International Risk Sharing with Endogenously Segmented Asset Markets

Simona Cociuba* Ananth Ramanarayanan†
Federal Reserve Bank of Dallas
January 31, 2011
Preliminary and Incomplete

Abstract

Asset price data imply a large degree international risk sharing, while aggregate consumption data do not. We evaluate how well a model with fixed costs of exchanging money for assets can account for this discrepancy. In our model, households receive idiosyncratic income shocks, and only a fraction of households adjust their asset holdings each period. These households share risk within and across countries, and their marginal utilities price assets, so asset prices imply high international risk sharing. Inactive households do not share risk, so aggregate consumption reflects low risk sharing. Quantitatively, this mechanism depends on the degree of asset market segmentation, which we choose so that the cross-sectional dispersion of consumption relative to income matches that in US data.

JEL codes: F36, F44, G15
Keywords: international risk sharing, real exchange rates, segmented markets, limited participation

*simona.cociuba@gmail.com
†ananth.ramanarayanan@gmail.com
1 Introduction

How much do countries share risk through international financial markets, and how big are the gains from doing so? The answers to these questions depend on how we measure the degree of risk sharing: statistics based on asset market data give significantly different answers from aggregate consumption data. For example, Brandt, Cochrane, and Santa-Clara (2006) show that stochastic discount factors derived from stock prices are very similar across countries, showing significant international risk sharing, while stochastic discount factors derived from aggregate consumption (i.e., intertemporal marginal rates of substitution) are weakly correlated across countries, and so display a lack of risk sharing. Similarly, Lewis (2000) argues that the high volatility of stochastic discount factors derived from stock data implies higher gains from international risk sharing than suggested by the low volatility of marginal utility growth derived from consumption data.

In this paper, we evaluate the extent to which frictions that limit participation in asset markets can account for the discrepancy between the asset-market-based view and the consumption-based view of international risk sharing. We consider a two-country model with international trade in goods and financial assets along the lines of Alvarez, Atkeson, and Kehoe (2002), in which households must pay a fixed cost to transfer money into or out of interest-bearing assets. Households face idiosyncratic and aggregate income shocks, and asset markets are endogenously segmented because only a fraction of households at any point in time find it beneficial to pay the fixed cost associated with adjusting their asset holdings. Households that actively adjust their asset holdings share risk among each other - both within and across countries. Since these households’ expected marginal utility growth determines asset prices, the behavior of asset prices implies a high degree of international risk sharing. On the other hand, these households account for only a (time-varying) fraction of aggregate consumption in each country, so measures of consumption risk-sharing imply a low degree of international risk sharing at the aggregate level.

We quantify this mechanism by calibrating our model to match facts on the cross-sectional variance of household income and consumption in US data. With standard parameters for preferences and the stochastic process governing aggregate shocks, the model predicts a high correlation of the stochastic discount factors that would be measured from asset price data (that is, the intertemporal marginal rates of substitution of active households) and a correlation of aggregate consumption across countries that is much lower.

Our model also has implications for the relationship between consumption and real exchange rates. As Alvarez, Atkeson, and Kehoe (2002) point out, asset market segmentation in principle breaks the link between aggregate consumption and real exchange rate fluctua-
tions. However, our results show that this asset market friction does not solve the Backus and Smith (1993) puzzle; that is, the ratio of aggregate consumption is highly correlated with the real exchange rate as well. Risk sharing among active households directly relates the ratio of their consumption in each country to fluctuations in the real exchange rate, but in practice, fluctuations in the relative price of different goods transmits risk sharing benefits of trade even to households that do not participate in asset markets (as pointed out by Cole and Obstfeld (1991)).

2 Model

2.1 Summary

The model is a variant of the two-country environment in Alvarez, Atkeson, and Kehoe (2002). We consider an infinite horizon pure-exchange economy with three goods: one internationally tradable good, and two nontradable goods. We refer to the two countries as “home” and “foreign”, and label foreign variables with an asterisk (*). In each country, there is a continuum of households who receive endowments of tradable and nontradable goods. Each household’s endowment of each good consists of an idiosyncratic component, which is i.i.d. across households and over time, and an aggregate component. Exogenous fluctuations in the aggregate components of endowments are exogenous are the source of uncertainty in the economy. We introduce tradable and nontradable goods to generate real exchange rate fluctuations, while allowing trade in goods at the same time. As pointed out by Brandt, Cochrane, and Santa-Clara (2006), if there were no trade in goods, consumption would be constrained by domestic resources, and there could be no risk sharing, even through trade in financial assets.

