What Do Asset Returns Imply About the Gains from International Risk Sharing?

Karen K. Lewis
Wharton School, University of Pennsylvania
NBER

Edith Liu
Wharton School, University of Pennsylvania

June 6th, 2009
Important Question in International Finance =>
Gains from International Risk Sharing

Important Differences in Literature:

1. Consumption-Based Estimates of Gains => Typically small
 - Cole and Obstfeld (1991): approx 0.1% of consumption
 - Lewis (1999) and others: up to 1-2%

2. Asset Market-Based Estimates of Gains => Typically large
 - Obstfeld (1994 AER): approx 80% - 200%
 - Lewis (2000) and others: With equity returns approx 50-80%

Problem: Consumption growth is low and smooth, while equity returns are high and volatile (Equity Premium Puzzle) => Large disparity between in welfare gains measured from consumption versus asset prices
Progress to resolve equity premium puzzle for the US:

1. "Long Run Risk" (Bansal-Yaron 2004)
Progress to resolve equity premium puzzle for the US:

1. “Long Run Risk” (Bansal-Yaron 2004)
 - Small persistent component of consumption variability
Recent Resolution in Domestic Literature

Progress to resolve equity premium puzzle for the US:

1. “Long Run Risk” (Bansal-Yaron 2004)
 - Small persistent component of consumption variability
 - Stochastic volatility

Karen K. Lewis and Edith Liu
Asset Returns & Gains from Intl Risk Sharing
Recent Resolution in Domestic Literature

Progress to resolve equity premium puzzle for the US:

1. "Long Run Risk" (Bansal-Yaron 2004)
 - Small persistent component of consumption variability
 - Stochastic volatility

2. "Habit Persistence" (Campbell-Cochrane 2000)
Recent Resolution in Domestic Literature

Progress to resolve equity premium puzzle for the US:

1. "Long Run Risk" (Bansal-Yaron 2004)
 - Small persistent component of consumption variability
 - Stochastic volatility

2. "Habit Persistence" (Campbell-Cochrane 2000)
 - Surplus Ratio engineered to match asset pricing data
This paper

- Address disconnect between international consumption-based gains and asset return moments
 - Use benchmark international risk sharing framework: Welfare gains of going from Autarky to Open Economy with Complete Markets
 - Combine with consumption-based asset pricing model, for now Long Run Risk, that can account for asset return puzzles
 - Match first and second moments of returns for set of 7 industrialized countries
 - Empirically evaluate model < still working on >
A. Long Run Risk in International Data
Outline

A. Long Run Risk in International Data
B. Sketch the framework of the Model
A. Long Run Risk in International Data
B. Sketch the framework of the Model
 1. Autarky
Outline

A. Long Run Risk in International Data
B. Sketch the framework of the Model
 1. Autarky
 2. Open Economy with Complete Markets
C. Benchmark International Model with Two Countries
D. Preliminary Welfare Gains based upon International Data
E. Conclude and Further Research
Outline

A. Long Run Risk in International Data
B. Sketch the framework of the Model
 1. Autarky
 2. Open Economy with Complete Markets
C. Benchmark International Model with Two Countries
A. Long Run Risk in International Data
B. Sketch the framework of the Model
 1. Autarky
 2. Open Economy with Complete Markets
C. Benchmark International Model with Two Countries
D. Preliminary Welfare Gains based upon International Data
Outline

A. Long Run Risk in International Data
B. Sketch the framework of the Model
 1. Autarky
 2. Open Economy with Complete Markets
C. Benchmark International Model with Two Countries
D. Preliminary Welfare Gains based upon International Data
E. Conclude and Further Research
A. Long Run Risk in International Data

Equity Premium in International Data

Table: Summary Statistics (in Annual %)

