Education and Labor Market Discrimination

Kevin Lang and Michael Manove

Boston University/NBER/IZA and Boston University

June 2009
Introduction

Theory

- Standard models of statistical discrimination
Introduction

Theory

- Standard models of statistical discrimination
 - (Lundberg and Startz, 1983; Coate and Loury, 1993)
Introduction

Theory

- Standard models of statistical discrimination
 - (Lundberg and Startz, 1983; Coate and Loury, 1993)
 - Blacks invest less in unobserved human capital than whites do.
Introduction

Theory

- Standard models of statistical discrimination
 - (Lundberg and Startz, 1983; Coate and Loury, 1993)
 - Blacks invest less in unobserved human capital than whites do.

- However, observable investments can signal productivity (Spence, 1973)
Introduction

Theory

- Standard models of statistical discrimination
 - (Lundberg and Startz, 1983; Coate and Loury, 1993)
 - Blacks invest less in unobserved human capital than whites do.

- However, observable investments can signal productivity (Spence, 1973)
 - Value of the signal greater, the less reliable direct observation of productivity
Introduction

Theory

- Standard models of statistical discrimination
 - (Lundberg and Startz, 1983; Coate and Loury, 1993)
 - Blacks invest less in unobserved human capital than whites do.

- However, observable investments can signal productivity (Spence, 1973)
 - Value of the signal greater, the less reliable direct observation of productivity
 - Statistical discrimination induce blacks to do more observable investment
Introduction

Predictions

» Educational attainment, conditional on AFQT, higher among blacks
Introduction

Predictions

- Educational attainment, conditional on AFQT, higher among blacks
 - Confirmed (even for young cohorts, controlling for schooling at testing)
Introduction

Predictions

- Educational attainment, conditional on AFQT, higher among blacks
 - Confirmed (even for young cohorts, controlling for schooling at testing)
- Educational attainment similar for blacks and whites at high/low AFQT
Introduction

Predictions

- Educational attainment, conditional on AFQT, higher among blacks
 - Confirmed (even for young cohorts, controlling for schooling at testing)

- Educational attainment similar for blacks and whites at high/low AFQT
 - Confirmed for men; Not rejected for women
Introduction

Predictions

- Educational attainment, conditional on AFQT, higher among blacks
 - Confirmed (even for young cohorts, controlling for schooling at testing)

- Educational attainment similar for blacks and whites at high/low AFQT
 - Confirmed for men; Not rejected for women

- Wages higher for whites except at high and low levels of schooling
Introduction

Predictions

- Educational attainment, conditional on AFQT, higher among blacks
 - Confirmed (even for young cohorts, controlling for schooling at testing)

- Educational attainment similar for blacks and whites at high/low AFQT
 - Confirmed for men; Not rejected for women

- Wages higher for whites except at high and low levels of schooling
 - Confirmed for men (not tested for women)
Introduction

Predictions

- Educational attainment, conditional on AFQT, higher among blacks
 - Confirmed (even for young cohorts, controlling for schooling at testing)

- Educational attainment similar for blacks and whites at high/low AFQT
 - Confirmed for men; Not rejected for women

- Wages higher for whites except at high and low levels of schooling
 - Confirmed for men (not tested for women)

- Results robust to controls for school quality
Introduction

Implications

- Wages higher for blacks conditional on AFQT
Introduction

Implications

- Wages higher for blacks conditional on AFQT
 - Except at very high and low AFQT
Introduction

Implications

- Wages higher for blacks conditional on AFQT
 - Except at very high and low AFQT
 - Reject for men (Not tested for women)
Introduction

Implications

- Wages higher for blacks conditional on AFQT
 - Except at very high and low AFQT
 - Reject for men (Not tested for women)
- Reassess Neal & Johnson (1996)
Model

Sorting Model with Productive School and Partially Observable Productivity

- Continuum of workers of different innate ability levels a.
- Each worker must choose a level of education s.
- Firms in our model simply follow the rules of a competitive labor market.
- One nonstandard assumption
 - Accuracy of direct observation of productivity increases with schooling.
 - No asymmetric information for sufficiently high schooling.
- Search for a separating equilibrium in which $s(a)$ is continuous and strictly increasing in a.
Log productivity is given by

\[\ln p^* = q(s, a) + \varepsilon \]

with

\[q_s > 0, \quad q_{ss} < 0, \quad q_{sa} > 0 \]

Firms observe

\[p = p^* + u \]

\(\varepsilon \) and \(u \) are independent normals

Let \(\lambda(s) \in [0, 1] \)

\[\lambda(s) \equiv \sigma^2_\varepsilon / (\sigma^2_\varepsilon + \sigma^2_u(s)) \]

Note: No incentive to signal when \(\lambda = 1 \)
Show that there is a perfect-Bayesian separating equilibrium unique in this class.