Households value consumption of both tradable goods and nontradable goods, and they can buy and sell internationally traded assets to insure against idiosyncratic and aggregate
fluctuations. However, they must pay a fixed cost to transfer goods into or out of these assets. This segmentation of households into active participants and non-participants in the asset market disconnects asset prices from aggregate consumption. In Alvarez, Atkeson, and Kehoe (2002), a similar separation of goods and assets accounts is specified through a cash-in-advance restriction with a fixed cost motivated as in Baumol (1952) and Tobin (1956). We abstract from money, and simply require households to pay a fixed cost whenever they consume more or less than their current period income. One motivation for such a cost is that there is a fixed cost to ensuring repayment of private debt, as described by Chatterjee and Corbae (1992). A fixed cost like this is also related to the stock market participation cost considered by Luttmer (1999).

2.2 Timing and Uncertainty

Time is discrete and labeled $t = 0, 1, \ldots$. At the beginning of period t, the aggregate endowments of tradable goods, Y_{Tt}, Y_{Tt}^*, and nontradable goods, Y_{Nt}, Y_{Nt}^*, are realized, and each household receives a draw y_t of an idiosyncratic shock from a distribution with density function f. This idiosyncratic shock determines the household's endowment of each good, $y_t Y_{Tt}$ and $y_t Y_{Nt}$ (and similarly in the foreign country). The mass of households in each country is normalized to 1, and the distribution of idiosyncratic endowments has mean 1, so that the aggregate tradable home endowment is in fact Y_{Tt}, and so on.

We refer to the aggregate event in period t as the realization of the four aggregate endowments, $s_t = (Y_{Tt}, Y_{Nt}, Y_{Tt}^*, Y_{Nt}^*)$, and define $s^t = (s_0, s_1, \ldots, s_t)$ as the history up to date t of these events, with s_0 given. A household’s state in period t is (s^t, y^t), where $y^t = (y_0, y_1, \ldots, y_t)$ is its history of idiosyncratic shocks. Let $g(s^t)$ denote the density of the aggregate state and $f(y^t)$ denote the density of the individual history (this is an abuse of notation, since f is also the density of the shock in each period. When used below, the argument of f will make it clear whether it refers to the density over histories or over current realizations.)

2.3 Households

Households have preferences given by:

$$
\sum_{i=0}^{\infty} \int \beta^i U \left(C \left(s^i, y^i \right) \right) g \left(s^i \right) f \left(y^i \right) ds^i dy^i
$$

with $\beta \in (0, 1)$ and $U(C) = C^{1-\eta} / (1 - \eta)$. The quantity $C(s^i, y^i)$ is the amount of a composite good consumed by a household in state (s^t, y^t). The composite good is given by
a constant elasticity of substitution aggregate of tradable and nontradable consumption,

\[C \left(s^t, y^t \right) = \left(ac_T \left(s^t, y^t \right)^{\frac{\sigma-1}{\sigma}} + (1 - a) c_N \left(s^t, y^t \right)^{\frac{\sigma-1}{\sigma}} \right)^{\frac{\sigma}{\sigma-1}} \]

where \(\sigma > 0 \) is the elasticity of substitution between tradable and nontradable goods, and \(a \in (0, 1) \) is the weight on tradable goods in consumption. We normalize the price of the tradable good to 1, and denote the price of the nontradable good in the home country by \(p_N \left(s^t \right) \). The price index for one unit of home country composite consumption as well as the demands for tradable and nontradable goods given a level \(C \) of composite consumption are given by the cost-minimization problem:

\[
P \left(s^t \right) C \ = \ \min_{c_T, c_N} c_T + p_N \left(s^t \right) c_N
\]

subject to:

\[
\left(a \left(c_T \right)^{\frac{\sigma-1}{\sigma}} + (1 - a) \left(c_N \right)^{\frac{\sigma-1}{\sigma}} \right)^{\frac{1}{\sigma-1}} \geq C
\]

which gives demands for tradable and nontradable consumption as functions of composite consumption:

\[
c_T \left(s^t, y^t \right) = \left(aP \left(s^t \right) \right)^{\sigma} C \left(s^t, y^t \right)
\]

\[
c_N \left(s^t, y^t \right) = \left(\frac{1 - a}{p_N \left(s^t \right) P \left(s^t \right)} \right)^{\sigma} C \left(s^t, y^t \right)
\]

and the price index for composite consumption purchases:

\[
P \left(s^t \right) = \left(a^{\sigma} + (1 - a)^{\sigma} p_N \left(s^t \right)^{1-\sigma} \right)^{\frac{1}{1-\sigma}}
\]

