t, Y_t, R_t, P_t(i), Y_t(i), N_t(i), u_t, B_{t+1}, \pi_t\}, \]

such that for given \(\{\beta_{t+1}, G_t\} \), the household and firm problems are satisfied, the monetary and fiscal policy rules are satisfied, markets clear, and the aggregate resource constraint is satisfied. The stochastic process \(\{\beta_{t+1}\} \) is given by equation (2.23).

To solve for the equilibrium we use a linear approximation around the non-stochastic steady state of the economy. Throughout, \(\hat{Z}_t \) denotes the percentage deviation of \(Z_t \) from its stochastic non-steady state value, \(Z \). In appendix A we show that the equilibrium is characterized by the following set of equations.
The Phillips curve for this economy is given by:

$$\pi_t = E_t \left(\beta \pi_{t+1} + \kappa \tilde{MC}_t \right),$$

where $$\kappa = (1 - \theta)(1 - \beta \theta)/\theta$$. In addition, $$MC_t$$ denotes nominal marginal cost which, under our assumptions, is equal to the nominal wage rate. Absent labor market frictions, the percent deviation of real marginal cost from its steady state value is given by:

$$\tilde{MC}_t = \tilde{C}_t + \frac{N}{1 - N} \tilde{N}_t. \quad (2.9)$$

The linearized intertemporal Euler equation for consumption is:

$$\frac{\gamma (\sigma - 1)}{1 - g} \tilde{N}_t - [\gamma (\sigma - 1) + 1] \hat{C}_t = E_t \left\{ \frac{\gamma (\sigma - 1)}{1 - g} \tilde{N}_{t+1} - [\gamma (\sigma - 1) + 1] \hat{C}_{t+1} + \beta (R_{t+1} - R) - \pi_{t+1} \right\}. \quad (2.10)$$

The linearized aggregate resource constraint is:

$$\dot{Y}_t = (1 - g) \hat{C}_t + g \hat{G}_t, \quad (2.11)$$

where $$g = G/Y$$.

Combining equations (2.8) and (2.9) and using the fact that $$\tilde{N}_t = \dot{Y}_t$$ we obtain:

$$\pi_t = \beta E_t (\pi_{t+1}) + \kappa \left[\left(\frac{1}{1 - g} + \frac{N}{1 - N} \right) \dot{Y}_t - g \hat{G}_t \right]. \quad (2.12)$$

Similarly, equations (2.10) and (2.11) imply:

$$\dot{Y}_t - g [\gamma (\sigma - 1) + 1] \hat{G}_t = E_t \left\{ - (1 - g) [\beta (R_{t+1} - r_{t+1}) - \pi_{t+1}] + \dot{Y}_{t+1} - g [\gamma (\sigma - 1) + 1] \hat{G}_{t+1} \right\}. \quad (2.13)$$

As long as the zero bound on the nominal interest rate does not bind, the linearized monetary policy rule is given by:

$$R_{t+1} - R = \rho_R (R_t - R) + \frac{1 - \rho_R}{\beta} \left(\phi_1 \pi_t + \phi_2 \dot{Y}_t \right).$$
Whenever the zero bound binds, $R_{t+1} = 0$.

We solve for the equilibrium using the method of undetermined coefficients. For simplicity, we begin by considering the case in which $\rho_R = 0$. Under the assumption that $\phi_1 > 1$, there is a unique linear equilibrium in which π_t and \hat{Y}_t are given by:

$$
\pi_t = A_\pi \hat{G}_t, \\
\hat{Y}_t = A_Y \hat{G}_t.
$$

(2.14)
(2.15)

In appendix A we show that A_π and A_Y are given by:

$$
A_\pi = \frac{\kappa}{1 - \beta \rho} \left[\left(\frac{1}{1 - g} + \frac{N}{1 - N} \right) A_Y - \frac{g}{1 - g} \right],
$$

(2.16)

$$
A_Y = g \frac{(\rho - \phi_1) \kappa - [\gamma (\sigma - 1) + 1] (1 - \rho) (1 - \beta \rho)}{(1 - \beta \rho) [\rho - 1 - (1 - g) \phi_2] + (1 - g) (\rho - \phi_1) \kappa \left(\frac{1}{1 - g} + \frac{N}{1 - N} \right)}.
$$

(2.17)

The effect of an increase in government spending Using equation (2.11) we can write the government spending multiplier as:

$$
\frac{dY_t}{dG_t} = \frac{1}{g} \frac{\hat{Y}_t}{G_t} = 1 + \frac{1 - g}{g} \frac{\hat{C}_t}{G_t}.
$$

(2.18)

This equation implies that the multiplier is less than one whenever consumption falls in response to an increase in government spending. Equation (2.15) implies that the government spending multiplier is given by:

$$
\frac{dY_t}{dG_t} = \frac{A_Y}{g}.
$$

(2.19)

From this equation we see that the multiplier is constant over time. To analyze the magnitude of the multiplier outside of the zero bound we consider the following baseline parameter values:

$$
\theta = 0.83, \ \beta = 0.99, \ \phi_1 = 1.5, \ \phi_2 = 0, \ \gamma = 0.29, \ g = 0.2, \ \sigma = 2, \ \rho_R = 0, \ \rho = 0.8.
$$

(2.20)
These parameter values imply that $\kappa = 0.03$ and $N = 1/3$. Our baseline parameter values imply that the government spending multiplier is 1.05. Figure 1 displays the impulse response of output, inflation, and the nominal interest rate to a government spending shock.