Lowest ability type gets same education regardless of information structure.

Anyone who would choose \(s \) such that \(\lambda(s) = 1 \), gets \(s \) regardless of information structure.

All others get more education as information gets worse.
Show that there is a perfect-Bayesian separating equilibrium

- Unique in this class
- Lowest ability type gets same education regardless of information structure
Show that there is a perfect-Bayesian separating equilibrium

- Unique in this class
- Lowest ability type gets same education regardless of information structure
- Anyone who would choose s^* such that $\lambda(s^*) = 1$, gets s^* regardless of information structure
Show that there is a perfect-Bayesian separating equilibrium

- Unique in this class
- Lowest ability type gets same education regardless of information structure
- Anyone who would choose s^* such that $\lambda(s^*) = 1$, gets s^* regardless of information structure
- All others get more education as information gets worse
Discrimination

Assume

\[\lambda_b(s) < \lambda_w(s) \]

for all \(s < s^* \) (i.e. \(\lambda(s) < 1 \)).

- Except at low and high ability, blacks get more education than do whites.
Discrimination

Assume

\[\lambda_b(s) < \lambda_w(s) \]

for all \(s < s^* \) (i.e. \(\lambda(s) < 1 \)).

- Except at low and high ability, blacks get more education than do whites
- Blacks earn less than whites except at high and low levels of schooling (not conditional on ability)
Discrimination

Assume

\[\lambda_b(s) < \lambda_w(s) \]

for all \(s < s^* \) (i.e. \(\lambda(s) < 1 \)).

- Except at low and high ability, blacks get more education than do whites
- Blacks earn less than whites except at high and low levels of schooling (not conditional on ability)
- Blacks earn more than whites except at high and low levels of ability (not conditional on schooling)
Data

- Follow Neal and Johnson
- NLSY79
- Data from 2000 (supplemented with 1998 and 1996 when missing)
- AFQT
 - Adjusted by age (linearly) and renormed to standard normal
- Education
 - Highest grade completed as of 2000 (1998 or 1996 for those with missing data)
- Use both men and women
- Weights
 - 2000 weight (imputed from 1998 and/or 1996 weights for those with missing data)
Prediction 1: Blacks get more education than whites of similar ability
Table 1
Educational Attainment of Blacks Relative to Non-Hispanic Whites

<table>
<thead>
<tr>
<th>Men</th>
<th>Women</th>
</tr>
</thead>
<tbody>
<tr>
<td>B/W</td>
<td>N</td>
</tr>
<tr>
<td>1.17</td>
<td>4,060</td>
</tr>
<tr>
<td>(0.10)</td>
<td></td>
</tr>
<tr>
<td>1.16</td>
<td>2,302</td>
</tr>
<tr>
<td>(0.13)</td>
<td></td>
</tr>
<tr>
<td>1.11</td>
<td>2,336</td>
</tr>
<tr>
<td>(0.16)</td>
<td></td>
</tr>
<tr>
<td>1.20</td>
<td>3,323</td>
</tr>
<tr>
<td>(0.11)</td>
<td></td>
</tr>
<tr>
<td>1.16</td>
<td>1,603</td>
</tr>
<tr>
<td>(0.20)</td>
<td></td>
</tr>
<tr>
<td>0.92</td>
<td>1,719</td>
</tr>
<tr>
<td>(0.14)</td>
<td></td>
</tr>
<tr>
<td>0.94</td>
<td>1,106</td>
</tr>
<tr>
<td>(0.18)</td>
<td></td>
</tr>
<tr>
<td>0.72</td>
<td>508</td>
</tr>
<tr>
<td>(0.26)</td>
<td></td>
</tr>
<tr>
<td>0.98</td>
<td>1,737</td>
</tr>
<tr>
<td>(0.14)</td>
<td></td>
</tr>
<tr>
<td>0.99</td>
<td>1,116</td>
</tr>
<tr>
<td>(0.18)</td>
<td></td>
</tr>
<tr>
<td>0.78</td>
<td>514</td>
</tr>
<tr>
<td>(0.26)</td>
<td></td>
</tr>
<tr>
<td>0.87</td>
<td>913</td>
</tr>
<tr>
<td>(0.21)</td>
<td></td>
</tr>
<tr>
<td>1.04</td>
<td>914</td>
</tr>
<tr>
<td>(0.25)</td>
<td></td>
</tr>
<tr>
<td>1.01</td>
<td>1,385</td>
</tr>
<tr>
<td>(0.17)</td>
<td></td>
</tr>
<tr>
<td>1.05</td>
<td>630</td>
</tr>
<tr>
<td>(0.31)</td>
<td></td>
</tr>
</tbody>
</table>