Households have two budget constraints: one that constrains current consumption and saving by income, and one that describes the evolution of their asset balances. We refer to the first as the “goods market budget constraint” and the second as the “asset market budget constraint”. In the goods market,

\[
P \left(s^t \right) C \left(s^t, y^t \right) \leq y_t \left[Y_{Tt} + p_N \left(s^t \right) Y_{Nt} \right] + z \left(s^t, y^t \right) \tau \left(s^t, y^t \right)
\]

where \(z \left(s^t, y^t \right) = 1 \) if the household consumes more or less than current income, and \(\tau \left(s^t, y^t \right) \) is the amount transferred into or out of the asset market account. If \(\tau > 0 \), then the household withdraws resources from the asset market account and consumes more than current income, and if \(\tau < 0 \), the household saves some of its current income.
In the asset market, all households start in period 0 with some amount \(b(s^0) \) of initial asset holdings. In any period, they can purchase a full set of one-period securities with payoffs contingent on the aggregate and idiosyncratic state in the next period, denominated in tradable goods. These transactions are carried out with a competitive financial intermediary. The price of a claim to one unit of tradable goods if the future event is \((s_{t+1}, y_{t+1})\) and the household’s current state is \((s_t, y_t)\) is \(q(s_t, s_{t+1}, y_t, y_{t+1})\). A household with history \((s_t', y_t')\) purchases \(b(s_t', s_{t+1}, y_{t+1})\) amount of these securities. The budget constraint for this household is:

\[
\int \int q(s_t', s_{t+1}, y_t', y_{t+1}) b(s_t', s_{t+1}, y_t', y_{t+1}) \, ds_{t+1} \, dy_{t+1} \\
+ z(s_t', y_t') \left[\tau(s_t', y_t') + \gamma \right] \leq b(s_t', y_t')
\]

so that the current payoff from asset holdings, \(b(s_t', y_t')\), is allocated toward purchases of new securities and transfers to the goods market account, if any. Transferring to or from the goods market (i.e., choosing \(z(s_t', y_t') = 1\)) requires the payment of a fixed amount \(\gamma\) of tradable goods out of asset balances.

For a foreign country in state \((s_t', y_t')\), the goods market budget constraint is:

\[
P^*(s_t') \, C^*(s_t', y_t') \leq y_t \left[Y^*_t + p^*_N(s_t') \, Y^*_N \right] + z^*(s_t', y_t') \, \tau^*(s_t', y_t')
\]

and the asset market budget constraint is:

\[
\int \int q(s_t', s_{t+1}, y_t', y_{t+1}) b^*(s_t', s_{t+1}, y_t', y_{t+1}) \, ds_{t+1} \, dy_{t+1} \\
+ z^*(s_t', y_t') \left[\tau^*(s_t', y_t') + \gamma \right] \leq b^*(s_t', y_t')
\]

For foreign households, the price index \(P^*(s_t')\) and the consumption levels \(c^*_T(s_t', y_t')\) and \(c^*_N(s_t', y_t')\) are defined the same way they are for the home country, given composite consumption level \(C^*(s_t', y_t')\) and the nontradable goods price \(p^*_N(s_t')\).

2.4 Asset market

There is a world financial intermediary that buys and sells assets from households. The intermediary has no wealth of its own, so total purchases of assets from households must equal sales of assets to other households. Net revenues of the intermediary when the aggregate state is \(s_t\) are given by adding up the transactions of \((s_{t+1}, y_{t+1})\)-contingent assets to households.
of all histories y^t:

$$
\int \int \int \int q\left(s^t, s_{t+1}, y^t, y_{t+1}\right) \left[b\left(s^t, s_{t+1}, y^t, y_{t+1}\right) + b^*\left(s^t, s_{t+1}, y^t, y_{t+1}\right)\right] f\left(y^t\right) dy^t dy_{t+1} ds_{t+1}
$$

The intermediary maximizes these net revenues subject to the constraint that at all future states s^{t+1}, net payments on s^{t+1}-contingent claims must be zero:

$$
\int \int \int \left[b\left(s^t, s_{t+1}, y^t, y_{t+1}\right) + b^*\left(s^t, s_{t+1}, y^t, y_{t+1}\right)\right] f\left(y^t\right) f\left(y_{t+1}\right) dy^t dy_{t+1} = 0
$$

That is, adding up the payments made on y_{t+1}-contingent purchases across households that had histories y^t must equal zero.

