A DSGE model of the term structure with regime shifts

Gianni Amisano (ECB, U Brescia) and Oreste Tristani (ECB)

ES NASM, Boston University, 4-7 June 2009
Motivation (I)

long run interest rate - short run interest = inflation expectations + risk premium, difficult to disentangle
Motivation (II)

- Including yields as sources of information is also a powerful test of macro-models.
- Linearised models, however, appear to be inconsistent with yields at a basic level. They imply that:
 - the unconditional slope of the term structure should be zero
 - any change in the slope of the yield curve should reflect changes in expectations
Motivation III: why a DSGE model?

- To understand the relationship between interest rates, monetary policy and macroeconomic fundamentals
- Traditional microfounded models do not match basic features of yields: puzzles on sign/size of slope; variance of long yields.
- Inspiration from results of non-microfounded macro-finance literature (Ang Piazzesi 2003). Yields dynamics can be explained in terms of macro dynamics
In this paper

- We explore ability of a small microfounded model to match both macroeconomic and term structure data

- Key features of the model:
 - solved and estimated up to a second-order approximation to allow for non-zero term-premia;
 - heteroskedastic shocks (MS) to:
 - accommodate established features of macro data (e.g. monetary experiment)
 - generate occasional boosts in structural variances
 - produce time-variation in risk premia
Considerable support (e.g. residuals diagnostics) for a specification with heteroskedastic shocks. This is the case for both linear and nonlinear specifications.

Estimated regimes have intuitively appealing features: "monetary experiment", Great moderation, cyclical features.

The quadratic model with regime switches generates considerable variation in risk premia.

Needed "exotic" preferences.
A consumption-based model

Notation

Stochastic discount factor

\[Q_{t,t+1} = \beta \frac{\Lambda_{t+1}}{\Lambda_t} \]

Short rate: \(I_t \)

\[I_t^{-1} = E_t Q_{t,t+1} \]

State variables: \(z_t \)

\[z_{t+1} = \rho z_t + \sigma u_{t+1} \]

Market price of risk: \(\zeta_t \)
Risk premia

- Linear approximation $\xi_t \equiv 0$
- Quadratic approximation + constant variance: $\xi_t \equiv -\phi \sigma$
- Quadratic approximation + heteroskedasticity: $\xi_t \equiv -\phi \tilde{\sigma}_t$
Related Literature

- Theoretical DSGE models: Hördahl, Tristani and Vestin (2008), Ravenna and Seppala (2007a, b), Rudebusch, Sack and Swanson (2007); Rudebusch and Swanson (2007, 2008)
A DSGE model

- Temporary utility
 \[u_t = (C_t - hC_{t-1}) \cdot v(N_t) \]

- Intertemporal aggregator (Epstein and Zin, 1989)
 \[U\left[u_t, \left(E_t V_{t+1}^{1-\gamma}\right)\right] = \left\{ (1 - \beta) u_t^{1-\delta} + \beta \left(E_t V_{t+1}^{1-\gamma}\right)^{\frac{1-\delta}{1-\gamma}} \right\}^{\frac{1}{1-\delta}} \]

- \(\gamma = RRA\) and \(\delta^{-1}\) = elasticity of mg utility (when \(\gamma/\delta = 1\) then we have power utility)

- Stochastic discount factor
 \[Q_{t,t+1} = \beta \frac{\tilde{\Lambda}_{t+1}}{\tilde{\Lambda}_t} \frac{1}{\pi_{t+1}} \left(\frac{E_t J_{t+1}^{1-\gamma}}{J_{t+1}} \right)^{\gamma-\delta} \]
Consumption process

- Obtained endogenously as
 \[
 \hat{c}_t = F_c \hat{z}_t + \frac{1}{2} \hat{z}_t' E_c \hat{z}_t + k_{c,s} \sigma^2
 \]
 where \(z'_t = [(x_t)', (s_t)']' \),

- Exact structure endogenously from macro model with technology
 \[
 Y_t = A_t L_t^\alpha
 \]

- Aggregate resource constraint
 \[
 Y_t = C_t + G_t
 \]

- Sticky prices (Calvo pricing or quadratic adjustment + partial indexation)

- Monetary policy rule
 \[
 i_t = \text{const} + \psi_{\Pi} (\pi_t - \pi_t^*) + \psi_Y (y_t - y) + \rho_i i_{t-1} + \varepsilon_{i,t+1}
 \]
Shocks

- Cost push shock with constant variance
 \[\varepsilon_{t+1}^\mu \sim N(0, \sigma_\mu) \]

