Export Mode and Market Entry Costs

Benjamin Bridgman*

Bureau of Economic Analysis

June 2012

Abstract

This paper examines what modes firms use to export. It uses a novel data source that provides very detailed information on export modal choice and market entry costs. Motion picture exporters use different modes of entry across markets, with more intensive modes used for large markets. Markets with the largest sales are more costly to serve, since they require more extensive sales office networks. While costs are higher in large markets, they are compensated by higher revenue.

JEL classification: F1.

Keywords: Export mode; Intermediaries; Services Trade; Motion Pictures.

*I thank Costas Arkolakis, Stefan Buehler, Ricard Gil and seminar participants at the 2012 International Industrial Organization Conference for comments and Andrew Dugan and Mikheal Lal for research assistance. The views expressed in this paper are solely those of the author and not necessarily those of the U.S. Bureau of Economic Analysis or the U.S. Department of Commerce. Address: U.S. Department of Commerce, Bureau of Economic Analysis, Washington, DC 20230. email: Benjamin.Bridgman@bea.gov. Tel. (202) 606-9991. Fax (202) 606-5366.
1 Introduction

The last decade has seen an explosion of interest in the industrial organization of international trade. New micro datasets have led to the development of heterogeneous firm trade (HFT) models, which link firm characteristics with export participation. Important contributions include Eaton & Kortum (2002), Bernard, Eaton, Jensen & Kortum (2003) and Melitz (2003). (See Bernard, Jensen, Redding & Schott (2007) for a survey.)

One of the facts that has come out of this literature is that a firm may use different modes of entering a market. In the first wave of HFT models, firms exported directly to foreign markets. As empirical work has progressed, it has become clear that there are a variety of methods that a firm can use to export. A recent literature has examined the use of intermediaries in trade, including Ahn, Khandelwal & Wei (2011), Akerman (2012), Bernard, Grazzi & Tomasi (2011) Blum, Claro & Horstmann (2012) and Bernard, Blanchard, Van Beveren & Vandenbussche (2012). The question of how firms decide what mode to use is important since the cost structures of these different modes may be different. Therefore, exports may respond to shocks differently depending on the mode used (Bernard et al. 2011). These differences have implications for the measurement of trade elasticities. If an exporter uses a mode with higher fixed costs, short run fluctuations will underestimate the long run elasticity (Ruhl 2005).

Data constraints have restricted our knowledge of this decision. Firm level trade datasets generally do not link a transaction to a firm unless the firm exports directly. At best, they link an export transaction with the last domestic firm to handle it. Since we do not know which firm made the products intermediaries export, it is difficult to examine export mode choice. In addition, there is surprisingly little direct evidence on the magnitude or even the nature of the costs firms face when exporting. In fact, I am not aware of a single paper that that directly measures these costs. Existing estimates of their magnitude use a structural model to back out these costs. For example, see Das, Roberts & Tybout (2007), Ruhl & Willis

\footnote{An exception is the World Bank data analyzed in Abel-Koch (2011) and McCann (forthcoming). These data do not include information regarding to what markets goods are exported.}
This paper examines modal choice for U.S. motion picture exports in the 1930s and 1940s. It uses a novel data source that provides very detailed information on market entry. Internal company data for United Artists (UA) from 1935 to 1949 are available from an archival source. UA was a major motion picture exporter with sales to over 50 countries. These data give country level detail on mode of entry, sales and distribution costs. In addition to a rich set of data, the archives include memos and other documents that give direct insight into how the decisions to enter markets were made.

This paper makes two main contributions. It generates a number of facts about modal choice. A single firm may use a number of different methods of exporting depending on a market’s characteristics. It will use a hierarchy of modes to export, with more intensive modes used for larger markets. More intensive modes, such as opening a foreign office, require the firm to pay more in distribution costs but generate more revenue. The firm is willing to pay distribution costs in major markets. This hierarchy implies that even the most productive firms use intermediaries. This finding contrasts with the literature which has emphasized sorting of mode by firm characteristics: Large, productive firms use FDI while small firms use exports (Helpman, Melitz & Yeaple 2004). The larger the market is, the more likely it is that a firm will use intensive modes. Big markets generate big revenues, so firms are more willing to pay costs to capture those revenues. Therefore, large markets have more sales offices.

I develop a theory that generates the empirical pattern of modes of entry and show that the data support the assumptions on cost and revenues. Less intensive modes cost less but also generate less revenue for a given market size. Big markets are more costly to enter. They require more extensive sales office networks since there are more theaters to service. Despite having higher costs, they are more profitable. Higher costs are not due to a greater number of movies being released in large markets. The number of films released is unrelated to market size but the margin on each movie released is higher. While costs are higher in large markets, revenue is even larger.
The data show significant fixed market entry costs. Most of the costs of selling to a market are fixed costs such as sales office personnel and rent. Costs directly related to the number of varieties (movie releases) exported to a market, such as copying prints, are minor. On average, they constitute only 10 percent of the costs of exporting. The findings provide direct validation of the HFT literature’s emphasis on fixed costs.

I also examine the impact of trade barriers. Distance, the key ingredient in gravity models, is not as big a barrier as cultural difference. Whether a country speaks English is a much more important predictor of revenue. Physical distance does not have a significant effect. This finding is surprising given that communications and travel technology were unreliable at long distances and more recent studies have found distance to be important (Marvasti & Canterbery 2005).

