Ambiguity, Information Quality and Credit Risk

Nina Boyarchenko

University of Chicago Booth School of Business

June 5, 2009
Motivation

- Observe large increases in CDS spreads in July/August 2007
Motivation

N. Boyarchenko (Chicago Booth) Ambiguity and Credit Risk June 5, 2009 2 / 23
Motivation
Motivation

[Graph showing the 10-year spread for BAC, Citi, GS, JPM, and LEH from Jan 2006 to Jan 2009.]

[Graph showing the 10-year spread for BNP Paribas, Bear Stearns, and Lehman Brothers from Oct 2007 to Apr 2009.]

N. Boyarchenko (Chicago Booth) Ambiguity and Credit Risk June 5, 2009 2 / 23
Motivation

- Observe large increases in CDS spreads in July/August 2007
- Break-down of CDX pricing after July/August 2007
Main idea

Compare two competing explanations

- Deterioration in information → increase in ambiguity about signal quality (Model 1)
- Increase in ambiguity about fundamentals (Model 2)

Model both through model misspecification
Theoretical

- Worst-case scenario →
 - High signal quality when observing a bad signal; low signal quality when observing a good signal
 - Lowest admissible growth rate for asset value
- Higher CDS (and credit) spreads
Results Preview

Calibration

- Initial (July/August 2007) increase due to increase in ambiguity about fundamentals
- Post- Bear Stearns increase due to increase in ambiguity about signal quality

- **Asset value**: \(A_t = e^{Z_t} \);

\[dZ_t = m dt + \sigma dW_t, \quad t \geq 0 \]

- \(A_B \): exogenous default boundary; \(a = \log A_B \)

- Information set: \(\mathcal{F}_t = \sigma \{ Z_s; \ s \leq t \} \)
Asymmetric Information

- Observe imperfect signals \(\hat{A} \) at discrete dates \(t_1, \ldots, t_n \);
 \[
 Y(t) \equiv \log \hat{A}_t = Z(t) + U(t)
 \]
- \(U_t \sim N(\bar{u}, \sigma_u^2), \bar{u} = -\frac{\sigma_u^2}{2} \)
- Information set: \(G_t = \sigma \{ Y(t_1), \ldots, Y(t_n), 1_{\tau \leq s} : 0 \leq s \leq t \} \)
- Conditional distribution:
 \[
 g(z|y, z_0, t) \propto e^{-J(\tilde{y}, \tilde{z}, \tilde{z}_0)} \left[1 - \exp\left(\frac{-2\tilde{z}_0\tilde{z}}{\sigma^2 t} \right) \right]
 \]
Default-swap spreads

Notation

- **T**: maturity date of the swap
- **X**: payment if default occurs before maturity date T
- **$c(t, T)$**: CDS spread at time t for a swap with maturity T
- **$\Upsilon(T - t, A_t, A_B)$**:
 \[\mathbb{E} \left[e^{-r(T-t)}1_{\tau \leq T} | \mathcal{F}_t \right] \]
- **$P(s)$**:
 \[\mathbb{E} \left[1_{\tau > s} | \mathcal{F}_t \right] \]

CDS calculation

\[c(t, T) = \frac{2X \mathbb{E} \left[\Upsilon(T - t, A_t, A_B) | \mathcal{G}_t \right]}{\sum_{i=1}^{k} e^{-\frac{r_i}{2}} \mathbb{E} \left[P \left(t + \frac{1}{2}i \right) | \mathcal{G}_t \right]} . \]
CDS spreads: Black and Cox [1976] model

Black and Cox [1976] model

CDS spread (in bps)

Student Version of MATLAB

N. Boyarchenko (Chicago Booth)
CDS spreads: Duffie and Lando [2001] model
Ambiguity Aversion

- **Utility:**

\[
U(C_t, t) = \min \mathbb{E} \left[\int_{0}^{+\infty} e^{-ru} C_{t+u} du \mid G_t \right].
\]

- **CDS spreads:**

\[
c(t, T) = \max \frac{2X \mathbb{E}^a [\gamma(T - t, A_t, A_B) \mid G_t]}{\sum_{i=1}^{k} e^{-\frac{r_i}{2} \mathbb{E}^a [P(t + \frac{1}{2}i) \mid G_t]}}.
\]
Ambiguity about information quality

Assume: $\sigma^2_u \in [\underline{\sigma}^2_u, \overline{\sigma}^2_u]$. CDS spreads:

(1) $$c(t, T) = \max_{\sigma^2_u \in [\underline{\sigma}^2_u, \overline{\sigma}^2_u]} \frac{2X \mathbb{E}\sigma^2_u [\gamma(T - t, A_t, A_B) | G_t]}{\sum_{i=1}^{k} e^{-\frac{r_i}{2} \mathbb{E}\sigma^2_u [P(t + \frac{1}{2} i) | G_t]}}.$$

Proposition 2.1

The worst-case likelihood solving the problem 1 is given by:

(2) $$\tilde{\sigma}^2_u = \begin{cases} \overline{\sigma}^2_u, & y - \overline{u} > a \\ \underline{\sigma}^2_u, & y - \overline{u} < a \end{cases}$$
Optimal signal quality

Intuition

- $y - \bar{u} - a$: expected distance to default
- if positive, investors treat signal as imprecise
- if negative, investors treat signal as very precise
Ambiguity about fundamentals

Assume asset dynamics misspecified

- $dW_t = h_t dt + dW_t^h$

- Admissible disturbances:

 $$\Xi(m) \equiv \left\{ h(m) : \frac{1}{2} h^2(m, t) \leq \eta \ \forall \ t \geq 0 \right\}$$

Proposition 2.2

The worst-case likelihood solving the default spread problem is given by:

$$h^*(m, t) = -\sqrt{2\eta}.$$
Optimal Disturbance

Intuition

- Implies investors evaluate under the lowest possible drift rate for assets
- Since $m > 0$, implies that firm less likely to recover from a negative shock

Will use $\eta(m) = \eta m^2$
Numerical examples

Thought experiment

Instead of using the full history, update z_0 to conditional mean, period - by - period

Base Calibration

<table>
<thead>
<tr>
<th>r</th>
<th>m</th>
<th>δ</th>
<th>α</th>
<th>σ</th>
<th>σ_u^2</th>
<th>C</th>
<th>A_B</th>
<th>D</th>
<th>X</th>
<th>C/D</th>
</tr>
</thead>
<tbody>
<tr>
<td>6%</td>
<td>1%</td>
<td>5%</td>
<td>30%</td>
<td>5%</td>
<td>5%</td>
<td>8</td>
<td>78</td>
<td>129.4</td>
<td>97.38%</td>
<td>6.18%</td>
</tr>
</tbody>
</table>
Two histories

- Good-good-good-good
- Good-neutral-bad-neutral
CDS spreads

Duffie and Lando [2001]

Signal ambiguity

Dynamics ambiguity

Filter

\[\tau \]

\[\text{CDS spread (bps)} \]

\[\text{period} \]

\[z_t \]

\[\text{Filter} \]

\[\text{DL01} \]

\[\text{Signal} \]

\[\text{Asset} \]

Student Version of MATLAB
CDS spreads

Duffie and Lando [2001]

Signal ambiguity

Dynamics ambiguity

Filter

N. Boyarchenko (Chicago Booth) Ambiguity and Credit Risk June 5, 2009 19 / 23
Calibrating to Financial Institutions

- Use balance sheet data of financial institutions to calibrate base model parameters (Q1 1980-Q2 2007)
- Calibrate initial σ_u, η to match the CDS spreads July 2007
- Look at what σ_u, η are needed to match CDS spreads August 2007, March 2008
Parameter Calibration