<table>
<thead>
<tr>
<th></th>
<th>AUS</th>
<th>CAN</th>
<th>FRA</th>
<th>GER</th>
<th>JAP</th>
<th>UK</th>
<th>US</th>
</tr>
</thead>
<tbody>
<tr>
<td>Asset Pricing Data: Campbell 1970-1999</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$E(R_m)$</td>
<td>3.55</td>
<td>5.43</td>
<td>8.73</td>
<td>7.73</td>
<td>4.96</td>
<td>7.92</td>
<td>6.93</td>
</tr>
<tr>
<td>$\sigma(R_m)$</td>
<td>22.60</td>
<td>17.28</td>
<td>22.51</td>
<td>19.81</td>
<td>21.77</td>
<td>21.14</td>
<td>17.56</td>
</tr>
<tr>
<td>$E(R_f)$</td>
<td>2.06</td>
<td>2.69</td>
<td>2.42</td>
<td>2.61</td>
<td>1.24</td>
<td>1.28</td>
<td>1.46</td>
</tr>
<tr>
<td>$\sigma(R_f)$</td>
<td>2.49</td>
<td>1.77</td>
<td>1.69</td>
<td>1.32</td>
<td>2.17</td>
<td>2.92</td>
<td>1.53</td>
</tr>
<tr>
<td>$E(R_m - R_f)$</td>
<td>1.49</td>
<td>2.74</td>
<td>6.31</td>
<td>5.12</td>
<td>3.72</td>
<td>6.65</td>
<td>5.47</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>AUS</th>
<th>CAN</th>
<th>FRA</th>
<th>GER</th>
<th>JAP</th>
<th>UK</th>
<th>US</th>
</tr>
</thead>
<tbody>
<tr>
<td>Log Consumption Growth Data: PWT 1950-2000</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$E(g_c)$</td>
<td>2.17</td>
<td>1.90</td>
<td>3.12</td>
<td>2.85</td>
<td>4.90</td>
<td>2.17</td>
<td>2.29</td>
</tr>
<tr>
<td>$\sigma(g_c)$</td>
<td>3.51</td>
<td>2.05</td>
<td>3.28</td>
<td>3.86</td>
<td>3.35</td>
<td>1.86</td>
<td>1.89</td>
</tr>
<tr>
<td>$\rho_1(g_c)$</td>
<td>-0.074</td>
<td>0.236</td>
<td>0.110</td>
<td>0.164</td>
<td>0.552</td>
<td>0.323</td>
<td>0.188</td>
</tr>
</tbody>
</table>

Karen K. Lewis and Edith Liu

Asset Returns & Gains from Intl Risk Sharing
A. Long Run Risk in International Data

CRRA preferences with iid consumption growth can not match observed asset pricing data (Mehra and Prescott)

Table: Asset Pricing and Long Run Risk for the US

<table>
<thead>
<tr>
<th></th>
<th>Mehra/Prescott</th>
<th>Bansal/Yaron</th>
<th>Lewis/Liu</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Data</td>
<td>Model</td>
<td>Data</td>
</tr>
<tr>
<td>$\sigma(g_c)$</td>
<td>3.6</td>
<td>n/a</td>
<td>2.93</td>
</tr>
<tr>
<td>$\rho_1(g_c)$</td>
<td>-0.14</td>
<td>n/a</td>
<td>0.49</td>
</tr>
<tr>
<td>$\sigma(g_d)$</td>
<td>n/a</td>
<td>n/a</td>
<td>11.49</td>
</tr>
<tr>
<td>$\rho_1(g_d)$</td>
<td>n/a</td>
<td>n/a</td>
<td>0.21</td>
</tr>
<tr>
<td>$E[R_m - R_f]$</td>
<td>6.18</td>
<td>1.42</td>
<td>6.33</td>
</tr>
<tr>
<td>$\sigma(R_m)$</td>
<td>n/a</td>
<td>n/a</td>
<td>19.42</td>
</tr>
<tr>
<td>$E(R_f)$</td>
<td>0.80</td>
<td>12.71</td>
<td>0.86</td>
</tr>
<tr>
<td>$\sigma(R_f)$</td>
<td>n/a</td>
<td>n/a</td>
<td>0.97</td>
</tr>
</tbody>
</table>
B. Model

Basic Framework:
- For each country j, there’s a representative agent with Epstein-Zin-Weil Preferences: with Risk Aversion γ, IES ψ, and $\theta = \frac{1-\gamma}{1-\frac{1}{\psi}}$

$$U(C^j_t, E_t[U(C^j_{t+1})]) = \left\{ (1-\delta)(C^j_t)^{\frac{1-\gamma}{\theta}} + \delta \left(E_t \left[U(C^j_{t+1}, E_{t+1}[U(C^j_{t+1})])^{1-\gamma} \right] \right)^{\frac{1}{\theta}} \right\}^{\frac{\theta}{1-\gamma}}$$