In our model Ricardian equivalence holds; from the perspective of the representative household the increase in the present value of taxes equals the increase in the present value of government purchases. In a typical version of the standard neoclassical model we would expect some rise in output driven by the negative wealth effect on leisure of the tax increase. But in that model the multiplier is generally less than one because the wealth effect reduces private consumption. From this perspective it is perhaps surprising that the multiplier in our baseline model is greater than one. This perspective neglects a key aspect of our model, the interaction between sticky prices and the complementarity between consumption and leisure in preferences. When government purchases increase, total demand, $C_t + G_t$, increases. The presence of sticky prices has the consequence that, in the wake of a rise in demand, price over marginal cost falls. As emphasized in the literature on the role of monopoly power in business cycles, the fall in the markup induces an outward shift in the labor demand curve. This shift amplifies the rise in employment following the rise in demand. Given our specification of preferences, $\sigma > 1$ implies that the marginal utility of consumption rises with the increase in employment. As long as this increase in marginal utility is large enough, it is possible for private consumption to actually rise in response to an increase in government purchases. Indeed, consumption does rise in our benchmark scenario which is why the multiplier is larger than one.¹

¹To assess the importance of our preference specification we redid our calculations using the basic specification for the momentary utility function commonly used in the new-keynesian DSGE literature: $u = (C_t^{1-\varsigma} - 1)/(1 - \varsigma) - \theta N_t^{1+\vartheta}/(1 + \vartheta)$ where, ς, θ, and ϑ are positive. The key feature of this specification is that the marginal utility of consumption is independent of hours worked. Consistent with the intuition discussed in the main text, we found that, across
To provide additional intuition for the determinants of the multiplier, Figure 2 displays dY/dG for various parameter configurations. In each case we perturb one parameter at a time relative to the benchmark parameter values. The $(1,1)$ element of Figure 2 shows that a rise in σ is associated with an increase in the multiplier. This result is consistent with the intuition above which builds on the observation that the marginal utility of consumption is increasing in hours worked. This dependence is stronger the higher is σ. Note that multiplier can be bigger than unity even for σ slightly less than unity. This result presumably reflects the positive wealth effects associated with the increased competitiveness of the economy associated with the reduction in the markup.

The $(1,2)$ element of Figure 2 shows that the multiplier is a decreasing function of κ. In other words, the multiplier is larger the higher is the degree of price stickiness. The result reflects the fall in the markup when aggregate demand and marginal cost rise. This effect is stronger the stickier are prices. The multiplier exceeds one for all $\kappa < 0.13$. In the limiting case when prices are perfectly sticky ($\kappa = 0$) the multiplier is given by:

$$\frac{dY_t}{dG_t} = \frac{\gamma (\sigma - 1) + 1}{1 - \rho + (1 - g) \phi_2} > 0.$$

Note that when $\phi_2 = 0$ the multiplier is greater than one as long as σ is greater than one.

When prices are perfectly flexible ($\kappa = \infty$) the markup is constant. In this case the multiplier is given by:

$$\frac{dY_t}{dG_t} = \frac{1}{1 + (1 - g) \frac{\kappa}{1 - \kappa}} < 1.$$

Note that the multiplier is less than one. This result reflects the fact that with flexible prices an increase in government spending has no impact on the markup.

a wide set of parameter values, dY/dG is always less than one with this preference specification. See Monacelli and Perotti (2008) for a discussion of the impact of preferences on the size of the government spending multiplier.
As a result, the demand for labor does not rise as much as in the case in which prices are sticky.

The (1, 3) element of Figure 2 shows that as \(\phi_1 \) increases, the multiplier falls. The intuition for this effect is that the expansion in output increases marginal cost which in turn induces a rise in inflation. According to equation (2.6) the monetary authority increases the interest rate in response to a rise in inflation. The rise in the interest rate is an increasing function of \(\phi_1 \). In general higher values of \(\phi_1 \) lead to higher values of the real interest rate which are associated with lower levels of consumption. So, higher values of \(\phi_1 \) lead to lower values of the multiplier.

The (2, 1) element of Figure 2 shows that as \(\phi_2 \) increases, the multiplier falls. The intuition underlying this effect is similar to that associated with \(\phi_1 \). When \(\phi_2 \) is large there is a substantial increase in the real interest rate in response to a rise in output. The contractionary effects of the rise in the real interest rate on consumption reduce the size of the multiplier.

The (2, 2) element of Figure 2 shows that as \(\rho_R \) increases the multiplier rises. The intuition for this result is as follows. The higher is \(\rho_R \) the less rapidly the monetary authority increases the interest rate in response to the rise in marginal cost and inflation that occur in the wake of an increase in government purchases. This result is consistent with the traditional view that the government spending multiplier is greater in the presence of accommodative monetary policy. By accommodative we mean that the monetary authority keeps interest rates low in the presence of a fiscal expansion.

