Financial panics and portfolio investment of international mutual funds

Yothin Jinjarak Huanhuan Zheng

Nanyang Technological University

Dec. 2009
Outline

1. Introduction
2. Data
3. Model
4. Results
5. Conclusion
Existing Evidence

- **Market level**: aggregate data, international coverage
- **Fund level**: fund specific data, mainly US market

<table>
<thead>
<tr>
<th></th>
<th>Market level</th>
<th>Fund level</th>
</tr>
</thead>
<tbody>
<tr>
<td>Feedback trading</td>
<td>+/-</td>
<td>+</td>
</tr>
<tr>
<td>Flows predict returns</td>
<td>+</td>
<td>+/-</td>
</tr>
<tr>
<td>Contemporaneous flow-return relationship</td>
<td>+</td>
<td>+</td>
</tr>
</tbody>
</table>

Literature

- Broner et al. (JIE 05)
- Carhart (JF 97)
- Froot et al. (JFE 01)
- Zheng (JF 99)
- Warther (JFE 95)
- Coval et al. (JFE 07)
Motivations

- In the international markets, how do flows interact with returns at fund level?
- Does the flow-return relationship behave differently at market and fund levels?
- Does the credit crunch affect the flow-return relationship?
Our findings

- Positive feedback trading (or momentum trading, with flows chasing returns)
 - more intensive at market level and before credit crunch
- Flows predict future returns
 - negatively before crisis and positively during crisis
- Positive contemporaneous flow-return relationship
 - greater at fund level than at market level
- Market and fund characteristics affect both flows and returns
Data Description

- **Source** - EPFR Global
- **Period** - Jan 1st 2003 to Mar 25th 2009 (weekly)
- **Geographic coverage**
 - Asia (Emerging Asia)
 - EMEA (Emerging Europe regional, Middle East and Africa regional)
 - Latin (Latin America)
 - GEM (Global Emerging Market)
Summary Statistics

Figure: Time series of regional aggregate flows (Jan 2003 to Mar 2009).
Summary Statistics

Figure: Time series of regional aggregate returns (Jan 2003 to Mar 2009).
Model

Hasbrouck (1991) and Froot et al. (2008)

\[
\begin{align*}
\left(\frac{FLOW_{i,t}}{RETURN_{i,t}} \right) &= C + \sum_{k=1}^{p} A_k \left(\frac{FLOW_{i,t-k}}{RETURN_{i,t-k}} \right) + B \left(\log TNA_{i,t} \right) + \varepsilon \\
\left(\frac{FLOW_{i,t}}{RETURN_{i,t}} \right) &= C + \sum_{k=1}^{p} A_k \left(\frac{FLOW_{i,t-k}}{RETURN_{i,t-k}} \right) + B \left(\log TNA_{i,t} \right) \\
&\quad + \alpha \begin{pmatrix} 0 \\ FLOW_{i,t} \end{pmatrix} + \epsilon
\end{align*}
\]

- \(p \) - the number of lags
- \(\log TNA_t \) - the log of total net assets under management
- \(VIX_t \) - the return of VIX from week \(t - 1 \) to \(t \)
- \(\alpha \) measures the contemporaneous flow-return relationship
Baseline results

FLOW as dependent variable

<table>
<thead>
<tr>
<th></th>
<th>Asia</th>
<th>EMEA</th>
<th>Latin</th>
<th>GEM</th>
<th>all</th>
</tr>
</thead>
<tbody>
<tr>
<td>Panel A: Fund Level Data (full sample)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>F—Flow</td>
<td>.000</td>
<td>.000</td>
<td>.000</td>
<td>.000</td>
<td>.000</td>
</tr>
<tr>
<td>F—Return</td>
<td>.000</td>
<td>.000</td>
<td>.000</td>
<td>.000</td>
<td>.000</td>
</tr>
<tr>
<td>Panel B: Regional Aggregate Data (full sample)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>F—Flow</td>
<td>.000</td>
<td>.004</td>
<td>.000</td>
<td>.007</td>
<td>.000</td>
</tr>
<tr>
<td>F—Return</td>
<td>.000</td>
<td>.000</td>
<td>.000</td>
<td>.000</td>
<td>.000</td>
</tr>
</tbody>
</table>

