Mis-match, Re-match and Investment

Thomas Gall¹, Patrick Legros² Andrew F. Newman³

¹University of Bonn, visiting Boston U,
²ECARES, ULB and CEPR,
³Boston U and CEPR

North American Summer Meeting
of the Econometric Society, June 2009
Matching Matters

Private and social payoffs to many activities depend not only on one’s own characteristics but also on those of one’s partners:

- Production
- School
- Marriage

Often characteristics endogenous, result of investments. Payoffs from future match will affect investment incentives:

- Production – skill acquisition
- School – parents, early education
- Marriage – charm school, health clubs
Sharing the Surplus

Efficient matching and investment depends on partners’ ability to share the fruits of joint production flexibly

- Assures that partners get the appropriate “marginal product”
- Investment returns correctly reflect scarcity

In many situations, sharing is problematic and payoffs instead are rigid (NTU). This project

- investigates consequences of NTU for nature of matching and investment
- provides efficiency rationale for affirmative action-type policies (AR)
- looks at effects of various policies
Associational Redistribution

- AR policies, such as affirmative action, can be understood as correcting mismatch (e.g. in form of too much segregation).
- Mismatch may lead to persistent inequality, exclusion, low productivity of some groups.
- Motivation appears in part to encourage investment, especially by the “disadvantaged”.

Sources of mismatch:

- Search costs,
- statistical discrimination, self-confirming beliefs (Coate-Loury, 1993),
- NTU (this paper).
Nontransferable Utility

Compensating partners may be costly in terms of joint surplus:

- incentive problems within relationships (moral hazard in teams, incomplete contracts)
- commitment problems: surplus sharing determined by ex-post bargaining
- reputational payoffs
- liquidity constraints
- risk aversion
- “behavioral” considerations, e.g., inequity aversion, envy.
A Basic Example: Effect of NTU on Matching

<table>
<thead>
<tr>
<th></th>
<th>h</th>
<th>ℓ</th>
</tr>
</thead>
<tbody>
<tr>
<td>h</td>
<td>$2W$</td>
<td>$2w$</td>
</tr>
<tr>
<td>ℓ</td>
<td>$2w$</td>
<td>0</td>
</tr>
</tbody>
</table>

- Payoffs $2w > W > w$, (i.e. $2W - 2w < 2w - 0$)
- (h, ℓ) firms form in equilibrium
A Basic Example: Effect of NTU on Matching

<table>
<thead>
<tr>
<th>TU</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>h</td>
<td>ℓ</td>
</tr>
<tr>
<td>h</td>
<td>$2W$</td>
<td>$2w$</td>
</tr>
<tr>
<td>ℓ</td>
<td>$2w$</td>
<td>0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>NTU</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>h</td>
<td>ℓ</td>
</tr>
<tr>
<td>h</td>
<td>W, W</td>
<td>w, w</td>
</tr>
<tr>
<td>ℓ</td>
<td>w, w</td>
<td>0, 0</td>
</tr>
</tbody>
</table>

- Payoffs $2w > W > w$, (i.e. $2W - 2w < 2w - 0$)
- (h, ℓ) firms form in equilibrium

- Payoffs $W > w$,
- (h, h) and (ℓ, ℓ) firms form.
Effect of NTU on Market’s Scarcity Signals

<table>
<thead>
<tr>
<th>Scarce h</th>
<th>Scarce ℓ</th>
</tr>
</thead>
<tbody>
<tr>
<td>$w(h), w(\ell)$</td>
<td>$w(h), w(\ell)$</td>
</tr>
<tr>
<td>TU</td>
<td>$2w, 0$</td>
</tr>
<tr>
<td>NTU</td>
<td>$W, 0$</td>
</tr>
</tbody>
</table>
Effect of NTU on Market’s Scarcity Signals

<table>
<thead>
<tr>
<th>Scarce h</th>
<th>Scarce ℓ</th>
</tr>
</thead>
<tbody>
<tr>
<td>$w(h), w(\ell)$</td>
<td>$w(h), w(\ell)$</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>TU</th>
<th>NTU</th>
</tr>
</thead>
<tbody>
<tr>
<td>$2w, 0$</td>
<td>$W, 2w - W$</td>
</tr>
<tr>
<td>$W, 0$</td>
<td>$W, 0$</td>
</tr>
</tbody>
</table>

More inequality: TU NTU
Effect of NTU on Market’s Scarcity Signals

<table>
<thead>
<tr>
<th>Scarce h</th>
<th>Scarce ℓ</th>
</tr>
</thead>
<tbody>
<tr>
<td>$w(h)$, $w(\ell)$</td>
<td>$w(h)$, $w(\ell)$</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>TU</th>
<th>NTU</th>
</tr>
</thead>
<tbody>
<tr>
<td>2w, 0</td>
<td>W, 0</td>
</tr>
<tr>
<td>W, 0</td>
<td>W, 0</td>
</tr>
</tbody>
</table>