The (2, 2) element of Figure 2 shows that the multiplier is a decreasing function of the parameter governing the persistence of government purchases, \(\rho \). The intuition for this result is that the present value of taxes associated with a given innovation in government purchases is an increasing function of \(\rho \). So the negative wealth effect on consumption is an increasing function of \(\rho \).
We conclude this subsection by noting that we redid Figure 2 using a forward-looking Taylor rule in which the interest rate responds to the one-period-ahead expected inflation and output gap. The results that we obtained were very similar to the ones discussed above.

Viewed overall, our results indicate that, from the perspective of a simple new-Keynesian model, it is quite plausible that the multiplier is above one. However, it is difficult to obtain multipliers above 1.2 for plausible parameter values.

2.2. The zero-bound multiplier

In this section we analyze what happens in our simple new-Keynesian model when the zero bound on nominal interest rates becomes binding. As in Eggertson and Woodford (2003) and Christiano (2004), we assume for now that the shock pushing the economy into this state is a temporary increase in the discount factor. We think of this shock as representing a temporary rise in agent’s propensity to save. We modify agent’s preferences, given by (2.1), to allow for a stochastic discount factor,

\[U = E_0 \sum_{t=0}^{\infty} d_t \left[\frac{[C_t^\gamma(1 - N_t)^{1-\gamma}]^{1-\sigma} - 1}{1 - \sigma} + v(G_t) \right]. \] (2.21)

The cumulative discount factor, \(d_t \), is given by:

\[d_t = \left\{ \begin{array}{ll} \frac{1}{1+r_t} \frac{1}{1+r_{t+1}} \cdots \frac{1}{1+r_n}, & t \geq 1 \\ 1, & t = 0 \end{array} \right. \] (2.22)

The time-\(t \) discount factor, \(r_t \), can take on two values: \(r \) and \(r^l \), where \(r^l < 0 \). The stochastic process for \(r_t \) is given by:

\[\Pr [r_{t+1} = r^l | r_t = r^l] = p, \quad \Pr [r_{t+1} = r | r_t = r^l] = 1 - p, \quad \Pr [r_{t+1} = r^l | r_t = r] = 0. \] (2.23)

The value of \(r_{t+1} \) is realized at time \(t \).
We consider the following experiment. The economy is initially in the steady state, so \(r_t = r \). At time zero \(r_1 \) takes on the value \(r^* \). Thereafter \(r_t \) follows the process described by equation (2.23). The discount factor remains high with probability \(p \) and returns permanently to its normal value, \(r \), with probability \(1 - p \). In what follows we assume that \(r^* \) is sufficiently high that the zero-bound constraint on nominal interest rates is binding. We assume that \(\hat{G}_t = \hat{G}^l \geq 0 \) in the lower bound and \(\hat{G}_t = 0 \) otherwise.

To solve the model we suppose (and then verify) that the equilibrium is characterized by two values for each variable: one value for when the zero bound is binding and one value for when it is not. We denote the values of inflation and output in the zero bound by \(\pi^l \) and \(\hat{Y}^l \), respectively. For simplicity we assume that \(\rho_R = 0 \), so there is no interest rate smoothing in the Taylor rule, (2.6). Since there are no state variables and \(\hat{G}_t = 0 \) outside of the zero bound, as soon as the zero bound is not binding the economy jumps to the steady state.

Under these assumptions equations (2.12) and (2.13) can be re-written as:

\[
\hat{Y}^l = g \left[\gamma (\sigma - 1) + 1 \right] \hat{G}^l + \frac{1 - g}{1 - p} (\beta r^l + p \pi^l).
\]

Equations (2.24) and (2.25) imply that \(\pi^l \) is given by:

\[
\pi^l = \beta p \pi^l + \kappa \left(\frac{1}{1 - g} + \frac{N}{1 - N} \right) \hat{Y}^l - \frac{g}{1 - g} \kappa \hat{G}^l.
\]

The government spending multiplier is given by:

\[
\frac{dY^l}{dG^l} = \left[\gamma (\sigma - 1) + 1 \right] + \kappa \left[1 + \frac{N}{1 - N} (1 - g) \right] \left[\gamma (\sigma - 1) + 1 \right] - 1 \frac{1 - \beta p}{(1 - \beta p) (1 - p)} \frac{1}{(1 - p)/p - \kappa \left[1 + \frac{N}{1 - N} (1 - g) \right]}.
\]
In analyzing the size of the multiplier we assume that the shock pushing the economy in the zero bound state in a rise in the annual discount factor to 1.04 \((r^d = -0.04) \). Recall that \(\hat{G}_t = 0 \) outside of the zero bound. In our discussion of the standard multiplier we assume that the first-order serial correlation of government spending shocks is 0.8. To make the experiment in this section comparable we choose \(p = 0.8 \). This choice implies that the first-order serial correlation of government spending in the zero bound is also 0.8 (see the Appendix). All other parameter values are given by the baseline specification in (2.20). We only consider values of \(\kappa \) for which the zero bound is binding, so we display results for \(0.013 \leq \kappa \leq 0.038 \).

Figure 3 displays the government-spending multiplier and the response of output to the discount rate shock in the absence of a change in government spending as a function of the parameter \(\kappa \). Three key features of this figure are worth noting. First, the multiplier is very large. For our benchmark specification it is 3.7, which is roughly three times larger than the standard multiplier. Second, absent a change in government spending, the decline in output is increasing in the degree of price flexibility, i.e. it is increasing in \(\kappa \). Finally the government spending multiplier is also an increasing function of \(\kappa \).