Table: p-value of the joint significance test
Baseline results
FLOW as dependent variable

Table: Average coefficient

<table>
<thead>
<tr>
<th></th>
<th>Asia</th>
<th>EMEA</th>
<th>Latin</th>
<th>GEM</th>
<th>all</th>
</tr>
</thead>
<tbody>
<tr>
<td>Panel A: Fund Level Data (full sample)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$Return_{-12to-1}$</td>
<td>0.002</td>
<td>0.001</td>
<td>0.003</td>
<td>0.001</td>
<td>0.002</td>
</tr>
<tr>
<td>t-statistics</td>
<td>7.354</td>
<td>7.602</td>
<td>6.426</td>
<td>1.334</td>
<td>7.628</td>
</tr>
<tr>
<td>Panel B: Regional Aggregate Data (full sample)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$Return_{-12to-1}$</td>
<td>0.912</td>
<td>0.290</td>
<td>0.290</td>
<td>0.421</td>
<td>0.428</td>
</tr>
<tr>
<td>t-statistics</td>
<td>2.436</td>
<td>2.556</td>
<td>2.926</td>
<td>1.278</td>
<td>3.764</td>
</tr>
</tbody>
</table>
Baseline results
RETURN as dependent variable

Table: p-value of the joint significance test

<table>
<thead>
<tr>
<th></th>
<th>Asia</th>
<th>EMEA</th>
<th>Latin</th>
<th>GEM</th>
<th>all</th>
</tr>
</thead>
<tbody>
<tr>
<td>Panel A: Fund Level Data (full sample)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>F—Flow</td>
<td>.001</td>
<td>.013</td>
<td>.071</td>
<td>.114</td>
<td>.009</td>
</tr>
<tr>
<td>F—Return</td>
<td>.000</td>
<td>.000</td>
<td>.000</td>
<td>.000</td>
<td>.000</td>
</tr>
<tr>
<td>Panel B: Regional Aggregate Data (full sample)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>F—Flow</td>
<td>.518</td>
<td>.566</td>
<td>.013</td>
<td>.617</td>
<td>.280</td>
</tr>
<tr>
<td>F—Return</td>
<td>.000</td>
<td>.000</td>
<td>.005</td>
<td>.000</td>
<td>.000</td>
</tr>
</tbody>
</table>
Baseline results
RETURN as dependent variable

<table>
<thead>
<tr>
<th></th>
<th>Asia</th>
<th>EMEA</th>
<th>Latin</th>
<th>GEM</th>
<th>all</th>
</tr>
</thead>
<tbody>
<tr>
<td>Panel A: Fund Level Data (full sample)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$Flow_{-12t0-1}$</td>
<td>.001</td>
<td>-.006</td>
<td>.008</td>
<td>.000</td>
<td>.000</td>
</tr>
<tr>
<td>t-statistics</td>
<td>.718</td>
<td>-1.260</td>
<td>2.294</td>
<td>-.314</td>
<td>.051</td>
</tr>
<tr>
<td>Panel B: Regional Aggregate Data (full sample)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$Flow_{-12t0-1}$</td>
<td>.000</td>
<td>-.001</td>
<td>.002</td>
<td>.000</td>
<td>.000</td>
</tr>
<tr>
<td>t-statistics</td>
<td>.011</td>
<td>-.769</td>
<td>1.561</td>
<td>.166</td>
<td>.184</td>
</tr>
</tbody>
</table>
Baseline results

