Retrading in an Adverse Selection Economy

Pamela Labadie

George Washington University

June 3, 2009
Introduction

Basic Model

Decentralizing Incentive Efficient Allocations

Anonymous Trading

Parametric example

Conclusion
Introduction

- Rothschild-Stiglitz insurance economy with adverse selection
- Typical assumptions: contracts are exclusive and trading among agents prohibited
- Prescott - Townsend:
 - Pareto optima of adverse selection economies hard to support as a CE
 - Problems decentralizing using a price system
 - Externalities in consumption
- Alternate mechanism - anonymous mechanism - allows retrading and nonexclusivity
Basic Model

- Countable infinity of agents; 2 types \(a \) and \(b \) with fraction \(f_\eta \), \(\eta = a, b \)
- Endowment economy with perishable good \(0 < \theta_1 < \theta_2 \)
- Conditional probability \(g_{\eta i} \) for \(\eta = a, b \) and \(i = 1, 2 \)
- Assume \(g_{a2} > g_{b2} \) so \(a \) is low risk while \(b \) is high risk
- Total endowment \(\bar{\theta} = f_a(g_{a1}\theta_1 + g_{a2}\theta_2) + f_b(g_{b1}\theta_1 + g_{b2}\theta_2) \)
- Let \(\bar{\theta}_\eta \) denote expected endowment of type \(\eta \)
Preferences - $\sum_i g_{\eta i} U(c_i)$

Net trade $X_\eta = (x_{\eta 1}, x_{\eta 2})$

Set of individually feasible net trades

$$X = \{x_\eta = (x_{\eta 1}, x_{\eta 2}) \mid \theta_i + x_{\eta i} \geq 0, i = 1, 2\}$$

Feasible in the aggregate if

$$F = \left\{(x_a, x_b) \in X^2 \mid 0 \geq \sum_\eta \sum_i f_{\eta i} g_{\eta i} x_{\eta i}\right\}.$$ \(1\)

The pair of net trades $x \in F$ is incentive compatible if

$$\sum_i g_{\eta i} U(\theta_i + x_{\eta i}) \geq \sum_i g_{\eta i} U(\theta_i + x_{hi}), \quad h \neq \eta, \quad \eta = a, b.$$

Let $I \subset F$ denote the set of feasible net trades that are incentive compatible.
Standard approach to decentralization

Following Bisin and Gottardi (JPE)

- Trade takes place between agents and firms; agents cannot trade among themselves
- Exclusivity in markets - enter one market only
- Quantity restrictions - a contract is a fixed bundle of contingent claims
- Set of contracts offered satisfy incentive compatibility constraints
- Contracts are exclusive
- Prices are "fair" - so contingent claim price is \(g_{\eta_i} \) in market \(\eta \) contingent on \(\theta_i \)
Retrading

- Incentive efficient allocation: one set agents is quantity constrained
- Allow retraining after agents self select into market but before θ realized
- Assume low risk are constrained x_a^* and high risk have certain $c(b)$
- Retrade such that

\[\hat{q}_a x_a^* \geq \hat{q}_a x, \]

(2)

- Achieve constant consumption $c(a)$, but $c(a)$ doesn't satisfy incentive compatibility constraint
If \(c(a) > c(b) \), type \(b \) agents will anticipate formation of side markets or retrading and misrepresent type.

Subsequent retrading opportunities change the information revealed by an agent.

Krasa [1999] Economic Theory:

If all agents self-select into market \(A \), \(c(a) \) is no longer feasible.
Anonymous Trading

- Agents trade claims contingent on endowment
- Face identical budget constraint

\[B(q) \equiv \{ x \in X \mid qx_1 + x_2 = 0 \} \]

- Define \(R_\eta \)

\[R_\eta \equiv \frac{g_{\eta 1}}{g_{\eta 2}}, \quad \eta = a, b. \]

Since the agents have been labeled so that \(b \) is the “high risk” type, \(R_b > R_a \).

- For any \(q > 0 \), define the net demand functions

\[\xi_\eta(q) \equiv \arg \max_{x \in B(q)} \sum_i g_{\eta i} U(\theta_i + x_i), \quad \eta = a, b. \]
The solution satisfies

\[q = R_\eta \frac{U'[\theta_1 + \xi_{\eta_1}(q)]}{U'[\theta_2 + \xi_{\eta_2}(q)]} \]

Define autarky price

\[Q_\eta \equiv R_\eta \frac{U'(\theta_1)}{U'(\theta_2)}, \quad \eta = a, b. \]

Since \(\theta_1 < \theta_2 \), it follows that \(Q_\eta > R_\eta, \eta = a, b \) and since \(R_b > R_a \) it follows that \(Q_b > Q_a \). Hence, there are two cases,

\[R_a < Q_a \leq R_b < Q_b, \]

(4) \[R_a < R_b \leq Q_a < Q_b. \]

(5)
Properties of the demand functions ξ_η, $\eta = a, b$

(i) An agent of type η insure (does not insure, takes on risk) if and only if $q < Q_\eta$ ($q = Q_\eta$, $q > Q_\eta$).

\[
\xi_{\eta 1}(q) \geq 0 \quad \text{as} \quad q \geq Q_\eta.
\]

(ii) An agent of type η insure partially (fully, more than fully) if and only if $q > R_\eta$ ($q = R_\eta$, $q < R_\eta$).

\[
\theta_1 + \xi_{\eta 1}(q) \leq \theta_2 + \xi_{\eta 2}(q) \quad \text{as} \quad q \geq R_\eta.
\]