To provide intuition for these results it is useful to focus on why the drop in output is so large absent a change in government spending. The basic shock to the economy is an increase in agent’s desire to save. In this economy savings must be zero in equilibrium. With completely flexible prices the real interest rate would simply fall to discourage agents from saving. There are two ways in which such a fall can occur: a large fall in the nominal interest rate and/or a substantial rise in the expected inflation rate. The extent to which the nominal interest rate can fall is limited by the zero bound. In our sticky-price economy a rise in the rate of inflation is associated with a rise in output and marginal cost. But a transitory
increase in output is associated with a further increase in the desire to save, so that the real interest rate must rise by even more. Given the size of our shock to the discount factor there is no equilibrium in which the nominal interest rate is zero and inflation is positive. So the real interest rate cannot fall enough to reduce desired savings to zero. Instead, the equilibrium is established by a large, temporary fall in output, deflation, and a rise in the real interest rate.

Figure 4 displays a stylized version of this economy. Savings (S) are an increasing function of the real interest rate. Since there is no investment in this economy savings must be zero in equilibrium. The initial equilibrium is represented by point A. But the increase in the discount factor can be thought of as inducing a rightward shift in the savings curve from S to S'. When this shift is large, the real interest rate cannot fall enough to re-establish equilibrium because the lower bound on the nominal interest rate becomes binding prior to reaching that point. This situation is represented by point B.

To understand the mechanism by which equilibrium is reached after the shift in the savings consider equation (2.26). This equation shows how the rate of inflation, π^t, depends on the discount rate and on government spending. In the region where the zero bound is binding the denominator of this equation is positive. Since r^t is negative, it follows that π^t is negative and so too is expected inflation, $\bar{\pi}^t$. Since the nominal interest rate is zero and expected inflation is negative, the real interest rate (nominal interest rate minus expected inflation rate) is positive. Both the increase in the discount factor and the rise in the real interest rate increase agents’ desire to save. There is only one force remaining to generate zero savings in equilibrium: a large, transitory fall in income. Other things equal this fall in income reduces desired savings as agents attempt to smooth the marginal utility of consumption over states of the world. Because the zero bound is a transitory state of the world this force leads to a decrease in agents desire to save. This effect
has to exactly counterbalance the other two forces which are leading agents to save more. This reasoning suggest that there is a very large decline in income when the zero bound is binding. In terms of Figure 4 we can think of the temporary fall in output as inducing a shift in the savings curve to the left.

From equation (2.26) we see that the rate of deflation is increasing in the degree of price flexibility as summarized by κ. Other things equal, a larger κ is associated with a larger rise in the real interest rate, as long as the zero bound is binding. To compensate for this effect the fall in output must be even larger.

To understand why the multiplier is so large in the zero bound note that a temporary rise in government purchases induces a fall in private consumption. Other things equal, the contemporaneous fall in private consumption is smaller than the rise in government spending because agents want to smooth their consumption over time. So a rise in government purchases is associated with a fall in aggregate savings. This effect offsets the rise in desired private savings that sent the economy into the zero bound to begin with. The government spending multiplier is large precisely because output falls so much when the zero bound is binding. An additional complementary effect arises if σ is greater than one. Equation (2.26) implies that π^l is increasing in \hat{G}^l. Other things equal this effect reduces the rise in the real interest rate that occurs when the zero bound is binding. For the reasons discussed above this effect reduces the fall in output that occurs when the zero bound is binding.

Optimal Government Spending The fact that the government spending multiplier is so large in the zero bound raises the following question: taking as given the monetary policy rule (2.6) what is the optimal level of government spending when agent’s discount rates are high? In what follows we use the superscript L to denote the value of variables in states of the world where the discount rate is ρ^l.

17
In these states of the world the zero bound may or may not be binding depending on the level of government spending. From equation (2.26) we anticipate that the higher is government spending, the higher is expected inflation, and the less likely the zero bound is to bind.

We choose \(G^L\) to maximize the expected utility of the consumer in states of the world in which the discount factor is high and the zero bound is binding. For now we assume that in other states of the world \(\hat{G}\) is zero. So, we choose \(G^L\) to maximize:

\[
U^L = \sum_{t=0}^{\infty} \left(\frac{p}{1 + r^t} \right)^t \left[\frac{\left[(C^L)^\gamma (1 - N^L)^{1 - \gamma} \right]^{1 - \sigma} - 1}{1 - \sigma} + v(G^L) \right],
\]

(2.28)

To ensure that \(U^L\) is finite we assume that \(p < (1 + r^L)\).