More inequality:
- TU
- NTU

Larger return on skill:
- TU
- NTU
Matching and Investment

If (1) TU and (2) no asymmetric info efficient equilibria exist (Cole-Mailath-Postlewaite, 2001; Felli-Roberts, 2002)
Matching and Investment

If (1) TU and (2) no asymmetric info efficient equilibria exist (Cole-Mailath-Postlewaite, 2001; Felli-Roberts, 2002)

Matching and Investment

If (1) TU and (2) no asymmetric info efficient equilibria exist (Cole-Mailath-Postlewaite, 2001; Felli-Roberts, 2002)

Efficiency
Of the Match, By the Match, For the Match

Of (Mismatch due to NTU)

By (Pareto frontier \neq iso-surplus)

For (Distorted investments)
Efficiency

Of the Match, By the Match, For the Match

Of (Mismatch due to NTU)

By (Pareto frontier \neq iso-surplus)

For (Distorted investments)
Efficiency
Of the Match, By the Match, For the Match

Of (Mismatch due to NTU)

By (Pareto frontier \neq iso-surplus)

For (Distorted investments)
Efficiency
Of the Match, By the Match, For the Match

Of

(Mismatch due to NTU)

By

(Pareto frontier \neq iso-surplus)

For

(Distorted investments)
Labor Market and Production

- Continuum of agents with unit measure.
- Agents have type $a \in \{h, \ell\}$; q is fraction of type h.
- Production in firms of size two: total output $y(a, a')$:

<table>
<thead>
<tr>
<th></th>
<th>h</th>
<th>ℓ</th>
</tr>
</thead>
<tbody>
<tr>
<td>h</td>
<td>$2W$</td>
<td>$2w$</td>
</tr>
<tr>
<td>ℓ</td>
<td>$2w$</td>
<td>0</td>
</tr>
</tbody>
</table>

Diversity gain: $2w > W > w$
$W < 1$ (normalization)

- Agent’s utility: income.
- **Stable matches**, match $m(a)$, payoff $u(a)$: no pair $\langle a, a' \rangle$, $a' \neq m(a)$ can obtain more than $u(a)$ and $u(a')$.
TU Benchmark

Stable matches are always integrated:
- firms are of the form \(\langle h, \ell \rangle \) as much as possible,
- some of the majority type segregate,
- output is maximized.

<table>
<thead>
<tr>
<th>Wages (w(\ell), w(h))</th>
<th>Output</th>
</tr>
</thead>
<tbody>
<tr>
<td>(q < \frac{1}{2})</td>
<td>0, 2w</td>
</tr>
<tr>
<td>(q > \frac{1}{2})</td>
<td>2w − (W), (W)</td>
</tr>
</tbody>
</table>
NTU – Laissez-faire

Strict NTU: output is shared equally within matches (can be relaxed). Individual payoffs are

<table>
<thead>
<tr>
<th></th>
<th>h</th>
<th>l</th>
</tr>
</thead>
<tbody>
<tr>
<td>h</td>
<td>W</td>
<td>w</td>
</tr>
<tr>
<td>l</td>
<td>w</td>
<td>0</td>
</tr>
</tbody>
</table>

\[W > w \Rightarrow \text{unique stable match is segregation, yields measures } q/2 \text{ of } (h, h) \]
and \((1-q)/2 \text{ of } (l, l) \text{ firms.}

Welfare?

- Total output is \(qW\): less than under TU, too much segregation.
- Policy: Rematching (AR) may increase output.
Achievement Based AR

- Match h and ℓ where possible; remaining agents match in homogeneous firms.
- Payments are w for agents in integrated ($\langle h, \ell \rangle$) and 0 (or W) for those in segregated ($\langle \ell, \ell \rangle, \langle h, h \rangle$) firms.
- Since the match replicates the TU match, aggregate surplus increases.
- This illustrates a generic justification for AR.
- Examples: workfare, Work Opportunity Tax Credit, certain European active labor market programs.
- Such policies have been criticized as bad for incentives; this is possible if h and ℓ are endogenous.
Investments

- Suppose $\pi \in [0, 1]$ of the population can invest.
- Investing e, an agent incurs utility cost $e^2/2$ and has probability e (independent across agents) of achieving education h (with $1 - e$ achievement is ℓ).

TU Benchmark

- Agents rationally expect payoffs from stable match, taking q as given; in symmetric equilibrium $q = \pi e$.
- Agents maximize $ew(h) + (1 - e)w(\ell) - \frac{1}{2}e^2$.
- TU Equilibrium:
 - if $2w\pi < \frac{1}{2}$: $q < \frac{1}{2}$, $w(h) = 2w$, $w(\ell) = 0$ and $e = 2w$,
 - if $2(W - w)\pi > \frac{1}{2}$: $q > \frac{1}{2}$, $w(h) = W$, $w(\ell) = 2w - W$, and $e = 2(W - w)$,
 - else $q = \frac{1}{2}$, $w(h) = w + \frac{1}{4\pi}$, $w(\ell) = w - \frac{1}{4\pi}$ and $e = \frac{1}{2\pi}$.
Laissez-faire: NTU

- Individual optimization when labor market segregates:
 \[\max_e e W - \frac{1}{2} e^2. \]

- Optimal choice satisfies \(e^{LF} = W \).