Notes: Standard errors in parentheses. All estimates control for age.

School inputs: log enrollment, log no. of teacher, log no. of guidance counselors, log library books, % teachers with MA/PhD, % teachers left during the year, average teacher salary.

School composition: % disadvantaged, daily attendance rate, dropout rate, % students Asian, % students black, % students Hispanic.

Family background: mother's education, father's education, no. of sibling, born in U.S., lived in U.S. at age 14, lived in urban area at age 14, mother born in U.S., father born in U.S.

Table 1
Educational Attainment of Blacks Relative to Non-Hispanic Whites

Lang/Manove
Econometric Society Presentation
Prediction 1: Blacks get more education than whites of similar ability

Prediction 2: Except at high and low levels of ability
Education and AFQT by Race: Men

![Graph showing the relationship between mean education and standardized AFQT by race for men, with lines for white and black races.](graph.png)

Legend:
- **white**
- **black**
Education and AFQT by Race: Women

Mean Education

Standardized AFQT

white black

Lang/Manove
Econometric Society Presentation
Prediction 1: Blacks get more education than whites of similar ability
Prediction 2: Except at high and low levels of ability

Prediction 3: Blacks earn less than whites except at high and low levels of education
Prediction 1: Blacks get more education than whites of similar ability
Prediction 2: Except at high and low levels of ability
Prediction 3: Blacks earn less than whites except at high and low levels of education

Prediction 4: Blacks earn more than whites except at high and low levels of ability
Table 5
Black-White Wage Differentials

<table>
<thead>
<tr>
<th>Young Cohorts</th>
<th>All Regression</th>
<th>Median Regression</th>
<th>AFQT</th>
<th>Education</th>
<th>Family Background, School Inputs</th>
</tr>
</thead>
<tbody>
<tr>
<td>-0.36</td>
<td>-0.36</td>
<td>-0.42</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(0.04)</td>
<td>(0.03)</td>
<td>(0.03)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1637</td>
<td>3841</td>
<td>4055</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-0.13</td>
<td>-0.09</td>
<td>-0.10</td>
<td>✓</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(0.03)</td>
<td>(0.02)</td>
<td>(0.03)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1637</td>
<td>3841</td>
<td>4055</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-0.17</td>
<td>-0.15</td>
<td>-0.18</td>
<td>✓</td>
<td>✓</td>
<td></td>
</tr>
<tr>
<td>(0.03)</td>
<td>(0.02)</td>
<td>(0.03)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1637</td>
<td>3841</td>
<td>4055</td>
<td></td>
<td>✓</td>
<td></td>
</tr>
<tr>
<td>-0.06</td>
<td>-0.06</td>
<td>-0.05</td>
<td>✓</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(0.06)</td>
<td>(0.04)</td>
<td>(0.03)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>732</td>
<td>1876</td>
<td>1955</td>
<td></td>
<td>✓</td>
<td></td>
</tr>
<tr>
<td>-0.10</td>
<td>-0.11</td>
<td>-0.11</td>
<td>✓</td>
<td>✓</td>
<td></td>
</tr>
<tr>
<td>(0.06)</td>
<td>(0.04)</td>
<td>(0.04)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>732</td>
<td>1876</td>
<td>1955</td>
<td></td>
<td>✓</td>
<td></td>
</tr>
</tbody>
</table>

