Bounds on Revenue Distributions in Counterfactual Auctions with Reserve Prices

Xun TANG, University of Pennsylvania

North American Econometric Society Meeting
June 5, 2009
Structural models for first-price auctions (FPA)

- **Bids** in FPA \rightarrow **parameters** \rightarrow **counterfactual** revenues (CFR)
 - private value (PV): nonparametric (N.P.) identification
 - Guerre, Perrigne&Vuong (2000), Li, Perrigne&Vuong (2002)
 - common value (CV): N.P. unidentified
 - Laffont&Vuong (1996), Athey&Haile (2005)

- Open questions related to CV
 - distinguishing PV & CV
 - size of differences in $E(Rev)$ across auction formats
 - choice of optimal reserve prices (RP)
 - what if CV is analyzed as PV?
Solution proposed in this paper

- Distri. of bids \rightarrow bounds on distr. of CFR
 - minimum restrictions on the structure
 - tight, sharp, intuitive

- contributions:
 - partial i.d. of counterfactual distribution
 - compare formats with different RP and for RA bidders
 - empirical illustration: U.S. municipal bonds
The benchmark model (Milgrom & Weber 1982)

- FPA with n R.N. bidders, nonbinding reserve
 - signal distr. F_X : affiliated, exchangeable
 - values $V_i = \theta(X_i, X_{-i})$: nonneg., bounded and cts, exch’ble & non-\downarrow in X_{-i}, strictly \uparrow in X_i.

- Notation:
 - Seller’s reservation value: v_0;
 - Equi. under reserve r: b_r; Distri. of $b_r(X)$: G_B
 - Expected payoff for winner: $v(x) \equiv E(V_i | X_i = x, Y_i \leq x)$ with $Y_i \equiv \max_{j \neq i} X_j$
 - Screening level: $x^*(r) \equiv v^{-1}(r)$
Main idea in a nutshell:
Main idea in a nutshell:
- CFR distr. in FPA under reserve r:
Main idea in a nutshell:

- CFR distr. in FPA under reserve r:
 - by monotonicity of b_0,

$$F_{RI}(r)(p) = 0 \quad \forall p < v_0$$

$$= \Pr(b_0(X^{(1)}) < b_0(x^*(r))) \quad \forall p \in [v_0, r)$$

$$= \Pr(b_0(X^{(1)}) \leq b_0(b_r^{-1}(p))) \quad \forall p \in [r, +\infty)$$
Main idea in a nutshell:

- CFR distr. in FPA under reserve r:
 - by monotonicity of b_0,
 \[F_{R^I(r)}(p) = \begin{cases} 0 & \forall p < v_0 \\ \Pr(b_0(X^{(1)}) < b_0(x^*(r))) & \forall p \in [v_0, r) \\ \Pr(b_0(X^{(1)}) \leq b_0(b_r^{-1}(p))) & \forall p \in [r, +\infty) \end{cases} \]
 - $\exists \delta_r: b_0(X) \longrightarrow b_r(X)$ for $X \geq x^*(r)$
Main idea in a nutshell:

- CFR distr. in FPA under reserve r:
 - by monotonicity of b_0,
 \[
 F_{R\hat{r}(r)}(p) = 0 \quad \forall p < v_0
 \]
 \[
 = \Pr(b_0(X^{(1)}) < b_0(x^*(r))) \quad \forall p \in [v_0, r]
 \]
 \[
 = \Pr(b_0(X^{(1)}) \leq b_0(b_r^{-1}(p))) \quad \forall p \in [r, +\infty)
 \]

- $\exists \delta_r: b_0(X) \longrightarrow b_r(X)$ for $X \geq x^*(r)$
 - $F_{R\hat{r}(r)}$: identified if δ_r could be recovered from bid distr.
Main idea in a nutshell:

- CFR distr. in FPA under reserve \(r \):
 - by monotonicity of \(b_0 \),
 \[
 F_{R^I(r)}(p) = \begin{cases}
 0 & \forall p < v_0 \\
 \Pr(b_0(X^{(1)}) < b_0(x^*(r))) & \forall p \in [v_0, r) \\
 \Pr(b_0(X^{(1)}) \leq b_0(b_r^{-1}(p))) & \forall p \in [r, +\infty)
 \end{cases}
 \]