- Shocks potentially with MS variances:
 \[\varepsilon_{t+1}^A \sim N(0, \sigma_{a,Y,t}) \]
 \[\varepsilon_{i,t+1} \sim N(0, \sigma_{i,s_l,t}) \]
 \[\varepsilon_{G,t+1} \sim N(0, \sigma_{c,s_G,t}) \]

 plus

 \[\Pi_t^* = \Pi_{i,L}^*, \Pi_{i,H}^* \]

- Intuition: "great moderation", "monetarist experiment", cyclical volatility

- Schorfheide (2005), Sims and Zha (2006).
Content of the DSGE model

- **y**, control variables (output, inflation, interest rates at different maturities)
- **x**, state variables (exogenous or predetermined): lagged ys, technology, demand shock, inflation target, monetary policy shock
- **s_t** Markov Switching processes
- innovations
- measurement errors
Solution of the DSGE model

- **Structural form**
 \[
 E_t f(y_{t+1}, y_t, x_{t+1}, x_t) = 0
 \]

- **Reduced form**
 \[
 y_t = g(x_t, \sigma) \\
 x_{t+1} = h(x_t, \sigma) + \zeta(x_t) \sigma w_{t+1}
 \]

- unknown functions to be approximated
- Taylor expansion around non stochastic steady state: linear, quadratic, or higher order.
The approximate solution

\[
\hat{\lambda}_t = \mathbf{F}_\lambda \hat{\mathbf{z}}_t + \frac{1}{2} \hat{\mathbf{z}}_t'E_\lambda \hat{\mathbf{z}}_t + k_{\lambda,s}\sigma^2
\]

\[
\hat{\pi}_t = \mathbf{F}_\pi \hat{\mathbf{z}}_t + \frac{1}{2} \hat{\mathbf{z}}_t'E_\pi \hat{\mathbf{z}}_t + k_{\pi,s}\sigma^2
\]

Given price of a bond of maturity \(n \), \(\hat{b}_{t,n} \). Expected excess holding period return is

\[
\hat{hpr}_{t,n} - \hat{i}_t = \sigma^2 \mathbf{b}_{n-1,z} \mathbf{\zeta}'_{t} \mathbf{\zeta}_t \left(\mathbf{F}'_{\pi} - \mathbf{F}'_{\lambda} \right)
\]

where \(\mathbf{\zeta}'_{t} \mathbf{\zeta}_t \) is the state-dependent conditional variance-covariance matrix of vector \(\mathbf{z}_t \)
Risk premia

- "Prices of risk" change across regimes

\[\xi_t \equiv \sigma \zeta_t' \left(F_{\pi}' - F_{\lambda}' \right) \]

- Partition \(\zeta_t' = \left[(\xi_t^x)', (\xi_t^s)' \right]' \) to write regime-switching prices of risk

\[\xi_t^x = \sigma \left(\zeta_t^x \right)' \left[(F_{\pi}^x)' - (F_{\lambda}^x)' \right] \]

prices of regime-switching risk

\[\xi_t^s = \sigma \left(\zeta_t^s \right)' \left[(F_{\pi}^s)' - (F_{\lambda}^s)' \right] \]
A nonlinear- non Gaussian state space

• define $z_t = [x_t', s_t']'$ where x_t continuous and s_t discrete
• Convenient to rewrite the model as

$$
\begin{align*}
 y_{t+1}^o &= c_s + C_{1,s}x_{t+1} + C_2vech(x_{t+1}x_{t+1}') + Dv_{t+1} \\
 x_{t+1} &= a_s + A_{1,s}x_t + A_2vech(x_tx_t') + B_s w_{t+1} \\
 s_t &\sim \text{Markov switching}
\end{align*}
$$

• Time-variation in intercept and slope coefficients
Bayesian inference (I)

- use sequential MC to get likelihood to use in Metropolis-Hastings (not the only way); alternatives
Bayesian inference (II): a simpler alternative

- Assuming as many structural and measurement shocks as observables,
 - conditional on a state s, invert observation equation to back-out shocks
 - apply Hamilton’s filter to integrate out discrete latent variables
- Procedure immediately applicable to the linear case

$$y_{t+1}^o = C_1 x_{t+1} + D w_{t+1}$$

- In the quadratic case we invert measurement equation numerically
Data

- Quarterly US data: 1966:q1 to 2006:q2
- GDP, GDP deflator, 3-month nominal interest rate and yields on 3-year and 10-year zero-coupon bonds
- "Measurement errors" characterize the 10-year yield
Parameter estimates