Other Controls
Table 5
Black-White Wage Differentials
Table 6

Determinants of Log Wages

Using Controls for School Quality: N&J Wages

<table>
<thead>
<tr>
<th>Inputs</th>
<th>Student Composition/Behavior</th>
</tr>
</thead>
<tbody>
<tr>
<td>Black</td>
<td>Black</td>
</tr>
<tr>
<td>0.14 (0.03)</td>
<td>-0.14 (0.04)</td>
</tr>
<tr>
<td>Hispanic</td>
<td>Hispanic</td>
</tr>
<tr>
<td>-0.02 (0.05)</td>
<td>-0.01 (0.06)</td>
</tr>
<tr>
<td>Age/10</td>
<td>Age/10</td>
</tr>
<tr>
<td>0.13 (0.04)</td>
<td>0.14 (0.04)</td>
</tr>
<tr>
<td>Education</td>
<td>Education</td>
</tr>
<tr>
<td>0.06 (0.01)</td>
<td>0.06 (0.01)</td>
</tr>
<tr>
<td>AFQT</td>
<td>AFQT</td>
</tr>
<tr>
<td>0.14 (0.01)</td>
<td>0.15 (0.01)</td>
</tr>
<tr>
<td>log of enrollment</td>
<td>Proportion disadvantaged</td>
</tr>
<tr>
<td>-0.08 (0.04)</td>
<td>-0.08 (0.06)</td>
</tr>
<tr>
<td>log no. of teachers</td>
<td>Proportion daily attendance</td>
</tr>
<tr>
<td>0.02 (0.05)</td>
<td>-0.05 (0.07)</td>
</tr>
<tr>
<td>log no. of counselors</td>
<td>Proportion dropout</td>
</tr>
<tr>
<td>0.10 (0.04)</td>
<td>-0.10 (0.05)</td>
</tr>
<tr>
<td>log. no. of library books</td>
<td>Proportion students black</td>
</tr>
<tr>
<td>0.01 (0.01)</td>
<td>0.08 (0.06)</td>
</tr>
<tr>
<td>Proportion of teachers MA/PhD</td>
<td>Proportion students Hispanic</td>
</tr>
<tr>
<td>0.17 (0.05)</td>
<td>-0.07 (0.10)</td>
</tr>
<tr>
<td>Teacher Salary $0,000s</td>
<td>Proportion students Asian</td>
</tr>
<tr>
<td>0.18 (0.09)</td>
<td>0.82 (0.43)</td>
</tr>
<tr>
<td>Teacher who left/100</td>
<td></td>
</tr>
<tr>
<td>-0.30 (0.13)</td>
<td></td>
</tr>
<tr>
<td>N</td>
<td>N</td>
</tr>
<tr>
<td>2,194</td>
<td>2,223</td>
</tr>
</tbody>
</table>

Notes: Standard errors in parentheses. Weights were the same as the education results in Table 3 and 4.
Some of the principal predictions of theory consistent with data
Some of the principal predictions of theory consistent with data

Statistical discrimination + educational sorting cannot fully explain data.
Some of the principal predictions of theory consistent with data

Statistical discrimination + educational sorting cannot fully explain data.

Model implies that conditional on AFQT blacks earn more than whites.
Some of the principal predictions of theory consistent with data

Statistical discrimination + educational sorting cannot fully explain data.

- Model implies that conditional on AFQT blacks earn more than whites.
- One explanation: education is a pure signal at the margin
Some of the principal predictions of theory consistent with data

Statistical discrimination + educational sorting cannot fully explain data.

- Model implies that conditional on AFQT blacks earn more than whites.
- One explanation: education is a pure signal at the margin
- Another: reduced unobservable investment
Some of the principal predictions of theory consistent with data:

- Statistical discrimination + educational sorting cannot fully explain data.
 - Model implies that conditional on AFQT blacks earn more than whites.
 - One explanation: education is a pure signal at the margin.
 - Another: reduced unobservable investment.

- Results paper cast doubt on an emerging consensus that the origins of the black-white wage differential lie in premarket rather than labor market factors.