These findings are generally consistent with previous theoretical findings. Hanson & Xiang (2011) apply a HFT model to more recent data to back out the costs of selling motion pictures abroad. Though they cover a different time period than the UA data, the sales behavior is similar in the two cases. The basic economics of film exports does not appear to have changed significantly between the two time periods. They find that fixed costs are the most important costs of exporting motion pictures. However, I do not find a global cost of market entry as they do. However, my findings are not greatly different than their predictions. Costs are much more stable across markets than revenues. Therefore, the strategy of backing out costs using HFT models is a reasonable proxy for actual costs.

This paper helps fill in the historical data on services trade. Even recently, the coverage of services trade is much less detailed than goods production (Gervais & Jensen 2010). Disaggregated official data only begin in 1986. Despite a great deal of interest in services trade, a lack of data requires indirect methods to study these markets (Anderson, Milot & Yotov 2011). A reason for the neglect of services trade is that service industries have not been significant exporters. In contrast, the U.S. motion picture industry has been a major exporter for virtually its entire life. Overseas sales already totaled a third of revenue by 1925 (Walsh 2008). The data
show Hollywood’s surprising resilience to the shocks of the Great Depression and World War Two. Official statistical agencies are expanding their coverage of intangible assets and services trade (Soloveichik 2010). Estimates of the early experience in such large services exporters are important in maintaining consistent time series.

2 Theory

This section sets out the theoretical framework for the paper. The model is adapted from the sales office location model in Holmes (2005), modified to match the features of the motion picture industry. It adds an additional method of serving a market.

2.1 Environment

There are J countries of size n_j. A firm i has q_i varieties to sell.

The firm chooses what mode to use to distribute its varieties. There are three modes of entry which vary at the level of intensity of the firm’s engagement in a market. More intensive modes require more expenditure by the firm, but also generate higher revenue. Export sale is the least intensive, a licensed agent is in the middle and a sales office is the most intensive. The firm chooses the mode that generates the largest profit.

If a firm sets up an office in county j, it receives revenue q_in_j and pays variable cost $c_{i,j} = \tau - \gamma n_j$ and fixed cost ϕn_j. The parameter γ governs how much easier it is to sell in
large markets. Profit from this mode is \(\pi^O = q_i n_j - q_i(c_i - \gamma n_j) - \phi n_j \). (All parameters are restricted to be positive.)

If a firm uses a licensed agent, it receives revenue \((1 - \tau)q_i n_j\) and pays fixed cost \(\phi^L\). The fixed cost represents the cost of contracting with and monitoring the agent. The parameter \(\tau\) governs the degree of revenue lost by licensing. Profit from this mode is \(\pi^L = (1 - \tau)q_i n_j - \phi^L\).

If it uses an export sale, it receives revenue \((1 - \theta)q_i n_j\), where \(1 > \theta > \tau > 0\), and pays no cost. Profit from this mode is \(\pi^E = (1 - \theta)q_i n_j\).

2.2 Mode Selection

The mode that the firm selects is a function of the number of varieties it has to sell and the size of the market. I begin by examining the impact of market size on modal choice for a firm of a fixed size. (I hold \(q_i\) constant and vary market size \(n_j\).)

The firm selects the mode that provides the highest profit. Profits from each mode are a linear function of market size. They can be described by the intercept and the slope.

The intercept is profit evaluated when \(n_j = 0\). The intercept for the three modes are given by \(\pi^O = -q_i \bar{c}^i\), \(\pi^L = -\phi^L\) and \(\pi^E = 0\). As market size increases, office profits increase by slope \(n_j[q_i(1 + \gamma) - \phi]\) and licensed agent profits increase by \(n_j(1 - \tau)q_i\). Export sale profits increase by \(n_j(1 - \theta)q_i\).

Modal choice across market size depends on the number of varieties \(q_i\) the firm has to sell. Only large firms, those with varieties above a threshold defined below, will use the full suite of modes. For the motion picture industry, the large firm model is the relevant case. The industry very quickly consolidated into 8 major studios, including UA.

Figure 1 shows profit from the three modes for large firms. The model generates a hierarchy of markets for large firms. The mode of entry will be more intensive for larger markets. The smallest markets are served by export sales. Mid-sized markets are served by licensed agents and the largest are served directly by sales offices.

Larger markets generate more revenue. More intensive modes allow the firm to partici-
pate more in those revenues, but it has to pay more of the cost of distribution. Intensive modes require paying fixed costs, which increase in the intensity of the mode. In small markets, the benefits of capturing revenues are small so it is not worth it to the firm to pay those costs. There are enough revenues to cover fixed costs in large markets, so the firm will use more intensive modes of entry. This hierarchy is summarized in the following proposition.

Proposition 2.1. If $q_i > \frac{\phi}{\tau + \gamma}$ and $q_i \geq \frac{(\theta + \gamma)^L}{(\theta - \gamma)^E}$, then there exist $\pi^{EL} < \pi^{LO}$ such that the firm will serve markets of size:

1. $n_j \leq \pi^{EL}$ with export sales,
2. $\pi^{EL} < n_j \leq \pi^{LO}$ with licensed agents,
3. $\pi^{LO} < n_j$ with offices.

Proof. Small markets ($n_j \approx 0$) will be served by export sales. Since export sales have no fixed costs and the other modes do, $\pi^O < \pi^E$ and $\pi^L < \pi^E$ if $n_j = 0$.
Profit from offices is higher than from licensed agents if \(\pi^O = q_i n_j - q_i (c_{i,j} - \gamma n_j) - \phi n_j > \pi^L = (1 - \tau) q_i n_j - \phi^L \). The firm prefers offices to agents if \(n_j > \Pi^{LO} = \frac{q_i \pi - \phi^L}{q_i (\tau + \gamma) - \phi} \). The assumption \(q_i \geq \frac{(\theta + \gamma) \phi^L}{(\theta - \tau) \pi} \) implies that \(q_i \geq \frac{\phi^L}{\pi} \). This fact and the assumption that \(q_i > \frac{\phi}{\tau + \gamma} \) implies that both the denominator and numerator in the expression for \(\Pi^{LO} \) are positive. Therefore, \(\Pi^{LO} > 0 \).