The intermediary’s problem yields the following no-arbitrage condition:

$$
q\left(s^t, s_{t+1}, y^t, y_{t+1}\right) = q\left(s^t, s_{t+1}\right) f\left(y_{t+1}\right)
$$

where $q\left(s^t, s_{t+1}\right) > 0$. This condition states that the value of one unit of tradable goods for a household in state (s^{t+1}, y^{t+1}) must equal the value of one unit of tradable goods for any household in aggregate state s^{t+1}, weighted by the probability of receiving the idiosyncratic shock y_{t+1} in period $t + 1$.

2.5 Market Clearing and Equilibrium

In the goods market, home households’ consumption plus foreign households’s consumption of tradable goods plus the fixed costs of transferring between accounts equals the world endowment of tradable goods:

$$
\int \left[c_T\left(s^t, y^t\right) + \gamma z\left(s^t, y^t\right)\right] f\left(y^t\right) dy^t + \int \left[c_T^*\left(s^t, y^t\right) + \gamma z^*\left(s^t, y^t\right)\right] f^*\left(y^t\right) dy^t = Y_T + Y_{Tt}^*
$$

The market clearing conditions for nontradable goods are:

$$
\int c_N\left(s^t, y^t\right) f\left(y^t\right) dy^t = Y_{Nt}
$$

$$
\int c_N^*\left(s^t, y^t\right) f\left(y^t\right) dy^t = Y_{Nt}^*
$$

In the asset market, at each aggregate state s^{t+1}, bond holdings summed across all
households equal zero:

\[
\int \int [b \left(s^t, s_{t+1}, y^t, y_{t+1} \right) + b^* \left(s^t, s_{t+1}, y^t, y_{t+1} \right)] f \left(y_{t+1} \right) dy_{t+1} f \left(y^t \right) dy^t = 0
\]

An equilibrium consists of goods prices and asset prices along with consumption quantities and asset holdings that solve households’ problems and the financial intermediary’s problem taking prices as given, and that satisfy the market clearing conditions.

2.6 Characterizing Equilibrium

We follow a similar procedure as in Alvarez, Atkeson, and Kehoe (2002) to show that an equilibrium is characterized by a few simple, static conditions determining consumption allocations and asset market participation decisions. The set of households that is active in asset markets (i.e., those for whom \(z \left(s^t, y^t \right) = 1 \)) is characterized by a static threshold rule: households with a current idiosyncratic income shock in a certain range transfer, and others do not. Active households pool their income within a period, and have equal consumption, while inactive households consume the value of their income.

To solve a household’s problem, we write a date-0 budget constraint. Letting \(Q \left(s^t \right) = q \left(s^0, s_1 \right) q \left(s^1, s_2 \right) \cdots q \left(s^{t-1}, s_t \right) \) denote the price of tradable goods at state \(s^t \) in terms of tradable goods at date 0, and using the no-arbitrage condition (5), the sequence of budget constraints for home country households (4) can be written:

\[
\sum_{t=0}^{\infty} \int s^t \int y^t Q \left(s^t \right) f \left(y^t \right) z \left(s^t, y^t \right) \tau \left(s^t, y^t \right) + \gamma \right) ds^t dy^t \leq b \left(s^0 \right)
\]

(6)

The household’s problem is then to choose consumption, \(C \left(s^t, y^t \right) \), transfer decisions \(z \left(s^t, y^t \right) \), and transfers \(\tau \left(s^t, y^t \right) \) to maximize expected utility (1) subject to (6) and the goods market budget constraint, (3).

The first order conditions for \(C \) and \(\tau \) are:

\[
\beta^t U' \left(C \left(s^t, y^t \right) \right) g \left(s^t \right) f \left(y^t \right) = P \left(s^t \right) \mu \left(s^t, y^t \right) \\
z \left(s^t, y^t \right) \mu \left(s^t, y^t \right) = \lambda Q \left(s^t \right) f \left(y^t \right) z \left(s^t, y^t \right)
\]

where \(\lambda \) is the multiplier on the date-0 budget constraint and \(\mu \left(s^t, y^t \right) \) is the multiplier on the goods market budget constraint in state \(\left(s^t, y^t \right) \).

In states \(\left(s^t, y^t \right) \) for which \(z \left(s^t, y^t \right) = 1 \), these first order conditions become:

\[
\beta^t U' \left(C \left(s^t, y^t \right) \right) g \left(s^t \right) = P \left(s^t \right) \lambda Q \left(s^t \right)
\]
which says that \(C(s^t, y^t) \) is independent of \(y^t \) if \(z(s^t, y^t) = 1 \). That is, idiosyncratic risk is pooled among all active households, and they all consume the same level. Call this consumption level \(C_A(s^t) \), for “active” households’ consumption.