- The agent is endowed with a log consumption growth process with a small, but persistent, Long Run Risk component

$$g^j_{c,t+1} = \mu^j + \chi^j_t + \sigma^j \eta^j_{t+1}$$
$$x^j_{t+1} = \rho x^j_t + \sigma^j \phi^j e^j_{t+1}$$
$$g^j_{d,t+1} = \mu^j_d + \phi^j x^j_t + \phi^d \sigma^j u^j_{t+1}$$

where $\eta^j_{t+1}, u^j_{t+1}, e^j_{t+1} \sim N.i.i.d.(0,1)$
B. Solution in Autarky Model

Solution Method for Long Run Risk Model:

- Conjecture a form for $\log\left(\frac{P}{C}\right) = \log(Z) = z : z^j_t = A_0^j + A_1^j x^j_t$
- Use Campbell-Shiller approximation for returns

 $$r^j_{t+1} = k^j_0 + k^j_1 z^j_{t+1} - z^j_t + g^j_{c,t+1}$$

- Substitute into the Euler equation for country j for any return ℓ:

 $$E_t \left\{ \delta^\theta \left(C^j_{t+1} / C^j_t \right) \left(-\frac{\theta}{\psi} \right) \left(R^j_{t+1} \right)^{\theta-1} R^\ast_{t+1} \right\} = 1 \tag{1}$$

- Using the two assumptions in the Euler equation implies solutions for A_0^j, A_1^j in terms of preference and consumption process parameters
- With solution to $z_{c,t} = \log(P_t / C_t)$, compute the value function:

 $$V_t(C_t, W_t) = \left[(1 - \delta) - \psi \left(\frac{C_t}{W_t} \right) \right]^{1-\psi} W_t$$

 $$= (1 - \delta)^{\frac{-\psi}{1-\psi}} \left(1 + Z_{c,t} \right)^{\frac{\psi}{\psi-1}} C_t$$
B. Model: Open Economy with Complete Markets

- Each country sells off rights to own endowment stream valued at world markets, \bar{p}_t^{j+1}, and buys shares of other country’s endowment streams at \bar{p}_t^{l+1}

In Equilibrium:

- Each country will want to hold same shares, ie. buy into a World Mutual Fund at the price \bar{p}_t^w
- Consume a portion of the World Mutual Fund output $= \frac{\bar{p}_t^{j+1}}{\bar{p}_t^w}$
- All endowment streams are priced by a World Rep Agent, and must satisfy the Euler equation:

$$E_t \left\{ \delta^\theta \left(\frac{C_t^w}{C_t} \right) \left(-\frac{\theta}{\psi} \right) \left(\bar{R}_t^w P \right)^{(\theta-1)} \bar{R}_t^\ell \right\} = 1$$

(2)
Following similar steps to the Autarky case, conjecture and solve for
\[\log(\bar{Z}^j) = \bar{z}^j: \bar{z}^j_t = A_0^j + A_1^j x^j_t \]

Use model to rewrite value function in terms of price to consumption ratio as before, but in open economy, \(\bar{Z}^j_{c,t} \)

Solution to the Bellman Equation under open markets is:
\[V_t(C^j_t, W^j_t) = (1 - \delta)^{\frac{-\psi}{1-\psi}} (1 + Z^w_{c,t})^{\frac{\psi}{\psi-1}} w^j Y^w_t \] \hspace{1cm} (3)

where \(w^j = \frac{P^j_{t+1}}{P^{iw}_{t+1}} \)
With the solutions for z^A_t, \bar{z}^w_t, \bar{z}^j_t, we can compute welfare gains using:

\[
(1 + \Delta) = \frac{V_0(C^j, W^j)}{V_0(C^j, W^j)} = \left\{ \frac{1 + Z^w_{c,t}}{1 + Z^j_{c,t}} \right\} \left\{ \frac{C^j}{C^j} \right\} \\
= \left\{ \frac{1 + \exp(A^w_0)}{1 + \exp(A^j_0)} \right\} \left(\frac{\bar{Y}^w_0}{\bar{Y}^j_0} \right)
\]

where $w^j = (\bar{P}^j_{t+1} / \bar{P}^w_{t+1})$ and \bar{Y}^w_0 is Aggregate Per Capita World Endowment