An immediate consequence of (i) and (ii) is

(iii) If $Q_a < R_b$, then full consumption insurance for high risk (type b) agents implies that low risk type a agents take on risk. That is,

\[
Q_a < R_b \implies \xi_{a 1}(R_b) < 0.
\]
An Anonymous Trading Example

Decentralizing Incentive Efficient Allocations

Excess Demand

Relative price q

a partially insures

"b" over insures

"b" partially insures

a takes on risk

"b" partially insures

Excess Demand

Relative price q
Pamela Labadie
Retrading in an Adverse Selection Economy
Anonymous Equilibrium

Definition: An *anonymous equilibrium* is a price $q^e > 0$ and net trades $(x_a^e, x_b^e) \in F$, such that

$$x_\eta^e = \xi_\eta(q^e), \quad \eta = a, b.$$

Define

$$\Xi_\eta(q) \equiv f_\eta \sum_i g_{\eta i} \xi_{\eta i}(q), \quad \eta = a, b$$

and the sum

$$\Xi(q) \equiv \sum_\eta \Xi_\eta(q).$$
\[\Xi(q) = \sum_{\eta} f_{\eta} [g_{\eta 1} \xi_{\eta 1}(q) - g_{\eta 2} q \xi_{\eta 1}(q)] \quad (6) \]

\[= \sum_{\eta} f_{\eta} g_{\eta 2} \xi_{\eta 1}(q) [R_{\eta} - q]. \quad (7) \]

The following preliminary result bounds the price ratio in any equilibrium.

Lemma

Under assumptions (1)–(2), in any equilibrium \(R_a < q < Q_b \).
Define \bar{R} as the ratio of unconditional probabilities,

$$\bar{R} = \frac{f_aga_1 + f_bgb_1}{f_aga_2 + f_bgb_2}$$

so $R_a < \bar{R} < R_b$.

The next result strengthens the lower bound in Lemma 1.

Lemma

*Under assumptions (1)–(2), in any equilibrium $q > \bar{R}$.***
Theorem:
Under assumptions (1)–(2),
(i) if \(Q_a > R_b \), there exists at least one equilibrium with \(q \in (\bar{R}, R_b) \) and at least one with \(q \in (Q_a, Q_b) \), and there are no equilibria with \(q \in [R_b, Q_a] \);
(ii) if \(R_b = Q_a \), then \(q = R_b \) is an equilibrium;
(iii) if \(Q_a < R_b \) then in any equilibrium \(q \in (\bar{R}, Q_a) \cup (R_b, Q_b) \).
Preferences are logarithmic, $U(c) = \ln(c)$. The first-order condition is

$$q = R_\eta \left[\frac{\theta_2 - \xi_{\eta_1}(q)q}{\theta_1 + \xi_{\eta_1}(q)} \right],$$

so that $\xi_{\eta_1}(q)$ is

$$\xi_{\eta_1}(q) = \frac{R_\eta \theta_2 - q\theta_1}{q(1 + R_\eta)}.$$

Substitute $\xi_{\eta_1}(q)$, $\eta = a, b$ into the market-clearing condition results in a quadratic equation in q.

Pamela Labadie Retrading in an Adverse Selection Economy
Pamela Labadie Retrading in an Adverse Selection Economy
<table>
<thead>
<tr>
<th>Allocation</th>
<th>Expected Utility</th>
</tr>
</thead>
<tbody>
<tr>
<td>Full insurance:</td>
<td>1.723</td>
</tr>
<tr>
<td>Anonymous Equil.: $(q = 1.44)$</td>
<td>1.57</td>
</tr>
<tr>
<td>Anonymous Equil.: $(q = 2.882)$</td>
<td>1.526</td>
</tr>
<tr>
<td>Rothschild-Stiglitz:</td>
<td>1.622</td>
</tr>
<tr>
<td>EU^{ie}</td>
<td>1.622</td>
</tr>
<tr>
<td>Autarky</td>
<td>1.525</td>
</tr>
<tr>
<td>Pooled allocation:</td>
<td>1.603</td>
</tr>
<tr>
<td>Type a</td>
<td>1.355</td>
</tr>
<tr>
<td>Type b</td>
<td>1.521</td>
</tr>
<tr>
<td></td>
<td>1.27</td>
</tr>
<tr>
<td></td>
<td>1.355</td>
</tr>
<tr>
<td></td>
<td>1.543</td>
</tr>
<tr>
<td></td>
<td>1.109</td>
</tr>
<tr>
<td></td>
<td>1.603</td>
</tr>
</tbody>
</table>

Table I: Comparison of Expected Utility for Several Allocations (Case I), with $\theta_1 = 2$ and $\theta_2 = 8$, $g_{a1} = 0.4$ and $g_{b1} = 0.7$, and $f_a = 0.65$. $R_a = 0.667$, $R_b = 2.333$, $Q_a = 2.667$, $Q_b = 9.333$, and $\bar{R} = 1.02$, $\bar{\theta} = 4.97$, $\bar{\theta}_a = 5.6$, and $\bar{\theta}_b = 3.8$.

Pamela Labadie Retrading in an Adverse Selection Economy
Conclusion

- If agents can retrade, then affects information they reveal
- Risk sharing in the form of side markets will result in the anonymous equilibrium
- Markets are not separated by type, contracts are not exclusive
- Some agents are under-insured while others over insure
- Under what conditions is the anonymous mechanism coalitionally incentive compatible?