Note that:

\[
Y^L = N^L = Y \left(\hat{Y}^L + 1 \right),
\]

\[
C^L = Y \left(\hat{Y}^L + 1 \right) - G \left(\hat{G}^L + 1 \right).
\]

Substituting these expressions into equation (2.28) we obtain:

\[
U^L = \frac{1 + r^r}{1 + r^L - p} \left[\left(\frac{\left[N \left(\hat{Y}^L + 1 \right) - Ng \left(\hat{G}^L + 1 \right) \right]^{\gamma} (1 - N \left(\hat{Y}^L + 1 \right))^{1 - \gamma} - 1}{1 - \sigma} \right) + \frac{1 + r^r}{1 + r^L - p} v \left[Ng \left(\hat{G}^L + 1 \right) \right] \right].
\]

We choose the value of \(\hat{G}^L\) that maximizes \(U^L\) subject to the intertemporal Euler (equation (2.12)), the Phillips curve (equation (2.13)), and \(\hat{Y}_t = \hat{Y}^L, \hat{G}_t = G^L, E_t(\hat{G}_{t+1}) = pG^L, \pi_{t+1} = \pi^L, E_t(\pi_{t+1}) = p\pi^L,\) and \(R_{t+1} = R^L\):

\[
R^L = \max \left(Z^L, 0 \right),
\]

18
where
\[Z^L = \frac{1}{\beta} - 1 + \frac{1}{\beta} \left(\phi_1 \pi^L + \phi_2 \hat{Y}^L \right). \]

The last constraint takes into account that the zero bound on interest rates may not be binding even though the discount rate is high.

Finally, for simplicity we assume that \(v(G) \) is given by:
\[v(G) = \psi_g \frac{G^{1-\sigma}}{1-\sigma}. \]

We choose \(\psi_g \) so that \(g = G/Y \) is equal to 0.2.

Since government purchases are financed with lump sum taxes equation (2.19) implies that, in the steady state, the optimal level of \(G \) has the property that the marginal utility of \(G \) is equal to the marginal utility of consumption:
\[\psi_g G^{-\sigma} = \gamma C^{\gamma(1-\sigma)-1} N^{(1-\gamma)(1-\sigma)}. \]

This relation implies:
\[\psi_g = \gamma \left(\left[N (1 - g) \right] \right)^{\gamma(1-\sigma)-1} N^{(1-\gamma)(1-\sigma)} (Ng)^{\sigma}. \]

Using our benchmark parameter values we obtain a value of \(\psi_g \) equal to 0.015.

Figure 5 displays the values of \(U^L, \hat{Y}^L, Z^L, \hat{G}^L, R^L, \) and \(\pi^L \) as a function of \(\hat{G}^L \). The ‘*’ indicates the level of a variable corresponding to the optimal value of \(\hat{G}^L \). The ‘o’ indicates the level of a variable corresponding to the highest value of \(\hat{G}^L \) that satisfies \(Z^l \leq 0 \) (see the (1,3) graph). Notice that for the benchmark parameter values the optimal value of \(\hat{G}^L \) is the highest value of \(\hat{G}^L \) for which the nominal interest rate is still zero. A number of features of Figure 4 are worth noting. First, the optimal value of \(\hat{G}^L \) is very large: roughly 30 percent (recall that in steady state government purchases are 20 percent of output). Second, for this particular parameterization the increase in government spending more than
undoes the effect of the shock which made the zero bound constraint bind. Here, government purchases rise to the point where the zero bound is marginally non binding and output is actually above its steady state level. These last two results depend on the parameter values that we chose and on our assumed functional form for \(v(G_t) \). What is robust across different assumptions is that it is optimal to substantially increase government purchases and that the government spending multiplier is large when the zero-bound constraint is binding.

To illustrate the last point we re-calculate the optimal response of government purchases under the extreme assumption that \(v(G) = 0 \), i.e. agents derive no utility from government purchases. Figure 6 shows that, even under this extreme assumption, it is optimal to increase government purchases by 6.5 percent relative to their steady state value. In this example the multiplier is large enough that it is worth making wasteful government spending to raise aggregate demand.

3. A model with capital and multiple shocks

In the previous section we use a simple model without capital to argue that the government spending multiplier is large whenever the zero bound on the nominal interest rate is binding. Here we show that this basic result extends to a generalized version of the previous model in which we allow for capital accumulation. In addition, we consider three types of shocks: a discount-factor shock, a neutral technology shock, and a capital-embodied technology shock. These shocks have different effects on the behavior of the model economy. But, in all cases, the government spending multiplier is large whenever the zero bound binding.

The model The preferences of the representative household are given by equations (2.21) and (2.22). The household’s budget constraint is given by:

\[
P_t \left(C_t + I_t e^{-\psi_t} \right) + B_{t+1} = B_t \left(1 + R_t \right) + W_t N_t + P_t r_t^k K_t + T_t, \tag{3.1}
\]
where I_t denotes investment, K_t is the stock of capital, and r^k_t is the real rental rate of capital. The capital accumulation equation is given by:

$$K_{t+1} = I_t + (1 - \delta) K_t - \frac{\sigma_I}{2} \left(\frac{I_t}{K_t} - \delta \right)^2 K_t.$$

(3.2)

The variable ψ_t represents a capital-embodied technology shock. The price of investment goods in units of consumption is equal to $\exp(-\psi_t)$. A positive shock to ψ_t is associated with a decline in the price of investment goods. The parameter $\sigma_I > 0$ governs the magnitude of adjustment costs to capital accumulation. As $\sigma_I \to \infty$, investment and the stock of capital become constant. The resulting model behaves in a manner very similar to the one described in the previous section.