Investment:

- \textit{Overinvestment} relative to TU if \(\pi W > \frac{1}{2} \) (since \(W > 2(W - w) \)).
- \textit{Underinvestment} if \(\pi W < \frac{1}{2} \).
Achievement Based Associational Redistribution

- Suppose $q < 1/2$ (the only equilibrium).

$$
\max_{e} e w + (1 - e) \frac{q}{1 - q} w - e^2 / 2
\Rightarrow e^A = \frac{1 - 2q}{1 - q} w < w < e^{LF}
$$

- Also: $e^A < e^{TU}$, e^A decreases with π (insurance effect).

Two effects:
- Dynamic: investment incentives decrease due to “insurance”.
- Static: improved matching though re-matching h to ℓ.
Background

- Ramsey taxation logic: AR policy ought to aim at less elastic characteristics.
- Now agents have background $b \in \{p, u\}$, π is fraction of p.
- Background can affect *investment* or *production* stage.
- Suppose for now it affects investment in that p can invest, u agents cannot.
- Background based policy matches p with u wherever possible; leaves agents free to match as they wish by achievement.
Background Based Policy – *Investment Relevant Case*

- Background is a good predictor of achievement (*u* are likelier to have outcome *ℓ* than *p* agents).
- Hence, a background based policy achieves a degree of efficient sorting by achievement (for low *π* it does as well as possible!).
- Investment incentives?
Background Based Policy – *Investment Relevant Case*

- Background is a good predictor of achievement (*u* are likelier to have outcome *l* than *p* agents).
- Hence, a background based policy achieves a degree of efficient sorting by achievement (for low *π* it does as well as possible!).
- Investment incentives?

\[e^{LF} > e^B > e^A \]

- Reason: background based policy has no insurance effect for *p* agents.
Comparing A and B

(a) $\pi < 1/2$

(b) $\pi > 1/2$

Figure: Laissez-faire, Achievement, and Background Based Policies
Background Affects Output

Individual background matters for interaction in firms, schools, etc.

Social externalities through background may take place

- **at investment stage**: peer effects in schools $\langle b, b' \rangle$ (see paper).
- **at production stage**: firm output depends also on background $\hat{y}(a, a', b, b')$, suppose this is the case in the following.
Background Affects Output

Individual background matters for interaction in firms, schools, etc.

Social externalities through background may take place

- at investment stage: peer effects in schools \(\langle b, b' \rangle \) (see paper).
- at production stage: firm output depends also on background \(\hat{y}(a, a', b, b') \), suppose this is the case in the following.
- Now background-dependent cost \(g(b, b') \) incurred at production, so that output is \(\hat{y} = y(a, a') - g(b, b') \) with:

<table>
<thead>
<tr>
<th>(g(b, b'))</th>
<th>(u)</th>
<th>(p)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(u)</td>
<td>(F)</td>
<td>(f)</td>
</tr>
<tr>
<td>(p)</td>
<td>(f)</td>
<td>(0)</td>
</tr>
</tbody>
</table>

Let \(F > w > f, \ F > 2f, \) and \(W - w > F - f \), i.e. convex cost (DD again) and education matters more than background.

NTU: equal sharing.
Investment Incentives?

- TU allocation: exhausts all possible \((hu, lp)\) and \((lu, hp)\) matches, investments depend on marginal social benefit (that is, on scarcity and technology).
- Laissez-faire under NTU: all types segregate, investments are \(W\) for \(p\), and \(W - F\) for \(u\).
- Since wages are independent of scarcity, for both \(W - w\) and \(\pi\) high, simultaneous overinvestment at the top, underinvestment at the bottom for \(W - w\) small and \(\pi\) high, universal underinvestment.
AR Policy

- Achievement based policy: match h and ℓ, allow segregation by background
- Background based policy: match u and p, allow segregation in achievement

Proposition Agents invest

- $e_p^{LF} = W$ and $e_u^{LF} = W - F$
- $e_p^A \leq w$ and $e_u^A \leq w - f < W - F$
- $W > e_p^B > W - F$ and $W > e_u^B > W - F$

- Encouragement effect of affirmative action (c.f Coate-Loury 1993) for u – real return to investment increased by policy
- For p's incentives are reduced: the group not favored by the policy has reduced incentives, but this may be desirable
Conclusion

- Limits to redistribution of surplus within firms/schools/clubs lead to mismatch that may take the form of segregation.
- This provides independent economic rationale for AR.
- Inefficiency takes the form of overinvestment at the top, underinvestment at the bottom, or universal discouragement.
- AR as response to this has to balance (static) diversity gains and (dynamic) incentive losses.
- In the paper:
 - Endogenous matching at the investment stage (school choice),
 - allows AR at each stage (potential tension between school and labor stage intervention).
 - allows dynamic policy that conditions labor market intervention on school choice (for instance Texas Top Ten Percent Law)
- "Optimal Policy"?