Using the same method as for \(\Pi^{LO} \), the cutoff market size between exports and licensed agents is given by: \(\Pi^{EL} = \frac{\phi^L}{q_i (\theta - \tau)} \). Since \(\theta > \tau \), then \(\Pi^{EL} > 0 \).

The cutoffs are ordered \(\Pi^{EL} < \Pi^{LO} \) if \(\frac{\phi^L}{q_i (\theta - \tau)} < \frac{q_i \pi - \phi^L}{q_i (\tau + \gamma) - \phi} \). Rearranging, we have \(\pi^2 (\theta - \tau) \pi - q_i (\tau + \gamma) \phi_L + \phi_L \phi > 0 \). A sufficient condition to satisfy this condition is \(q_i \geq \frac{(\theta + \gamma) \phi^L}{(\theta - \tau) \pi} \), which is true by assumption.

Among large firms, those with more varieties will use more intensive modes in the same market. Both cutoffs are decreasing in the number of varieties \(q_i \). By inspection, the cutoff between exports and agents \(\Pi^{EL} \) is declining in \(q_i \). If \((\tau + \gamma) \phi^L < \pi \phi \), then \(\Pi^{LO} \) is decreasing in \(q_i \). Taking the partial with respect to \(q_i \), we have \(\frac{\partial \Pi^{LO}}{\partial q_i} = \frac{\pi}{q_i (\tau + \gamma) - \phi} - \frac{(\tau + \gamma) q_i \pi - \phi^L}{[q_i (\tau + \gamma) - \phi]^2} \). Rearranging gives the condition.

The intuition for this result is similar to that of the hierarchy of modes. Having a lot of varieties makes a market large, even if it is small in terms of \(n_j \). The pool of revenues available to pay for fixed costs is larger for firms with large \(q_i \), so they are more likely to take on those costs. This result is similar to Das et al. (2007), where larger (more productive) firms sell to markets using FDI rather than export sales.

The model predicts that more firms will open offices in larger markets. In the largest markets, most firms will find it worth the cost to open an affiliate. Mid-size markets will have a mix of affiliates and agents, with the largest firms use offices and smaller firms use agents. The smallest markets do not use offices at all.

While our empirical interest is in large firms, the hierarchy of modal choice is maintained for small firms. Not all modes are used. All firms will use export sale for the smallest markets.
due to the fixed costs of the more intensive modes. Very small firms do not use offices. If $q_i < \frac{\phi}{\tau + \gamma}$, it will never be more profitable to open an office than use a licensed agent. For large markets, small firms use licensed agents but never graduate to offices.

If the other assumption of Proposition 2.1 is violated, the ordering of modes is preserved but agents may not be used. Export sales may be used for small markets and offices for large markets. If $\frac{\phi}{\tau + \gamma} < q_i < \phi^L_{\phi}$, then the firm will definitely not use agents. If $q_i < \phi^L_{\phi}$, agents are less profitable than offices for $n_j = 0$. Since $\frac{\phi}{\tau + \gamma} < q_i$ profitability of offices increases faster than agents, so offices are always more profitable. If $\frac{\phi}{\tau + \gamma} < q_i$ and $\phi^L_{\phi} < q_i < \frac{(\theta + \gamma)\phi^L_{\phi}}{(\theta - \tau)\phi}$, then it is possible that the firm does not use agents. While offices are less profitable than agents for tiny markets ($n_j \approx 0$), office profitability can grow fast enough relative to agents that it becomes more profitable before either mode dominate exports.

Figure 2: Mode Selection: Firm and Market Size

Whether or not a firm size exists where agents are not used depends on parameters.

\footnote{If the firm is too small ($q_i < \frac{\phi}{\tau + \gamma}$), offices never even generate positive profits. The profitability of offices declines as market size increases.}
If $\frac{\phi_L}{\pi} < \frac{\phi}{\sigma+\gamma}$, then such a firm size does not exist. That is, all firms will use agents for some market size.

Figure 2 summarizes the interaction of firm and market size (assuming all firms use agents). Entry mode is more intensive away from the origin. For small markets, firms use exports. For large markets, all but the smallest firms use offices. In between, different firms use different modes with larger firms using more intensive modes.

There are two predictions of the model that I will examine in the data. Large markets should have more firms using intensive modes of entry and large firms should use a hierarchy of modes across markets. I will also examine whether the empirical revenue and cost patterns match the assumption of the model.

3 Data

This section describes the data that will be used in the empirical section. The primary data are drawn from the United Artists collection housed at the University of Wisconsin. This collection holds the company’s internal records, including income and costs for its foreign distribution network over the period 1935 to 1949. This section describes how UA distributed motion pictures overseas and describes the data item used in greater detail.

3.1 United Artists’s Foreign Distribution

United Artists had a major business as a distributor of independent producers’ films. The cost data do not include film production expenses, only distribution costs. Other companies were vertically integrated, owning production studios, exhibition theaters and distribution networks. Most of the movies UA distributed were features rather than serials or newsreels, so each release is in a uniform format.