Now, we consider the choice of \(z \). We know that if \(z(s^t, y^t) = 1 \), then \(C(s^t, y^t) = C_A(s^t) \) and the amount transferred into or out of the asset market account is whatever it needs to be: \(\tau(s^t, y^t) = P(s^t)C_A(s^t) - y_t(Y_{Tt} + p_N(s^t)Y_{Nt}) \). So we can write the household’s problem:

\[
\max \sum_{t=0}^{\infty} \int_{s^t} \int_{y^t} \beta^t [z(s^t, y^t) U(C_A(s^t)) + (1 - z(s^t, y^t)) U(C(s^t, y^t))] g(s^t) f(y^t) ds^t dy^t \\
\text{subject to:} \\
\sum_{t=0}^{\infty} \int_{s^t} \int_{y^t} Q(s^t) f(y^t) z(s^t, y^t) [P(s^t)C_A(s^t) - y_t(Y_{Tt} + p_N(s^t)Y_{Nt}) + \gamma] ds^t dy^t \leq b(s^0)
\]

If we consider the Lagrangian of this problem (again with multiplier \(\lambda \) on the date-0 budget constraint), the value in state \((s^t, y^t)\) of setting \(z(s^t, y^t) = 1 \) is:

\[
\beta^t U(C_A(s^t)) g(s^t) f(y^t) - \lambda Q(s^t) f(y^t) [P(s^t)C_A(s^t) - y_t(Y_{Tt} + p_N(s^t)Y_{Nt}) + \gamma]
\]

And the value of setting \(z(s^t, y^t) = 0 \), using the fact that \(C(s^t, y^t) = \frac{y_t(Y_{Tt} + p_N(s^t)Y_{Nt})}{P(s^t)} \) when \(z(s^t, y^t) = 0 \), is:

\[
\beta^t U \left(\frac{y_t(Y_{Tt} + p_N(s^t)Y_{Nt})}{P(s^t)} \right) g(s^t) f(y^t)
\]

The value of \(\lambda \) is given by the first order condition when \(z = 1 \):

\[
\lambda = \frac{\beta^t U' (C_A(s^t)) g(s^t)}{P(s^t) Q(s^t)} \tag{7}
\]

So the net gain of setting \(z(s^t, y^t) = 1 \) versus setting \(z(s^t, y^t) = 0 \) is positive whenever:

\[
U(C_A(s^t)) - U \left(\frac{y_t(Y_{Tt} + p_N(s^t)Y_{Nt})}{P(s^t)} \right) \\
- \frac{U'(C_A(s^t))}{P(s^t)} [P(s^t)C_A(s^t) - y_t(Y_{Tt} + p_N(s^t)Y_{Nt}) + \gamma] > 0 \tag{8}
\]

The first two terms in (8) give the increase in consumption for a household in state \((s^t, y^t)\) that switches from being inactive to being active. The third term gives the net cost of the change in asset balances necessary to get to the active consumption level \(C_A(s^t) \): an active household increases or reduces asset balances, which has an effect on future lifetime utility.
So, define the function

\[h(y; C_A, Y_T, Y_N, p_N, P) = U(C_A) - U\left(\frac{y(Y_T + p_N Y_N)}{P}\right) - \frac{U'(C_A)}{P} [P C_A - y(Y_T + p_N Y_N) + \gamma] \]

It is straightforward to verify that \(h \) has a minimum when \(y = \frac{P C_A}{(Y_T + p_N Y_N)} \), is decreasing for \(y < \frac{P C_A}{(Y_T + p_N Y_N)} \) and increasing for \(y > \frac{P C_A}{(Y_T + p_N Y_N)} \), and is convex. For the utility function we use, \(U(C) = C^{1-\eta}/(1 - \eta) \) with \(\eta > 0 \), \(\lim_{y \to 0} h = \lim_{y \to \infty} h = \infty \), so that \(h \) is U-shaped, with two zeros. We’ll refer to the two zeros of \(h \) as \(y_L(s^t) \) and \(y_H(s^t) \), with \(y_L < y_H \). For households with \(y_t \in [y_L(s^t), y_H(s^t)] \), the cost of transferring outweighs the benefit, so they consume their current income in period \(t \). For households with \(y_t < y_L(s^t) \) or \(y_T > y_H(s^t) \), the benefit of being active and consuming \(C_A(s^t) \) outweighs the cost.