Table: Contemporaneous relationship

<table>
<thead>
<tr>
<th></th>
<th>Asia</th>
<th>EMEA</th>
<th>Latin</th>
<th>GEM</th>
<th>all</th>
</tr>
</thead>
<tbody>
<tr>
<td>Panel A: Fund Level Data (full sample)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$Flow_{{0}}$</td>
<td>.082</td>
<td>.268</td>
<td>.115</td>
<td>.012</td>
<td>.037</td>
</tr>
<tr>
<td></td>
<td>12.472</td>
<td>10.661</td>
<td>7.053</td>
<td>3.987</td>
<td>12.123</td>
</tr>
<tr>
<td>Panel B: Regional Aggregate Data (full sample)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$Flow_{{0}}$</td>
<td>.018</td>
<td>.055</td>
<td>.053</td>
<td>.009</td>
<td>.016</td>
</tr>
<tr>
<td></td>
<td>7.286</td>
<td>6.947</td>
<td>6.014</td>
<td>4.716</td>
<td>9.681</td>
</tr>
</tbody>
</table>
Basic results

Summary

- Positive feedback trading
 - more intensive at regional market level than at fund level (new money vs inter-fund transfer)

- Flows predict returns at fund but not market level

- Positive contemporaneous flow-return relationship
 - stronger at fund level (Lee et al. JF 91)
The impact of credit crunch
Positive feedback trading

Figure: IRF of $FLOW$ to the shock in $RETURN$ in noncrisis (upper left) and crisis period (upper right). The upper and lower bounds represent the 10% confidence interval obtained by 2500 Monte Carlo simulation. The bottom panel compares the CIRF of $FLOW$ in non-crisis and crisis periods.
The impact of credit crunch
Positive feedback trading

- Investors engage less intensively in positive feedback trading during the crisis.

Why?

- Brunnermeier and Pedersen (RFS 09)
- Non-crisis period: booming market liquidity \rightarrow funding liquidity \uparrow \rightarrow following trend aggressively
- Crisis period: constraint market liquidity \rightarrow funding liquidity \uparrow \rightarrow following trend cautiously
The impact of credit crunch
Flows predict returns

Figure: CIRF in non-crisis and crisis period (excluding the contemporaneous effect).
The impact of credit crunch
Flows predict returns

- Flows predict returns negatively in non-crisis period and positively in crisis period.
- Why dumb money effect in non-crisis period?
 - Dominant disposition effect
- Disposition effect: the investor has greater propensity to sell assets that have increased since purchase than those that have dropped. *It triggers outflows from assets whose price subsequently increase further* (Shefrin et al. JF 85).
The impact of credit crunch
Flows predict returns

Figure: Inflows Vs Outflows
The impact of credit crunch
Contemporaneous flow-return relationship

Figure: OIRF of \textit{RETURN} to the shock in \textit{FLOW} in non-crisis (upper left) and crisis period (upper right). The upper and lower bounds represent the 10\% confidence interval obtained by 2500 Monte Carlo simulation. The bottom panel compares the COIRF of \textit{RETURN} in non-crisis and crisis periods.
The impact of credit crunch

Why dumb money reaps profits in non-crisis period?
- contemporaneous flow-return relationship is positive
- inflows are persistent

Why is money smart during crisis?
- liquidity constraint makes it difficult to attract inflows
- fund managers can no longer beautify performance with persistent inflows
- it is relative easy to differentiate managerial ability from price impact
The roles of size and risk appetite

- **Size effect**
 - Fund size benefits the performance of funds in non-crisis period
 - Market cap: no impact
 - Fund size undermines (benefits) the performance of funds that experienced outflows (inflows)
 - Market cap ...

- **Risk appetite**
 - Increasing risk appetite boosts fund flows and regional flows
 - Increasing risk appetite improves fund performance and market-wide returns
Flow-return relationship behaves differently at market and fund levels

Credit crunch breaks the flow-return relationship
 - flows chase returns less intensively in crisis period
 - flows predict negative future returns in non-crisis period but positive returns in crisis period

Market and fund characteristics do matter