3 Setting $\pi^{EL} < \pi^{LO}$ generates an equation that is quadratic in q_i. The restriction ensures that the quadratic equation has no positive roots.
All major motion picture distributors had a significant overseas presence. UA’s was particularly big even though UA was the smallest of the major studios. (It was one of the “little three” studios, along with Universal and Columbia Pictures.) Even with World War Two limiting overseas revenue, 44 percent of grosses came from non-U.S. sources in 1944. During the 1930s, the company had up to 30 overseas subsidiaries and sales to another 17 markets through agents. (Recall that due to colonialism, the number of countries was much smaller during the period studied compared to today.) These markets range from large markets like the United Kingdom to tiny markets like Estonia. UA sold to countries on every inhabited continent. Therefore, the UA data have good coverage of nearly every market to which U.S. films were exported.

UA’s network was largely established by the beginning of period covered in this paper. Most affiliates were established between 1920 and 1926. A couple of agencies were replaced with affiliates: Chile and Peru in 1937 and South Africa in 1938. Therefore, the data generally reflect the costs of servicing a market rather than establishing an affiliate, a distinction emphasized by Gibson & Graciano (2011).

The time period covered was a tumultuous time in history. The Great Depression stretched into World War Two. One might be concerned that data from this period will have little to tell us. The motion picture industry was quite resilient to the shocks of this period.

The Great Depression was a period of expansion for the motion picture industry. Unlike manufacturing or even recorded music or books, film sales did not show a decline due to the Depression (Soloveichik 2011). Sound was introduced in 1927 and rapidly took over the U.S. market. While sales no doubt would have been higher without the depression, the film industry was not under the distress that most other industries faced. The largest studios remained profitable and the rest returned to profitability by the mid-1930s (Schatz 1999).

The war had more impact, but film sales were surprisingly resilient to the war. While the war removed certain markets in Europe and Asia, U.S. exports were strong after the early 1940s. Foreign sources were back to a third of Hollywood’s sales in 1944-5 (Schatz 1999). Sales
to the British Isles continued to grow during the war. UA and the other American studios reopened their French offices in 1944, the same year as D-Day! Aside from countries that saw heavy bombing, like Germany and Japan, movie theaters were largely spared. Of the nearly 5,000 theaters in England, only 300 were not open at the end of the war (Schatz 1999).

3.2 Data Items

The records report total rental income, total sales, print costs and operating costs for each overseas affiliate and licensed agency for all years. For four years (1939 to 1942), the income sheets report the number of releases for each affiliate.

The measure of sales I use is "played and earned," which is gross rental income. The vast majority of income was earned in this category. There are additional sources of revenue, such as the sales of accessories and foreign exchange earnings. Gross rentals are clearly related to film sales, in a way that the other categories are not. Played and earned is gross of producer’s share, so reflects the total sales not just what accrued to UA.

I concentrate on two cost categories. "Print, duties, censorship" costs are the costs of importing original film, duplicating them and clearing them through censorship boards. "Operating costs" are costs such as staff salaries, rent and other office costs. I add the two categories together to generate "Total Costs." All data are reported in U.S. dollars. I deflate all series by the U.S. GDP deflator to put them in 2005 dollars. The Appendix reports summary statistics for the data set.

The motion picture industry has a reputation for manipulative accounting practices, which begs the question of how reliable the data are. The data are internal documents prepared for high ranking executives, so they should be free of outright manipulation used to fool producers or tax authorities. They predate the more complex accounting of recent times where stars are given shares of net rentals and a number of tax subsidies exist. Sharing contracts appear to use gross not net rentals. The only manipulation UA used that I am aware of is UA would use licence fees to reduce profit in high tax locations. These fees are reported as a
separate line item and are excluded from the analysis.

Another issue is that costs may be shared among affiliates. They were not independent and were generally run from New York. The costs represent the revenue and costs inside a country. The data are reported in the home currency and converted to U.S. dollars at nominal exchange rates. Physical distance limits cost sharing for most categories. One exception is print cost. In a few years, print expenses are either zero or negative, indicating prints were transferred from or sold to other affiliates. This is a rare occurrence when the disruptions of World War Two limited available film stock is some locations. Duties on imported film discouraged sharing prints across borders in more normal times. As we will see below, print expenses are a small portion of the total so errors in this item should have a small effect on the results.

4 Market Entry

4.1 Market and Firm Size

In the model, the two key variables in the model are market and firm size. In taking the model to the data, we have to make a stand on what the empirical counterparts of the these variables are.

For market size, I use GDP. Large markets tend to be large economies, both in terms of income per capita and total population. Higher population means more potential viewers, so it is intuitive that populous countries have a large total demand.

Higher income means more potential dollars. This effect could either work through higher ticket prices or by wealthier people going to the movies more often. There is evidence for both effects. Figure 3 shows average cinema attendance per capita and GDP per capita in 1950. There is a strong correlation between attendance and income. Residents of wealthy countries went to the movies frequently. The average American went over 16 times a year.

\footnote{The attendance data comes from UNESCO (1955) and GDP data is from the Penn World Table.}
compared to 0.1 times in Nigeria. The cinema was most popular in the United Kingdom, where the average Briton went 25 times a year.

Residents of wealthy countries also paid higher prices. Figure 3 shows average ticket price in U.S. dollars and GDP per capita in 1950. The average ticket cost 24 cent in the United Kingdom while it was only 11 cents in Nigeria. The difference reflects the well known disparity in price levels between rich and poor countries. (Ticket prices are converted using non-PPP adjusted exchange rates.)

In the model, firm size is determined by the number of varieties the firm has to sell. I identify the major eight studios, including UA, as the large firms. As described above, the industry consolidated quickly. Major studios released a much larger number of releases in a year compared to independents and dominated the market. In 1935, 65 percent of U.S. made features were released by one of the eight majors (Ramsaye various).