<table>
<thead>
<tr>
<th></th>
<th>m</th>
<th>μ</th>
<th>σ</th>
<th>δ</th>
<th>D</th>
<th>C</th>
<th>A_B</th>
<th>X</th>
<th>C/D</th>
<th>Recovery</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bank of America</td>
<td>4.85</td>
<td>5.58</td>
<td>12.09</td>
<td>3.81</td>
<td>124.73</td>
<td>1.52</td>
<td>9.61</td>
<td>94.87</td>
<td>1.22</td>
<td>5.13</td>
</tr>
<tr>
<td>Merrill Lynch</td>
<td>3.56</td>
<td>3.63</td>
<td>3.54</td>
<td>3.76</td>
<td>439.17</td>
<td>0.57</td>
<td>5.09</td>
<td>99.24</td>
<td>0.13</td>
<td>0.76</td>
</tr>
<tr>
<td>JP Morgan</td>
<td>3.42</td>
<td>4.21</td>
<td>12.57</td>
<td>2.22</td>
<td>144.42</td>
<td>2.03</td>
<td>24.68</td>
<td>93.35</td>
<td>1.41</td>
<td>6.65</td>
</tr>
<tr>
<td>Citi Corp</td>
<td>3.99</td>
<td>5.16</td>
<td>15.33</td>
<td>3.88</td>
<td>397.03</td>
<td>8.04</td>
<td>48.42</td>
<td>91.72</td>
<td>2.02</td>
<td>8.28</td>
</tr>
<tr>
<td>Wells Fargo</td>
<td>3.26</td>
<td>3.80</td>
<td>10.34</td>
<td>3.51</td>
<td>198.37</td>
<td>1.99</td>
<td>16.72</td>
<td>94.82</td>
<td>1.00</td>
<td>5.18</td>
</tr>
<tr>
<td>Goldman Sachs</td>
<td>5.93</td>
<td>6.08</td>
<td>5.57</td>
<td>5.03</td>
<td>321.22</td>
<td>0.82</td>
<td>4.12</td>
<td>98.87</td>
<td>0.26</td>
<td>1.13</td>
</tr>
<tr>
<td>Lehman Bros</td>
<td>3.54</td>
<td>3.61</td>
<td>3.73</td>
<td>3.61</td>
<td>477.16</td>
<td>0.69</td>
<td>6.39</td>
<td>99.15</td>
<td>0.14</td>
<td>0.85</td>
</tr>
</tbody>
</table>
9.75% recovery for senior debt in Lehman Brothers liquidation (source: Business Week)
Parameter Calibration

<table>
<thead>
<tr>
<th></th>
<th>m</th>
<th>μ</th>
<th>σ</th>
<th>δ</th>
<th>D</th>
<th>C</th>
<th>A_B</th>
<th>X</th>
<th>C/D</th>
<th>Recovery</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bank of America</td>
<td>4.85</td>
<td>5.58</td>
<td>12.09</td>
<td>3.81</td>
<td>124.73</td>
<td>1.52</td>
<td>9.61</td>
<td>94.87</td>
<td>1.22</td>
<td>5.13</td>
</tr>
<tr>
<td>Merrill Lynch</td>
<td>3.56</td>
<td>3.63</td>
<td>3.54</td>
<td>3.76</td>
<td>439.17</td>
<td>0.57</td>
<td>5.09</td>
<td>99.24</td>
<td>0.13</td>
<td>0.76</td>
</tr>
<tr>
<td>JP Morgan</td>
<td>3.42</td>
<td>4.21</td>
<td>12.57</td>
<td>2.22</td>
<td>144.42</td>
<td>2.03</td>
<td>24.68</td>
<td>93.35</td>
<td>1.41</td>
<td>6.65</td>
</tr>
<tr>
<td>Citi Corp</td>
<td>3.99</td>
<td>5.16</td>
<td>15.33</td>
<td>3.88</td>
<td>397.03</td>
<td>8.04</td>
<td>48.42</td>
<td>91.72</td>
<td>2.02</td>
<td>8.28</td>
</tr>
<tr>
<td>Wells Fargo</td>
<td>3.26</td>
<td>3.80</td>
<td>10.34</td>
<td>3.51</td>
<td>198.37</td>
<td>1.99</td>
<td>16.72</td>
<td>94.82</td>
<td>1.00</td>
<td>5.18</td>
</tr>
<tr>
<td>Goldman Sachs</td>
<td>5.93</td>
<td>6.08</td>
<td>5.57</td>
<td>5.03</td>
<td>321.22</td>
<td>0.82</td>
<td>4.12</td>
<td>98.87</td>
<td>0.26</td>
<td>1.13</td>
</tr>
<tr>
<td>Lehman Bros</td>
<td>3.54</td>
<td>3.61</td>
<td>3.73</td>
<td>3.61</td>
<td>477.16</td>
<td>0.69</td>
<td>6.39</td>
<td>99.15</td>
<td>0.14</td>
<td>0.85</td>
</tr>
</tbody>
</table>
Ambiguity Calibration

<table>
<thead>
<tr>
<th>Date</th>
<th>σ_u</th>
<th>m</th>
<th>η</th>
</tr>
</thead>
<tbody>
<tr>
<td>07/06/2007</td>
<td>40.1</td>
<td>5.0</td>
<td>0.0123</td>
</tr>
<tr>
<td>08/10/2007</td>
<td>40.1</td>
<td>3.9</td>
<td>0.0586</td>
</tr>
<tr>
<td>03/28/2008</td>
<td>6.9</td>
<td>3.0</td>
<td>0.1221</td>
</tr>
</tbody>
</table>
Conclusion

Alternative Explanations

- Increase in doubts about the validity of credit ratings
- Negative shocks to liquidity