The household’s problem is to maximize life-time utility, given by equations (2.21) and (2.22), subject to the resource constraints given by equations (3.1) and (3.2) and the condition

$$E_0 \lim_{t \to \infty} B_{t+1} / [(1 + R_0)(1 + R_1)...(1 + R_t)] = 0.$$

It is useful to derive an expression for Tobin’s q, i.e. the value in units of consumption of an additional unit of capital. We denote this value by q_t. Equation (3.1) implies that the real cost of increasing investment by one unit is $e^{-\psi_t}$. Equation (3.2) implies that increasing investment by one unit raises K_{t+1} by $1 - \sigma_I \left(\frac{I_t}{K_t} - \delta \right)$ units. It follows that the optimal level of investment satisfies the following equation:

$$e^{-\psi_t} = q_t \left[1 - \sigma_I \left(\frac{I_t}{K_t} - \delta \right) \right].$$

(3.3)

Firms

The problem of the final good producers is the same as in previous section. The discounted profits of the i^{th} intermediate good firm are given by:

$$E_t \sum_{j=0}^{\infty} \beta^{t+j} \nu_{t+j} \left\{ P_{t+j} (i) Y_{t+j} (i) - (1 - \nu) \left[W_{t+j} N_{t+j} (i) + P_{t+j} r^k_{t+j} K_{t+j} (i) \right] \right\}.$$

(3.4)
Output of good i is given by:

$$Y_t(i) = e^{a_t} [K_t(i)]^\alpha [N_t(i)]^{1-\alpha},$$

where $N_t(i)$ and $K_t(i)$ denote the labor and capital employed by the i^{th} monopolist. The variable a_t represents a neutral technology shock that is common to all intermediate goods producers.

The monopolist is subject to the same Calvo-style price-setting frictions described in Section 2. Recall that $\nu = 1/\varepsilon$ denotes a subsidy to the costs of production which corrects the steady-state inefficiency created by the presence of monopoly power. The variable ν_{t+j} is the multiplier on the household budget constraint in the Lagrangian representation of the household problem. Firm i maximizes its discounted profits, given by equation (3.4), subject to the Calvo price-setting friction, the production function, and the demand function for $Y_t(i)$, given by equation (2.4).

The central bank follows the same Taylor rule described in Section 2. We compute the government spending multiplier assuming that government consumption increases by one percent over its steady state value, for as long as the zero bound is binding.

Equilibrium The economy’s resource constraint is:

$$C_t + I_t e^{-\psi_t} + G_t = Y_t.$$ \hspace{1cm} (3.5)

A ‘monetary equilibrium’ is a collection of stochastic processes,

$$\{C_t, I_t, N_t, K_t, W_t, P_t, Y_t, R_t, P_t(i), r_t^k, Y_t(i), N_t(i), \psi_t, v_t, B_{t+1}, \pi_t\},$$

such that for given $\{\beta_{t+1}, G_t, a_t, \psi_t\}$, the household and firm problems are satisfied, the monetary policy rule is satisfied, markets clear, and the aggregate resource constraint holds.
Experiments At time zero the economy is in its non-stochastic steady state. At time one agents learn that one of the three shocks \(r^L, a_t, \) or \(\psi_t \) differs from its steady state value for ten periods and then returns to its steady state value. We consider shocks that are sufficiently large so that the zero bound on the nominal interest rate is binding between two time periods that we denote by \(t_1 \) and \(t_2 \), where \(1 \leq t_1 \leq t_2 \leq 10 \). The values of \(t_1 \) and \(t_2 \) are different for different shocks. The solution algorithm used to solve for the equilibrium is discussed in the appendix.

With the exception of \(\sigma_I \) and \(\delta \) all parameters are the same as in the economy without capital. We set \(\delta \) equal to 0.02. We choose the value of \(\sigma_I \) so that the elasticity of \(I/K \) with respect to \(q \) is equal to the value implied by the estimates in Eberly, Rebelo, and Vincent (2008).\(^2\) The resulting value of \(\sigma_I \) is equal to 17.

When the zero bound is not binding the government spending multiplier is roughly 0.9.\(^3\) This value is lower than the value of the multiplier in the model without capital. This lower value reflects the fact that an increase in government spending tends to increase real interest rates and crowd out private investment. This effect is not present in the model without capital.

A discount factor shock We now consider the effect of an increase in the discount factor from its steady state value of four percent (APR) to \(-4.5\) percent (APR).\(^4\) Figure 7 displays the dynamic response of the economy to this shock. The zero bound is binding in periods one through seven. The higher discount rate leads to substantial declines in investment, hours worked, output, and consumption.

\(^2\)Eberly et al (2008) obtain a point estimate of \(b \) equal to 0.06 in the regression \(I/K = a + b \ln(q) \). This estimate implies a steady state elasticity of \(I_t/K_t \) with respect to Tobin’s \(q \) of \(0.06/\delta \). Our theoretical model implies that this elasticity is equal to \((\sigma_I \delta)^{-1} \). Equating these two elasticities yields a value of \(\sigma_I \) of 17.

\(^3\)The value of this multiplier is closer to those discussed by Cogan, Cwik, Taylor, and Wieland (2009) in their survey of the effects of fiscal policy in DSGE models.