Figure 3: Average Cinema Attendance vs. GDP per Capita 1950

5 The data sources are the same as for Figure 3
In reality, movies are not uniform in their earning potential. The big studios dominated the market for films with significant overseas earning potential. All the top grossing films were released by the majors. Big budget films and those with major stars and directors were generally released through the major studios. These were the movies that earned well overseas. They earned more of their revenue overseas than low budget films (Sedgwick & Pokorny 2010). Independents tended to specialize in lower budget genre or specialty films.

While UA was a smaller major and released fewer movies than some of the majors, UA distributed films that were mostly high budget and starred popular actors. It was founded by four of the most popular actors of the time and released the founders’ work. In 1936, UA made as much in rental revenue as Paramount despite releasing fewer films.
4.2 Modes of Entry

To sell to a market, a studio needs personnel to to find theaters to show a film and publicize it. Since the audience reception of a film in a market was uncertain, the length of an engagement often needed to be renegotiated on the fly (Gil & Lafontaine 2011). Sound movies were more uncertain in their reception than silent ones, which led studios to become more hands on in contracting (Hanssen 2002).

As discussed in the model, there were three organizational forms that UA used to sell to a market: Through an affiliate, through a local licensed agent or as an outright sale of film rights. With an affiliate, staff were direct employees of the company and all expenses were kept in-house.

Licensed agencies were domestic companies that distributed films on UA’s behalf. Agents were not employees and paid for a portion, in some cases all, of the costs of distribution. They were generally compensated through a revenue sharing contract.

Finally, rights to a film in a territory could be sold outright for a flat fee. The company did not share in the revenue, but did not expend any costs to distribute films.

The data support the model’s prediction that more companies will set up offices in large markets. Ramsaye (various) reports the locations of sales offices for studios. Figure 5 shows the number of the eight major studios that have affiliates in a market and real GDP. All had affiliates in the major markets for U.S. films, such as the British Isles and Argentina. Peripheral markets only had affiliates from a couple of the “Big Five” major studios. For example, Norway had affiliates of four studios, all from the Big Five. UA used a licensed agent to sell to Norway.

UA maintained an extensive network of affiliates and most revenue was generated through this channel. Figure 6 shows the average revenue and GDP for affiliates and agents. The

6I use the 1943 listing for RKO since its overseas offices were not listed in the 1935 book. RKO was in receivership which may explain the lack of listings (Sedgwick & Pokorny 2010).
was served by an affiliate. The exceptions, Germany and Italy, had hosted affiliates until restrictions on the film industry imposed by those countries’ Fascist governments caused them to be closed (Balio 1976). Smaller markets were generally served through licensed distributors. Peripheral markets, such as Iceland, were served by export sales. Only 4 percent of income from film rentals and sales in 1936 came from outright sales of rights. The company showed a strong preference for retaining rights and serving markets directly.

Figure 6 shows that agents had lower revenues compared to affiliates in markets of the same size. The first column of Table 1 reports the impact of organizational form on revenues. The variable “Agent” is a dummy variable that is equal to one if the country is served by a licensed agent and zero if it is served by an affiliate. Markets served by agents earn significantly less revenue. They also cost significantly less to serve, as shown in the second column. In some cases, UA did not spend on distribution, leaving all such cost to the agent.

7These and all subsequent estimates use GLS random effects estimation. Standard errors are clustered by country and coefficient estimates for year dummies and constant are not reported.
Additional evidence of the lower costs of agents comes from other studios. Sedgwick (1994) examines U.S. film exports to Great Britain in 1934. A number of small independents that did not have a British office released movies there. None of these films were high grossing and were more likely to be shown in small, secondary markets. While we cannot observe the costs these firms faced, unless these studios took big losses this pattern suggests that the distribution costs for these studios were also small.

There is evidence that converting from an agent to an affiliate directly increased revenue. Agents were less likely to push a film for longer periods of time, at more locations and at more lucrative times (such as holiday weekends). Agents often handled films for more than one company, so would not have the same incentive to push weaker films from each studio’s catalog. Studios did not put out enough product to fill an entire schedule, so they could not demand exclusive contracts. Even theaters owned by studios used other studios’ films. Gil (2009) documents the agency distortions that can occur in movie exhibition contracting. Internal company memos reflect the belief that agents did not generate as much revenue. For
example, the conversion of an office to a licensed agency in Brazil was dismissed out of hand due to these concerns (de Usabel 1975). Revenues increased immediately once UA established foreign offices in the early 1920s (Walsh 2008).

In addition, agents were harder to monitor. They could underreport grosses. Unscrupulous agents would pirate films, re-export prints to unauthorized markets or stage off-the-books engagements. Walsh (2008) suggests that intellectual property issues were important in UA’s decision to open foreign offices in Latin America and Asia. The Japanese branch spent years litigating pirating cases in its early years, which generated large losses. These results indicate that the lost revenue parameter τ in the model reflects lower revenue from contracting frictions and not just the fees paid to agents. (Played and earned is total revenue, not just what UA received.)

<table>
<thead>
<tr>
<th></th>
<th>Log Rentals</th>
<th>Log Total Cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>Log GDP per capita</td>
<td>1.293**</td>
<td>1.022**</td>
</tr>
<tr>
<td>(SE)</td>
<td>(0.144)</td>
<td>(0.159)</td>
</tr>
<tr>
<td>Log Population</td>
<td>0.704**</td>
<td>0.610**</td>
</tr>
<tr>
<td>(SE)</td>
<td>(0.083)</td>
<td>(0.096)</td>
</tr>
<tr>
<td>Agent</td>
<td>−1.183**</td>
<td>−3.437**</td>
</tr>
<tr>
<td>(SE)</td>
<td>(0.180)</td>
<td>(0.227)</td>
</tr>
<tr>
<td>N</td>
<td>316</td>
<td>302</td>
</tr>
<tr>
<td>R^2</td>
<td>0.63</td>
<td>0.74</td>
</tr>
</tbody>
</table>

**: Significant at 1 percent level.
*: Significant at 5 percent level.

Table 1: Agents vs. Affiliates
4.3 Offices

This section documents the determinants of revenues, costs and varieties across markets. I concentrate on markets that were served by an overseas office since the data include a more complete accounting of costs and are the only markets for which I have variety data. For other modes of entry, companies outside of UA made expenditures. Nearly all major markets and many minor ones across the world were served by affiliates, so these data provide good coverage and heterogeneity of markets.