Two Alternatives to Price Weighted Gains:

- Equally weighted gains: Δ when $w^j = w^i$, $\forall i, j$

- Reservation gains: Δ^j when all other country $i(s)$ consume w^j such that $\Delta^i = 0$
C. Welfare Gains with Two Country Example

Assume: \(\sigma(\eta_t^j, \eta_t^i) = 0.5, \sigma(e_t^j, e_t^i) = 0, \beta = 0.987, \gamma = 10, \psi = 1.5, \mu = 0.15, \sigma = 0.78, \varphi_e = 0.044, \rho = 0.979 \)

\[
\begin{align*}
 g_{c,t+1}^j &= \mu^j + x_t^j + \sigma^j \eta_{t+1}^j \\
 x_{t+1}^j &= \rho x_t^j + \sigma^j \varphi_e e_{t+1}^j
\end{align*}
\]

Table: Two Country Welfare Gains w/ Individual LRR (in Annual %)

<table>
<thead>
<tr>
<th>Equal Wgt</th>
<th>Reserve 1</th>
<th>Reserve 2</th>
<th>Price Wgt</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Gain</td>
<td>Alloc</td>
<td>Gain</td>
</tr>
<tr>
<td>Symmetric:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Country 1</td>
<td>66.7%</td>
<td>1.00</td>
<td>0.0%</td>
</tr>
<tr>
<td>Country 2</td>
<td>66.7%</td>
<td>1.00</td>
<td>233.4%</td>
</tr>
<tr>
<td>Different (\sigma): (\sigma_2 = 1.10 \times \sigma_1)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Country 1</td>
<td>55.2%</td>
<td>1.00</td>
<td>0%</td>
</tr>
<tr>
<td>Country 2</td>
<td>90.9%</td>
<td>1.00</td>
<td>158.9%</td>
</tr>
<tr>
<td>Different (\mu): (\mu_2 = 1.10 \times \mu_1)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Country 1</td>
<td>78.8%</td>
<td>1.00</td>
<td>0%</td>
</tr>
<tr>
<td>Country 2</td>
<td>59.1%</td>
<td>1.00</td>
<td>129.2%</td>
</tr>
</tbody>
</table>

Karen K. Lewis and Edith Liu

Asset Returns & Gains from Intl Risk Sharing
Table: Estimated Monthly Parameters by Country w/o SV (in %)

<table>
<thead>
<tr>
<th></th>
<th>AUS</th>
<th>CAN</th>
<th>FRA</th>
<th>GER</th>
<th>JAP</th>
<th>UK</th>
<th>US</th>
<th>BY-US</th>
</tr>
</thead>
<tbody>
<tr>
<td>Calibrated</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>μ</td>
<td>0.181</td>
<td>0.158</td>
<td>0.260</td>
<td>0.238</td>
<td>0.408</td>
<td>0.181</td>
<td>0.191</td>
<td>0.150</td>
</tr>
<tr>
<td>μ_g</td>
<td>0.053</td>
<td>-0.035</td>
<td>-0.036</td>
<td>0.021</td>
<td>-0.191</td>
<td>0.062</td>
<td>0.124</td>
<td>0.150</td>
</tr>
<tr>
<td>Individual LRR</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>σ_j</td>
<td>1.050</td>
<td>0.570</td>
<td>0.970</td>
<td>1.430</td>
<td>1.600</td>
<td>0.720</td>
<td>0.490</td>
<td>0.780</td>
</tr>
<tr>
<td>ρ</td>
<td>0.979</td>
<td>0.979</td>
<td>0.979</td>
<td>0.979</td>
<td>0.979</td>
<td>0.979</td>
<td>0.979</td>
<td>0.979</td>
</tr>
<tr>
<td>φ_e</td>
<td>0.034</td>
<td>0.051</td>
<td>0.051</td>
<td>0.021</td>
<td>0.045</td>
<td>0.119</td>
<td>0.200</td>
<td>0.044</td>
</tr>
<tr>
<td>$\varphi_e \times \sigma_j$</td>
<td>0.035</td>
<td>0.029</td>
<td>0.049</td>
<td>0.030</td>
<td>0.073</td>
<td>0.086</td>
<td>0.098</td>
<td>0.034</td>
</tr>
<tr>
<td>ϕ</td>
<td>3.43</td>
<td>3.49</td>
<td>3.50</td>
<td>3.50</td>
<td>3.50</td>
<td>3.50</td>
<td>3.50</td>
<td>3.00</td>
</tr>
<tr>
<td>φ_d</td>
<td>5.0</td>
<td>5.8</td>
<td>4.5</td>
<td>2.9</td>
<td>1.6</td>
<td>4.5</td>
<td>3.8</td>
<td>4.5</td>
</tr>
</tbody>
</table>