\(^4\)This shock corresponds to a jump in the quarterly discount rate from \(\beta = 0.99 \) to \(\beta = 1.0115 \).
The large fall in output is associated with a fall in marginal cost and substantial deflation. Since the nominal interest rate is zero, the real interest rate rises sharply.

We now discuss the intuition for how investment affects the response of the economy to a discount rate shock. We begin by analyzing why a rise in the real interest rate is associated with a sharp decline in investment. Ignoring covariance terms, the household’s first-order condition for investment can be written as:

\[
E_t \left(\frac{1 + R_{t+1}}{P_{t+1}/P_t} \right) = \frac{1}{q_t} E_t e^{\alpha t} \alpha K_{t+1}^{\alpha - 1} N_{t+1}^{1 - \alpha} s_{t+1} + \frac{1}{q_t} E_t \left\{ q_{t+1} \left[(1 - \delta) - \frac{\sigma_I}{2} \left(\frac{I_{t+1}}{K_{t+1}} - \delta \right) \right]^2 + \sigma_I \left(\frac{I_{t+1}}{K_{t+1}} - \delta \right) \frac{I_{t+1}}{K_{t+1}} \right\}
\]

(3.6)

where \(s_t \) is the inverse of the markup rate. Equation (3.6) implies that in equilibrium the household equates the returns to two different ways of investing one unit of consumption. The first strategy is to invest in a bond that yields the real interest rate defined by the left-hand side of equation (3.6). The second equation involves converting the consumption good into \(1/q_t \) units of installed capital. The returns to this capital has three components. The first component is the marginal product of capital (the first term in square brackets). The second component is the value of the undepreciated capital in consumption units (\(q_{t+1} (1 - \delta) \)). The third component is the value in consumption units of the reduction in adjustment costs associated with an increase in installed capital.

To provide intuition it is useful to consider two extreme cases, infinite adjustment costs (\(\sigma_I = \infty \)) and zero adjustment costs (\(\sigma_I = 0 \)). Suppose first that adjustment costs are infinite. Figure 8 displays a stylized version of this economy. Investment is fixed and savings are an increasing function of the real interest rate. The increase in the discount factor can be thought of as inducing a rightward shift in the savings curve. When this shift is very large, the real interest rate cannot fall enough to re-establish equilibrium. The intuition for this result and the role
played by the zero bound on nominal interest rates is the same as in the model without capital. That model also provides the intuition for why the equilibrium is characterized by a large, temporary fall in output, deflation, and a rise in the real interest rate.

Suppose now that there are no adjustment costs ($\sigma_l = 0$). In this case Tobin’s q is equal to $e^{-\psi}$ and equation (3.6) simplifies to:

$$E_t \frac{1 + R_{t+1}}{P_{t+1}/P_t} = E_t \left[e^{\alpha \tau} K_{t+1}^{\alpha-1} N_{t+1}^{1-\alpha} s_{t+1} + (1 - \delta) \right].$$

According to this equation an increase in the real interest rate must be matched by an increase in the marginal product of capital. In general the latter is accomplished, at least in part, by a fall in K_{t+1} caused by a large drop in investment. In Figure 8 the downward sloping curve labeled ‘elastic investment’ depicts the negative relation between the real interest rate and investment in the absence of any adjustment costs. As drawn the shift in the savings curve moves the equilibrium to point C and does not cause the zero bound to bind. So, the result of an increase in the discount rate is a fall in the real interest rate and a rise in savings and investment.

Now consider a value of σ_l that is between zero and infinity. In this case both investment and q respond to the shift in the discount factor. For our parameter values the higher the adjustment costs the more likely it is that the zero bound is binding. In terms of Figure 8 a higher value of σ_l can be thought of as generating a steeper slope in the investment curve, thus increasing the likelihood that the zero bound binds. Consistent with this intuition we find that the lowest value of σ_l for which our shock to τ renders the zero bound binding is 5.8. Similarly, keeping σ_l at its benchmark value the smallest discount rate shock for which the zero bound binds corresponds to a discount factor of -3.6 percent (APR).

From Figure 7 we see that the government spending multiplier is very large when the zero bound binds (on impact dY/dG is equal to eleven). This multiplier
is actually larger than in the model without capital. When the zero bound binds investment actually declines because the real interest rate rises. This decline in investment exacerbates the fall in output relative to the model without capital. This larger fall in output is undone by an increase in government purchases. Interestingly, we find that, as long as the zero bound binds, the multiplier is relatively insensitive to the value of σ_I or the size of the shock.

A neutral technology shock We now consider the effect of a temporary, two-percent increase in the neutral technology shock, a_t. Figure 9 displays the dynamic response of the economy to this shock. The zero bound is binding in periods one through eight.\(^5\) Strikingly, the positive technology shock leads to a decline in output, investment, consumption, and hours work. The shock also leads to a sharp rise in the real interest rate and to substantial deflation. To understand these effects it is useful to begin by considering the effects of a technology shock when we abstract from the zero bound. A transitory technology shock triggers a relatively small rise in consumption and a relatively large rise in investment. Other things equal, the expansion in output leads to a rise in marginal cost and in the rate of inflation. However, the direct impact of the technology shock on marginal cost dominates and generates strong deflationary pressures. Absent a large coefficient on the rate of inflation in the Taylor rule, the deflationary pressures dominate. A Taylor rule with a large coefficient on inflation relative to output dictates that the central bank lower real rates to reduce the rate of deflation. If the technology shock is large enough, the zero bound becomes binding. At this point the real interest rate may simply be too high to equate desired savings and investment. The intuition for what happens when the zero bound is binding is exactly the same as for the discount factor shock. The key point is that the only way to reduce

\(^5\)In computing the government spending multiplier we set G^L to 0.5 percent in periods one, through eight.
desired savings is to have a temporary large fall in output. As with the discount rate shock once the zero bound binds, the government spending multiplier rises dramatically (see Figure 9).