Affiliates sometimes served more than one market. In most cases, the additional markets were small adjacent countries. For example, the Argentine affiliate served Uruguay and Paraguay as well as Argentina. In a couple of cases, a subsidiary served a number of small markets. The Panamanian subsidiary oversaw the agencies that served much of Central America and Venezuela. In the basic data work, this issue should not matter much since both revenue and costs are reported on the same basis.

This issue becomes more of an issue when auxiliary country level data is used. In cases such as Argentina, it is not a serious problem. The secondary markets are much smaller than the primary market so the error is likely to be small. They tend to share attributes that are used in gravity equations: They are near to each other, speak the same languages and are at similar levels of development. Data limitations remove Panama, the most questionable affiliate, from the data for these exercises.

4.3.1 Revenue and Cost

As seen above, there is a strong positive relationship between market size and revenues. Table 2 shows that costs and market size as also correlated. Both higher income per capita and population increase costs.

Why are large markets more costly to serve? Large markets required more extensive sales office networks. The biggest market, the British Isles, had branch offices in nine cities in 1935. Some of the offices were in close proximity. UA had branches in Liverpool, Manchester
Table 2: Affiliate Cost Regressions

<table>
<thead>
<tr>
<th></th>
<th>Log Total Cost</th>
<th>Log Cost per Capita</th>
</tr>
</thead>
<tbody>
<tr>
<td>Log GDP per capita</td>
<td>0.938**</td>
<td>0.938**</td>
</tr>
<tr>
<td></td>
<td>(0.161)</td>
<td>(0.161)</td>
</tr>
<tr>
<td>Log Population</td>
<td>0.556**</td>
<td>−0.445**</td>
</tr>
<tr>
<td></td>
<td>(0.115)</td>
<td>(0.115)</td>
</tr>
<tr>
<td>(N)</td>
<td>265</td>
<td>265</td>
</tr>
<tr>
<td>(Adj. – R^2)</td>
<td>0.43</td>
<td>0.73</td>
</tr>
</tbody>
</table>

**: Significant at 1 percent level.
*: Significant at 5 percent level.

and Leeds, all within 70 miles of each other. Despite having a small population, Australia was a large enough market to support branches in five cities. Figure 7 shows that there is a strong relationship between costs and the number of branches.

Figure 7: Branches and Total Cost
Distribution costs are not uniform across markets in the data. Arkolakis (2010) argues returns to scale in marketing can explain trade patterns better than a single fixed cost of selling to a market. The UA data support this assumption. In the second column of Table 2, I regress indicators of market size on log total cost per capita. There is a statistically significant negative relationship between population and marketing costs per capita.

The opposite relationship holds for GDP per capita. As shown above, higher income people go to the movies more and pay higher prices. The higher cost may reflect higher overall prices in high income countries, more extensive theater networks or a combination of both factors.

The model predicts that despite being more costly to enter, large markets are more profitable. To test this prediction, I examine the relationship between margins and market size. Specifically, I set $\text{Margin} = \frac{\text{GrossRentals} - \text{TotalCosts}}{\text{TotalCosts}}$. Figure 8 shows that larger markets tend to have higher margins. While both revenue and costs increase in market size, revenue increases faster.

Figure 8: Margins and Market Size
4.3.2 Varieties

Figure 9: Log GDP vs. Log Releases

![Log GDP vs. Log Releases](image)

The model assumes that all the firms varieties are sold to all markets, an assumption that is confirmed in the data. There is not a strong relationship between the number of films released and the size of the market. Figure 9 plots the number of releases against log real GDP. There is not a strong correlation.

However, each release earns more revenue in large markets. Figure 10 shows revenue per movie released plotted against log real GDP. In this case, there is a positive relationship between the two.

To confirm this statistically, Table 3 reports regressions with revenue per release as the dependent variable. As column 1 shows, the number of releases does not have a statistically significant impact on the revenue each release makes. Rather, it is the size of the market that matters. Column 2 shows that the measures of market size have a much more important impact on how much a release makes.
4.3.3 Fixed vs. Variable Costs

The HFT trade literature emphasizes fixed costs as a key determinant of trade. While the partition is not perfect, most of the costs listed under operating costs appear to be fixed costs (rent and salaries make up the vast majority of these costs) while those for print are appear to be more variable costs. Print expenses make up a very small portion of the cost of selling to a market. On average, only 10 percent of total expenses were in this category.