The characterization of this decision is analogous in the foreign country, where active households consume \(C_A^*(s^t) \). Combining the first order condition (7) with its foreign analogue, yields the following risk-sharing condition:

\[\frac{P^*(s^t)}{P(s^t)} = \frac{\lambda^* U'(C_A(s^t))}{\lambda U'(C_A^*(s^t))} \]

This condition relates the ratio of marginal utilities to the real exchange rate, the ratio of consumption price indices in the two countries. The marginal utility of home country active households relative foreign country active households’ rises in proportion to the appreciation of the home real exchange rate. Active households therefore share the risk associated with national endowment shocks internationally.

An equilibrium allocation is characterized by active consumption levels and cutoffs determining the set of active households in each country, along with the implied consumption levels for tradable and nontradable goods. The market clearing conditions can be written:

\[Y_{Tt} + Y_{Tt}^* = \int_{y_L(s^t)}^{y_H(s^t)} c_T(s^t, y^t) f(y) dy + [F(y_L(s^t)) + 1 - F(y_H(s^t))] (c_{TA^*}(s^t) + \gamma) \]

\[+ \int_{y_L(s^t)}^{y_H^*(s^t)} c_T^*(s^t, y^t) f(y) dy + [F(y_L^*(s^t)) + 1 - F(y_H^*(s^t))] (c_{TA^*}(s^t) + \gamma) \]

\[Y_{Nt} = \int_{y_L(s^t)}^{y_H(s^t)} c_N(s^t, y^t) f(y) dy + [F(y_L(s^t)) + 1 - F(y_H(s^t))] c_{NA^*}(s^t) \]
\[Y_{Nt}^* = \int_{y_L(s^t)}^{y_H(s^t)} c_N^*(s^t, y) f(y) \, dy + \left[F(y_L^*(s^t)) + 1 - F(y_H^*(s^t)) \right] c_{NA}^*(s^t) \]

where \(F \) is the cdf associated with the density \(f \), and \(c_{TA}(s^t), c_{NA}(s^t) \), and \(c(s^t, y^t) \) follow from the demand functions in (2) (and the foreign analogues).

All equilibrium variables depend only on the current realization of \(s_t = (Y_{Tt}, Y_{Nt}, Y_{T1}, Y_{N1}) \) and not on its history. For each \(s_t \), we solve the three market clearing conditions along with the risk-sharing condition (9) and the conditions \(h(y_L(s^t)) = h(y_H(s^t)) = (y_L^*(s^t)) = (y_H^*(s^t)) = 0 \) for the active consumption levels, the thresholds for households to make transfers, and the equilibrium prices of nontradable goods, \(p_N(s^t) \) and \(p_N'(s^t) \). We solve for an equilibrium in which all home and foreign households are identical in period 0, so that \(\lambda = \lambda^* \) in (9).

3 Numerical Results

3.1 Parameterization

We set the parameters governing preferences to standard values in the international trade and business cycle literatures. We set \(\beta = 0.96 \) and \(\eta = 2 \). We set the elasticity of substitution \(\sigma \) between tradable and nontradable goods to 0.5, and we set the share \(a \) on tradable goods in consumption so that the fraction of expenditures on tradable goods is 50\%. These are both close to the values estimated in Stockman and Tesar (1995).

We choose the distribution of idiosyncratic income shocks and the fixed cost of making a transfer to match the cross-sectional variance of log income and consumption in the US in 1980 reported by Krueger and Perri (2006). We choose the income distribution to be lognormal, with a mean of 1, and a variance of log income of 0.34.

Varying the fixed cost \(\gamma \) allows us to match a given cross-sectional variance of consumption: an arbitrarily low value of \(\gamma \) implies that all households are active, and hence the variance of consumption is zero, while an arbitrarily high value of \(\gamma \) means that no households are active, so that the variance of consumption equals the variance of income. Krueger and Perri (2006)'s data show that the variance of log consumption in 1980 was about 0.18, relative to a 0.34 variance of log income. The implied value of \(\gamma \) is 1.13 units of tradable consumption, and about 18\% of households are active per period in the steady state. About 6.3\% of steady state real income spent on transaction costs per period.

While income and consumption inequality have both risen in the US, our model assumes a time-invariant cross-sectional variance of income, so we pick one point in the Krueger and Perri (2006) sample, and plan to examine how the results change when we vary the
parameters to match different targets.

As an illustration of the model’s time series properties, we assume that the endowment shocks in each sector within a country are the same $Y_{Tt} = Y_{Nt} = Y_t$, and that this shock in each country follows an AR(1) process in logs,

$$\log Y_{t+1} = \rho \log Y_t + \varepsilon_{t+1}$$

where ε_{t+1} is normally distributed with mean zero and standard deviation 0.01. The foreign shock has a similar process, so that shocks to each country are uncorrelated, while shocks across sectors (tradable and nontradable) within a country are perfectly correlated.