We find that the lowest value of σ_I for which a neutral technology shock renders the zero bound binding is 10.2. Keeping σ_I at its benchmark value the smallest neutral technology shock for which the zero bound binds is 2.2 percent (APR). Again, as long as the zero bound binds, the multiplier is relatively insensitive to the value of σ_I or the size of the shock.

An investment-specific shock We now consider the effect of a temporary eight percent increase in the price of investment goods (i.e. an eight percent fall in ψ_r). Figure 10 displays the dynamic response of the economy to this shock. Even though the shock that we consider is very large, the zero bound binds only in periods one through three.\(^6\) In addition, the effects of the shock on the economy are small relative to the effects of the other shocks that we discussed. So, while the multiplier is certainly large when the zero bound binds, it is much smaller than in the cases that we have already analyzed.

The shock leads to a decline in output, investment, consumption, and hours worked. It is also associated with deflation and a rise in the real interest rate. To understand how the zero bound can become binding in response to this shock, consider the impact on the economy when the zero bound does not bind. The basic reason why output falls is that the shock makes investment temporarily expensive, reducing the returns to work. As it turns out, consumption also falls because of the negative wealth effect. Other things equal, the fall in output is associated with strong deflationary pressures. Suppose that these deflationary pressures predominate. Then the fall in output and deflation leads the central

\(^6\)In computing the government spending multiplier we set \hat{G}^L to one percent in periods one, two, and three.
bank to lower nominal interest rates. For a sufficiently large shock, the zero bound becomes binding. The intuition for what happens when the zero bound is binding is exactly the same as for the discount factor shock and the neutral technology shock.

We find that zero bound continues to bind even for very low values of σ_I (e.g. $\sigma_I = 1$). Keeping σ_I at its benchmark value the smallest investment-specific shock for which the zero bound binds is seven percent. Again, as long as the zero bound binds, the multiplier is relatively insensitive to the value of σ_I or the size of the shock.

4. Conclusion

In this paper we argue that the government spending multiplier can be very large when the zero bound on nominal interest rates is binding. We obtain this conclusion in a model in which the government spending multiplier is quite modest when the zero bound is not binding. Much of the existing empirical literature is drawn from data in which the zero bound is arguably not binding. So this evidence cannot be used to assess the main prediction of our model. But we can assess the value of the multiplier is an empirically plausible DSGE model. The next draft of this paper will discuss this evidence using the model proposed by Altig, Christiano, Eichenbaum, and Lindé (2005). We will also use this model to assess the size of the different shocks to the economy for which the zero bound on the nominal interest rate becomes binding.

References

Figure 1: Effect of an increase in government spending when zero bound is not binding (model with no capital).
Figure 2: Government spending multiplier when zero bound is not binding (model with no capital).

\(\phi_1 = 1.5, \phi_2 = 0, \rho_R = 0, \rho = 0.8, \kappa = 0.03, \beta = 0.99, \gamma = 0.28571, N = 0.33333, g = 0.2, \sigma = 2, l=k=0 \)
Figure 3: Government spending multiplier when zero bound is binding (model with no capital).

\[\text{phi1} = 1.5, \text{phi2} = 0, \text{rhoR} = 0, \]
\[\rho = 0.8, \text{kap} = 0.03, \text{bet} = 0.99, \]
\[\text{gam} = 0.28571, N = 0.33333, g = 0.2, \]
\[k = 0, l = 0, \text{Ghat} = 0, \text{sig} = 2 \]
Figure 4: Simple diagram for model with no capital.
Figure 5: Optimal level of government spending in zero bound.

\[\text{phi1} = 1.5, \text{phi2} = 0, \text{rhoR} = 0, \text{rho} = 0.8, \text{kap} = 0.03, \text{bet} = 0.99, \]
\[\text{gam} = 0.28571, \text{N} = 0.33333, \text{g} = 0.2, \text{k} = 0, \text{l} = 0, \text{Ghat} = 0, \text{sig} = 2, \text{psig} = 0.015226 \]
Figure 6: Optimal level of government spending in zero bound when government expenditures yield no utility.

\[\phi_1 = 1.5, \phi_2 = 0, \rho_R = 0, \rho = 0.8, k_a = 0.03, \beta = 0.99, \gamma = 0.28571, N = 0.33333, g = 0.2, k = 0, l = 0, \Gamma = 0, \sigma = 2, \psi_1 = 0 \]
Figure 7: Effect of discount rate shock when zero bound is binding (model with capital).
Figure 8: Simple diagram for model with capital.
Figure 9: Effect of neutral technology shock when zero bound is binding (model with capital).
Figure 10: Effect of investment-specific shock when zero bound is binding (model with capital).