To examine the degree to which operating costs are fixed costs, the upper panel of Table 4 shows the correlation between the number of releases in a country and the costs of distribution. All costs are positively correlated with the number of releases. However, this relationship may be an artifact of the impact of World War Two. A number of affiliates in Europe and Asia drop out due to invasion by Axis powers. When a country was invaded, the affiliate only operated early in the year. This effect can generate spurious correlation between releases and costs.
Table 3: Log Revenue per Release Regressions

<table>
<thead>
<tr>
<th></th>
<th>(1)</th>
<th>(2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Log Releases</td>
<td>0.059</td>
<td>1.619**</td>
</tr>
<tr>
<td></td>
<td>(0.114)</td>
<td>(0.214)</td>
</tr>
<tr>
<td>Log GDP per Capita</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.840**</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(.118)</td>
<td></td>
</tr>
<tr>
<td>Log Population</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>N</td>
<td>87</td>
<td>60</td>
</tr>
<tr>
<td>Adj. – R^2</td>
<td>0.01</td>
<td>0.79</td>
</tr>
</tbody>
</table>

**: Significant at 1 percent level.
*: Significant at 5 percent level.

The lower panel of Table 4 show the releases regression restricting the sample to countries with full samples of data. Print expenses continue to be correlated with the number of releases. However, there is no longer a correlation to operating costs. This result is consistent with operating costs being largely fixed costs.

An additional confirmation that the company thought of costs as fixed can be found in their discussion on whether to open a subsidiary in Peru (de Usabel 1975). UA estimated the costs of the office and determined how many films would have to be released to justify the expense.

Since 90 percent of total costs were operating costs, these results are evidence that fixed costs make up nearly all of the distribution expenses. It is a direct confirmation of the assumptions of HFT models, which assign a central role to fixed market entry costs.

8The sample is Argentina, Australia, Brazil, Columbia, Cuba, Mexico, New Zealand, Panama, Puerto Rico, India, Spain, Sweden, Switzerland and the United Kingdom.
Table 4: Releases Regressions

<table>
<thead>
<tr>
<th></th>
<th>Log Cost</th>
<th>Log Print</th>
<th>Log Operating</th>
</tr>
</thead>
<tbody>
<tr>
<td>Full Sample</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Log Releases (SE)</td>
<td>0.619**</td>
<td>0.917**</td>
<td>0.597**</td>
</tr>
<tr>
<td></td>
<td>(0.065)</td>
<td>(0.104)</td>
<td>(0.064)</td>
</tr>
<tr>
<td>N</td>
<td>87</td>
<td>83</td>
<td>87</td>
</tr>
<tr>
<td>Adj. – R^2</td>
<td>0.25</td>
<td>0.36</td>
<td>0.25</td>
</tr>
<tr>
<td>Balanced Panel</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Log Releases (SE)</td>
<td>0.033</td>
<td>1.032**</td>
<td>0.015</td>
</tr>
<tr>
<td></td>
<td>(0.126)</td>
<td>(0.350)</td>
<td>(0.126)</td>
</tr>
<tr>
<td>N</td>
<td>53</td>
<td>52</td>
<td>53</td>
</tr>
<tr>
<td>R^2</td>
<td>0.00</td>
<td>0.37</td>
<td>0.00</td>
</tr>
</tbody>
</table>

**: Significant at 1 percent level.
*: Significant at 5 percent level.

4.3.4 Office Discussion

Some of the findings contrast with other papers examining the effects of market size on export behavior, such as Melitz & Ottaviano (2008) and Mayer, Melitz & Ottaviano (2012). These papers predict that large markets have lower margins and more varieties. The lower margins in large markets are due to stronger competition reducing monopoly rents. Competition in the movie industry may take the form of quality competition. Major studios spent more per film for bigger stars and more elaborate visuals than independents. As noted above, small independent’s cheap genre films were relegated to secondary markets while major studio hits played in major urban theaters (Sedgwick 1994).

The invariance of varieties to market size may be due to movie exhibition having low variable costs. Print expenses were minor compared to the fixed costs of distribution and movie production. Once a film was made, the additional costs of offering it to a market
that was already served by an office was small. For some goods trade, the marginal cost of producing more varieties is probably substantial. If a (small) market has low returns, it will not be profitable to add many varieties.

5 Barriers to Trade

This section examines barriers to trade. I examine physical barriers to trade and cultural distance. I find that cultural distance has a stronger impact on sales.

The gravity literature emphasizes distance as a measure of trade barriers. There are two concepts of distance when it comes to cultural goods, physical and cultural. Physical distance may make it difficult to get original prints to a subsidiary or to communicate with the head office.

To measure physical distance, I use the great circle distance from New York City, where UA’s foreign office was based, to the ”main city” in the CEPII gravity indicator dataset. When the capital and the main city are different, UA’s subsidiary was generally based in the main city. For example, UA in Canada was based in Toronto, not Ottawa.

Physical distance is not an important trade barrier. Column 1 in Table 5 shows that distance is insignificant and has the wrong sign for explaining the profitability of a market. This finding differs from Hanson & Xiang (2011), who find a negative relationship between sales penetration and distance. It is somewhat surprising given that technological changes and a more stable political situation should make distance less of an impediment.

Cultural distance seems to be more important. Whether English is an official language is significant and positive while distance continues to be insignificant (Column 2). Column 3 includes the linguistic distance indicator developed by Hanson & Xiang (2011) which measures how different the languages spoken in a country are from English. This indicator is not sig-

Despite the vast majority of film production occurring in Los Angeles, all major studios ran their foreign operations out of New York.
Table 5: Margin Regressions: Distance

<table>
<thead>
<tr>
<th></th>
<th>(1)</th>
<th>(2)</th>
<th>(3)</th>
<th>(4)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Log Distance</td>
<td>0.114</td>
<td>0.052</td>
<td>0.151</td>
<td>-1.255</td>
</tr>
<tr>
<td>英文</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.314)</td>
<td>(0.266)</td>
<td>(0.362)</td>
<td>(1.278)</td>
</tr>
<tr>
<td>English</td>
<td>1.040**</td>
<td>1.492**</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.408)</td>
<td>(0.414)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Linguistic Dist.</td>
<td>-0.785</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(1.337)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lat. Diff.</td>
<td></td>
<td></td>
<td>-0.025**</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(0.006)</td>
<td></td>
</tr>
<tr>
<td>Long. Diff.</td>
<td>0.002</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.002)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>N</td>
<td>361</td>
<td>361</td>
<td>346</td>
<td>361</td>
</tr>
<tr>
<td>Adj. – R^2</td>
<td>0.08</td>
<td>0.09</td>
<td>0.09</td>
<td>0.37</td>
</tr>
</tbody>
</table>

**: Significant at 1 percent level.
*: Significant at 5 percent level.

significant. Column 4 includes additional geographical indicators, which measure the difference in latitude and longitude of the main city from New York. Difference in latitude is the only geographic variable that is significant, while English language is strongly significant.