<table>
<thead>
<tr>
<th>Parameter</th>
<th>post mean</th>
<th>post sd</th>
<th>prior mean</th>
<th>prior sd</th>
</tr>
</thead>
<tbody>
<tr>
<td>$p_{x,11}$</td>
<td>0.91</td>
<td>0.034</td>
<td>0.90</td>
<td>0.066</td>
</tr>
<tr>
<td>$p_{x,00}$</td>
<td>0.82</td>
<td>0.04</td>
<td>0.90</td>
<td>0.066</td>
</tr>
<tr>
<td>$p_{g,11}$</td>
<td>0.95</td>
<td>0.02</td>
<td>0.90</td>
<td>0.066</td>
</tr>
<tr>
<td>$p_{g,00}$</td>
<td>0.96</td>
<td>0.02</td>
<td>0.90</td>
<td>0.066</td>
</tr>
<tr>
<td>$p_{A,11}$</td>
<td>0.91</td>
<td>0.04</td>
<td>0.90</td>
<td>0.066</td>
</tr>
<tr>
<td>$p_{A,00}$</td>
<td>0.96</td>
<td>0.02</td>
<td>0.90</td>
<td>0.066</td>
</tr>
<tr>
<td>$\sigma_{I,1}$</td>
<td>0.001</td>
<td>0.0002</td>
<td>0.0005</td>
<td>0.0001</td>
</tr>
<tr>
<td>$\sigma_{I,0}$</td>
<td>0.005</td>
<td>0.0007</td>
<td>0.0008</td>
<td>0.0004</td>
</tr>
<tr>
<td>$\sigma_{g,1}$</td>
<td>0.022</td>
<td>0.002</td>
<td>0.0066</td>
<td>0.0016</td>
</tr>
<tr>
<td>$\sigma_{g,0}$</td>
<td>0.056</td>
<td>0.005</td>
<td>0.0095</td>
<td>0.0032</td>
</tr>
<tr>
<td>$\sigma_{A,1}$</td>
<td>0.005</td>
<td>0.002</td>
<td>0.0019</td>
<td>0.0004</td>
</tr>
<tr>
<td>$\sigma_{A,0}$</td>
<td>0.009</td>
<td>0.002</td>
<td>0.0025</td>
<td>0.0007</td>
</tr>
<tr>
<td>Π^*_1</td>
<td>1.0039</td>
<td>0.002</td>
<td>1.0110</td>
<td>0.0047</td>
</tr>
<tr>
<td>Π^*_0</td>
<td>1.0149</td>
<td>0.0032</td>
<td>1.0110</td>
<td>0.0047</td>
</tr>
</tbody>
</table>

21
Parameter estimates

<table>
<thead>
<tr>
<th></th>
<th>post mean</th>
<th>post sd</th>
<th>prior mean</th>
<th>prior sd</th>
</tr>
</thead>
<tbody>
<tr>
<td>ρ_g</td>
<td>0.89</td>
<td>0.03</td>
<td>0.90</td>
<td>0.03</td>
</tr>
<tr>
<td>ρ_A</td>
<td>0.99</td>
<td>0.005</td>
<td>0.99</td>
<td>0.001</td>
</tr>
<tr>
<td>ψ_π</td>
<td>0.46</td>
<td>0.08</td>
<td>0.50</td>
<td>0.36</td>
</tr>
<tr>
<td>ψ_y</td>
<td>0.03</td>
<td>0.007</td>
<td>0.03</td>
<td>0.02</td>
</tr>
<tr>
<td>ρ_i</td>
<td>0.70</td>
<td>0.07</td>
<td>0.70</td>
<td>0.30</td>
</tr>
<tr>
<td>ι</td>
<td>0.50</td>
<td>0.10</td>
<td>0.60</td>
<td>0.20</td>
</tr>
<tr>
<td>ϕ</td>
<td>0.53</td>
<td>0.31</td>
<td>2.00</td>
<td>1.41</td>
</tr>
<tr>
<td>γ</td>
<td>46.93</td>
<td>22.54</td>
<td>81.00</td>
<td>25.33</td>
</tr>
<tr>
<td>δ</td>
<td>2.40</td>
<td>0.38</td>
<td>2.00</td>
<td>0.44</td>
</tr>
<tr>
<td>ξ</td>
<td>0.88</td>
<td>0.06</td>
<td>0.70</td>
<td>0.11</td>
</tr>
<tr>
<td>β</td>
<td>0.9952</td>
<td>0.0008</td>
<td>0.9939</td>
<td>0.004</td>
</tr>
<tr>
<td>$\sigma_{me,40}$</td>
<td>0.0008</td>
<td>0.0001</td>
<td>0.001</td>
<td>0.0009</td>
</tr>
</tbody>
</table>
Fit
Holding period returns

![Filtered premia graph](chart1)

![Smoothed premia graph](chart2)
Conclusions

- We find considerable support for a macro-yield curve model with regime switching variances:
 - different regimes help capturing residuals’ heteroskedasticity
 - and to generate time-variability in risk premia
 - estimated regimes are intuitively appealing

- To do: more systematic comparison of various models, analysis of yield premia
THANK YOU