Preference Parameters used: $\beta = 0.987$, $\gamma = 10$, $\psi = 1.5$
Mult-Country Welfare Gains

Table: Multi-Country Welfare Gains

<table>
<thead>
<tr>
<th>Country</th>
<th>Eq Wtd Gains</th>
<th>Reserve Share</th>
<th>P/C Ranking</th>
<th>Gains</th>
<th>Pr Wtd Gains</th>
</tr>
</thead>
<tbody>
<tr>
<td>AUS</td>
<td>364.8%</td>
<td>0.22</td>
<td>3</td>
<td>0.0%</td>
<td>n/a</td>
</tr>
<tr>
<td>CAN</td>
<td>211.0%</td>
<td>0.32</td>
<td>2</td>
<td>0.0%</td>
<td>n/a</td>
</tr>
<tr>
<td>FRA</td>
<td>440.1%</td>
<td>0.19</td>
<td>4</td>
<td>0.0%</td>
<td>n/a</td>
</tr>
<tr>
<td>GER</td>
<td>214.4%</td>
<td>0.32</td>
<td>1</td>
<td>1864.0%</td>
<td>n/a</td>
</tr>
<tr>
<td>JPN</td>
<td>1382.9%</td>
<td>0.07</td>
<td>5</td>
<td>0.0%</td>
<td>n/a</td>
</tr>
<tr>
<td>UK</td>
<td>4646.1%</td>
<td>0.02</td>
<td>6</td>
<td>0.0%</td>
<td>n/a</td>
</tr>
<tr>
<td>US</td>
<td>7039.1%</td>
<td>0.01</td>
<td>7</td>
<td>0.0%</td>
<td>n/a</td>
</tr>
</tbody>
</table>

\(^a \) Preference Parameters used: \(\beta = 0.987, \gamma = 10, \psi = 1.5 \)

\(^b \) Model Parameters used: data correlation on \(\eta_t \) and estimated parameters

\(^c \) To Be Completed
E: Conclusion and Further Research

- We begin bridging the disconnect between consumption-based and asset pricing based measures of international risk-sharing gains.
- We analyze the “Long Run Risk” model in a benchmark international risk sharing framework.
- We show:
 - Ability to diversify Long Run Risk implies large welfare gains.
 - Price effects are large in the presence of Long Run Risk.
 - RA, rather than IES, is a larger effect on welfare gains.
- Still to do:
 - Stochastic Volatility.
We begin bridging the disconnect between consumption-based and asset pricing based measures of international risk-sharing gains.

We analyze the "Long Run Risk" model in a benchmark international risk sharing framework.

We show:

- Ability to diversify Long Run Risk implies large welfare gains
- Price effects are large in the presence of Long Run Risk
- RA, rather than IES, is a larger effect on welfare gains

Still to do:

- Stochastic Volatility
- Incomplete Markets
We begin bridging the disconnect between consumption-based and asset pricing based measures of international risk-sharing gains.

We analyze the "Long Run Risk" model in a benchmark international risk sharing framework.

We show:

- Ability to diversify Long Run Risk implies large welfare gains
- Price effects are large in the presence of Long Run Risk
- RA, rather than IES, is a larger effect on welfare gains

Still to do:

- Stochastic Volatility
- Incomplete Markets
- Campbell-Cochrane Habit Model