Cultural differences limit the appeal of American films in two ways. Non-English speaking audiences will be less able to understand English language movies. They may need to be subtitled or dubbed into other languages. A factor in making linguistic differences more important was that in many markets, there was widespread illiteracy. In such markets where English was not spoken, an English language film needed to be dubbed or a portion of the population could not understand it. In fact, the advent of sound initially caused UA to pull back its presence in non-English speaking markets (Walsh 2008).
Language may also be a mark of cultural difference. Some stories may be too specific to the American market: westerns did poorly in many markets. Some motifs were offensive to local tastes. For example, films with stereotypical Latin villains could not be released in Latin America (de Usabel 1975). Using Korean data, Chung & Song (2007) show that consumers have a preference for home culture films.

Examining the data indicates that cultural distance trumps physical distance. Great Britain was UA’s most consistently profitable affiliate. Australia and New Zealand were profitable markets that were a long distance from New York. Aside from Canada, most nearby markets are not English speaking and were not as profitable.

The importance of English reflects UA strategy of serving English speaking populations, even in countries where English is not an official language. In Japan and China, UA concentrated on urban elites and expatriates that understood English. In South Africa, it distributed to theaters that catered to the English-speaking minority and made no effort to sell to the black majority or even Afrikaaners (Walsh 2008).

The lack of importance for distance may reflect that the use of subsidiaries may overcome the forces of “gravity.” A trade network can overcome higher costs in distant locations (Chaney 2011). Markets that are similar in other attributes may be easier to enter, even if they are not in close physical proximity. Morales et al. (2011) call this effect “extended gravity.” They find a significant extended gravity effects to language even for manufactured goods.

6 Conclusion

A firm can choose how intensely to serve a market. Small markets are not as profitable, so they are served by intermediaries. They generate less revenue but cost less. The return to effort in large markets is much higher, so the company was willing to expend the effort of establishing affiliates. These facts also suggest that modal choice may be an important aspect of trade and this choice is driven by market attributes.
The data suggest areas for future refinements of HFT models. Even within a country, there may be a number of market segments. In the case of movies, speakers of different languages within a country were distinct markets. UA generally was only interested in serving English speakers, since they were low cost. Dubbing into other languages was higher cost and was only undertaken in lucrative markets.
A Data

Foreign Income Sheets Basic data: United Artists Corporation Records (U.S. Mss 99AN):
Supplemented with: United Artists Corporation Records: Series 4C: Balance Sheets and
Associated Papers, 1919-1951.

B Summary Statistics

Table 6: Summary Statistics

<table>
<thead>
<tr>
<th>Item</th>
<th>Obs.</th>
<th>Mean</th>
<th>Std. Dev</th>
<th>Min</th>
<th>Max</th>
</tr>
</thead>
<tbody>
<tr>
<td>Played</td>
<td>454</td>
<td>3758211</td>
<td>1.14e+07</td>
<td>876.1817</td>
<td>9.63e+07</td>
</tr>
<tr>
<td>Operating</td>
<td>424</td>
<td>770344.6</td>
<td>1428194</td>
<td>0</td>
<td>1.10e+07</td>
</tr>
<tr>
<td>Print</td>
<td>446</td>
<td>71825.42</td>
<td>116250.5</td>
<td>-31002.41</td>
<td>1290101</td>
</tr>
<tr>
<td>Releases</td>
<td>88</td>
<td>16.42045</td>
<td>6.394541</td>
<td>1</td>
<td>29</td>
</tr>
</tbody>
</table>

References

Abel-Koch, Jennifer (2011), Firm size and the choice of export mode, Discussion Paper 1105,
Gutenberg School of Management and Economics.

Ahn, JaeBin, Amit K. Khandelwal & Shang-Jin Wei (2011), ‘The role of intermediaries in
Akerman, Anders (2012), Wholesalers and economies of scope in international trade, mimeo, Stockholm University.

Bernard, Andrew B., Emily J. Blanchard, Ilke Van Beveren & Hylke Vandenbussche (2012), Carry along trade, mimeo, Dartmouth College.

Bernard, Andrew B., Marco Grazzi & Chiara Tomasi (2011), Intermediaries in international trade: Direct and indirect modes of export, Working Paper 17711, NBER.

Blum, Bernardo S., Sebastian Claro & Ignatius J. Horstmann (2012), Import intermediaries and trade: Theory and evidence, mimeo, University of Toronto.

Chaney, Thomas (2011), The network structure of international trade, mimeo, University of Chicago.
Chung, Chul & Minjae Song (2007), Preference for cultural goods: Demand and welfare in the korea films market, mimeo, University of Rochester.

Gibson, Mark J. & Tim A. Graciano (2011), Cost of starting to trade and costs of continuing to trade, mimeo, Washington State University.

McCann, Fergal (forthcoming), ‘Indirect exporters’, *Journal of Industry, Competition and Trade*.

Ruhl, Kim J. (2005), Solving the elasticity puzzle in international economics, mimeo, University of Texas.