3.2 Implications for International Risk Sharing

The data in Brandt, Cochrane, and Santa-Clara (2006) suggest that stochastic discount factors computed from asset price data are highly correlated across countries, while the intertemporal marginal rate of substitution computed from aggregate consumption is not very correlated. A standard model in which all households actively participated in asset markets in each period would not generate such a disparity. In addition, international business cycle models such as Backus, Kehoe, and Kydland (1992) and Stockman and Tesar (1995) generate correlations in consumption across countries that are too high relative to output when compared to the data.

Table 1 presents results for our baseline parameterization, and for two alternative asset market structures. We compute the following statistics for all households and for active households alone: the cross-country correlation of consumption, the correlation of the intertemporal marginal rate of substitution, and a risk sharing index developed by Brandt, Cochrane, and Santa-Clara (2006). This index (labeled BCS risk sharing index in the table) is:

$$1 - \frac{\text{var} \left(m_{t,t+1} - m_{t,t+1}^* \right)}{\text{var} \left(m_{t,t+1} \right) + \text{var} \left(m_{t,t+1}^* \right)}$$

where $m_{t,t+1}$ is a measure of the intertemporal marginal rate of substitution (e.g. $\beta^t \left(C_{At+1}/C_{At} \right)^{-\eta}$ for active households). This index lies between -1 and 1, with a value of 1 implying that $m_{t,t+1} = m_{t,t+1}^*$, and therefore there is perfect risk sharing.

The significance of constructing statistics with two different measures of consumption (active vs. all households) is that active households price assets, so their intertemporal marginal rate of substitution is reflected in asset prices. Hence, the analogue of Brandt, Cochrane, and Santa-Clara (2006)’s construction of SDF’s from stock market data in our model is to use the MRS of active households. Statistics based on aggregate consumption in
our model correspond to measures of risk sharing based on aggregate consumption.

<table>
<thead>
<tr>
<th>Table 1: Model Results, and Alternative Asset Market Structures</th>
</tr>
</thead>
<tbody>
<tr>
<td>Benchmark Model</td>
</tr>
<tr>
<td>Standard Deviation (%)</td>
</tr>
<tr>
<td>income</td>
</tr>
<tr>
<td>real exchange rate</td>
</tr>
<tr>
<td>International Correlations</td>
</tr>
<tr>
<td>real income</td>
</tr>
<tr>
<td>Aggregate variables</td>
</tr>
<tr>
<td>consumption</td>
</tr>
<tr>
<td>intertemporal MRS</td>
</tr>
<tr>
<td>BCS risk sharing index</td>
</tr>
<tr>
<td>Active households’ variables</td>
</tr>
<tr>
<td>consumption</td>
</tr>
<tr>
<td>intertemporal MRS</td>
</tr>
<tr>
<td>BCS risk sharing index</td>
</tr>
<tr>
<td>Correlation between $\frac{C}{e}$ and $\frac{P}{e}$</td>
</tr>
<tr>
<td>all households</td>
</tr>
<tr>
<td>active households</td>
</tr>
</tbody>
</table>

Note: averages of statistics of logged series from 100 simulations of 100 periods each.

We see in the first column of Table 1 that the model generates a substantial difference between the asset-price based risk sharing measures (those for active households) and the measures based on aggregate consumption. The correlation of consumption, the correlation of the intertemporal MRS, and the BCS risk sharing index are all nearly twice as high for active households as for all households. Active households in each country trade a complete set of state-contingent assets, and thus are able to share country-specific risk with active households in the other country. Thus, the model goes some way toward explaining the discrepancy that asset prices imply high risk sharing while aggregate consumption suggests low risk sharing.

Our model doesn’t solve the Backus and Smith (1993) puzzle: the real exchange rate and the cross-country ratio of aggregate consumption is highly correlated in the model (see the last two rows of Table 1). For consumption among active households, this high correlation is dictated by the condition (9). However, even for households that do not participate in asset markets, and therefore for whom an analogue of (9) does not hold, a moderate degree of risk sharing is achieved; indeed, the table shows that aggregate consumption is significantly more correlated than output. This is a result of the mechanism highlighted by Cole and
Obstfeld (1991): relative price fluctuations provide insurance to households even if they do not participate in international financial markets. In our model, a positive foreign shock raises the price of home country nontraded goods relative to foreign country nontraded goods, so home consumption falls relative to foreign consumption, even for inactive households. Since this relationship between relative prices and consumption works similarly for active and inactive households, the correlation between the real exchange rate and consumption is very close whether we look at active household consumption or aggregate consumption.

In the second column of Table 1, we solve the model assuming that all households or active, or equivalently that $\gamma = 0$. The measures of risk sharing are all close to the levels of the measures for aggregate consumption in the benchmark model, and therefore cannot explain the high degree of risk sharing implied by asset prices in the data.

In the last column of Table 1, we solve the model with the fraction of active households fixed at the steady state level of the full model, to evaluate how important endogenous segmentation is. In this model with a fixed fraction of households active, we assume that the idiosyncratic shock y is distributed i.i.d. across both active and inactive households, according to the same distribution f. We see that this model generates far less volatility in the real exchange rate, and there is essentially perfect risk sharing among the set of active households.

In Table 2, we consider two different goods market structures. The first column is our benchmark model with tradable and nontradable goods; the second is for a model with only one good that is freely traded across countries; and the last column is a model with no trade in goods, which is closest to the original model in Alvarez, Atkeson, and Kehoe (2002).

With only one good that is traded, there are no movements in the real exchange rate, and there is perfect risk sharing among active households. With no trade in goods at all, there is essentially no risk sharing, even among active households, because consumption of all households within a country is constrained by domestic endowments.

4 Conclusions and Future Work

A simple extension of the segmented asset markets model in Alvarez, Atkeson, and Kehoe (2002) has the potential to resolve the puzzle highlighted by Brandt, Cochrane, and Santa-Clara (2006), namely that the behavior of asset prices in different countries suggests a high degree of international risk sharing, while the behavior of aggregate consumption suggests the opposite.

Our contributions are in quantifying the degree to which segmented asset markets explain this discrepancy. Firstly, we can calibrate the model’s degree of asset market segmentation
Table 2: Alternative Goods Market Structures

<table>
<thead>
<tr>
<th>Standard Deviation (%)</th>
<th>Benchmark Model</th>
<th>One good</th>
<th>No trade in goods</th>
</tr>
</thead>
<tbody>
<tr>
<td>income</td>
<td>2.06</td>
<td>2.06</td>
<td>2.06</td>
</tr>
<tr>
<td>real exchange rate</td>
<td>2.08</td>
<td>0</td>
<td>6.02</td>
</tr>
<tr>
<td>International Correlations</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>real income</td>
<td>0.02</td>
<td>0.02</td>
<td>0.02</td>
</tr>
<tr>
<td>Aggregate variables</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>consumption</td>
<td>0.42</td>
<td>0.38</td>
<td>0.02</td>
</tr>
<tr>
<td>intertemporal MRS</td>
<td>0.43</td>
<td>0.39</td>
<td>0.01</td>
</tr>
<tr>
<td>BCS risk sharing index</td>
<td>0.38</td>
<td>0.34</td>
<td>-0.07</td>
</tr>
<tr>
<td>Active households’ variables</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>consumption</td>
<td>0.78</td>
<td>1.00</td>
<td>0.02</td>
</tr>
<tr>
<td>intertemporal MRS</td>
<td>0.79</td>
<td>1.00</td>
<td>0.01</td>
</tr>
<tr>
<td>BCS risk sharing index</td>
<td>0.77</td>
<td>1.00</td>
<td>-0.07</td>
</tr>
<tr>
<td>Correlation between $\frac{C}{C^}$ and $\frac{\pi}{\pi^}$</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>active households</td>
<td>1.00</td>
<td>0.00</td>
<td>1.00</td>
</tr>
<tr>
<td>all households</td>
<td>0.99</td>
<td>0.00</td>
<td>1.00</td>
</tr>
</tbody>
</table>

Note: averages of statistics of logged series from 100 simulations of 100 periods each.

to features of the cross-sectional distribution of consumption and income. Second, with more than one good, relative price fluctuations provide consumption insurance even in the absence of asset markets, so it is not obvious that segmenting markets will lead to poor observed risk sharing for inactive households. In addition, there can be no actual risk sharing without trade in goods, so the structure of the goods market matters, and it is necessary to go beyond one-good models without trade in goods.

Extensions to be done include a better choice of the idiosyncratic income process, that allows for persistent differences across households. Also, with micro data in more than one country, we could construct measures of active households’ consumption and ask whether the real exchange rate in the data comoves better with this object, in the same way Kocherlakota and Pistaferri (2007) examine higher moments of the consumption distribution. Finally, including production and physical capital investment would allow us to evaluate the performance of the model at matching other international business cycle statistics.
References