- \(\exists \delta_r: b_0(X) \longrightarrow b_r(X) \) for \(X \geq x^*(r) \)
 - \(F_{R^I(r)} \): identified if \(\delta_r \) could be recovered from bid distr.
 - \(\delta_r \) solves:
 \[
 \delta_r'(b; G_B^0) = [\xi(b; G_B^0) - \delta_r(b; G_B^0)]g_{M|B}^0(b|b)/G_{M|B}^0(b|b) \tag{1}
 \]
 with unknown BC \(\delta_r(b_0(x^*(r))) = r \), where \(M_i \equiv \max_{j \neq i} B_j \) and \(\xi(b) = b + G_{M|B}^0(b|b)/g_{M|B}^0(b|b) \).
Main idea in a nutshell:

CFR distr. in FPA under reserve r:

- by monotonicity of b_0,
 \[F_{R^I(r)}(p) = 0 \quad \forall p < v_0 \]
 \[= \Pr(b_0(X^{(1)}) < b_0(x^*(r))) \quad \forall p \in [v_0, r) \]
 \[= \Pr(b_0(X^{(1)}) \leq b_0(b_r^{-1}(p))) \quad \forall p \in [r, +\infty) \]

- $\exists \delta_r$: $b_0(X) \longrightarrow b_r(X)$ for $X \geq x^*(r)$
 - $F_{R^I(r)}$: identified if δ_r could be recovered from bid distr.
 - δ_r solves:
 \[
 \delta'_r(b; G_0^0) = [\xi(b; G_0^0) - \delta_r(b; G_0^0)]g_{M|B}^0(b|b) / g_{M|B}^0(b|b) \quad (1)
 \]
 with unknown BC $\delta_r(b_0(x^*(r))) = r$, where $M_i \equiv \max_{j \neq i} B_j$ and $\xi(b) = b + G_{M|B}^0(b|b) / g_{M|B}^0(b|b)$.

- bound $b_0(x^*(r)) \Longrightarrow$ envelope $\delta_r \Longrightarrow$ bound $F_{R^I(r)}$
Bounds on screening levels (SL)

- Bounding winner’s payoffs
 - $v(x) \leq v_h(x) \equiv E(V_i|X_i = Y_i = x)$: by affiliation
 - $v(x) \geq v_l(x) \equiv E(v_h(Y)|X_i = x, Y_i \leq x)$: by equi. cond. in 2nd-price auctions (SPA)
 - v_h, v_l are both \uparrow due to affiliation

- Bounds on SL
 - Just invert v_l, v_h at r: $v_h^{-1}(r) \leq x^*(r) \leq v_l^{-1}(r)$
 - Exhaustive, tight
 - Lower bd: PV; upper bd: extreme case of CV
Bound $b_0(x^*(r))$ (HMB)
• Bound $b_0(x^*(r))$ (HMB)
 • from F.O.C. and use c.o.v. btw b_0 and x,

$$v_h(x) = \xi(b_0(x)) ; \quad v_l(x) = \xi_l(b_0(x)) \equiv \int_{b_0(x_L)}^{b} \xi(\tilde{b}) \frac{g_{M|B}(\tilde{b}|b)}{g_{M|B}(b|b)} d\tilde{b}$$

(2)
Bound $b_0(x^*(r))$ \((HMB) \)

- from F.O.C. and use c.o.v. btw b_0 and x,

$$v_h(x) = \xi(b_0(x)); \quad v_l(x) = \xi_l(b_0(x)) \equiv \int_{b_0(x_L)}^b \xi(\tilde{b}) \frac{g^0_{M|B}(\tilde{b}|b)}{G^0_{M|B}(b|b)} d\tilde{b}$$

(2)

- note: $\xi(b_0(x_l(r))) = v_h(x_l(r)) = r$ and $\xi_l(b_0(x_h(r))) = v_l(x_h(r)) = r$
Bound $b_0(x^*(r))$ \((HMB)\)

- from F.O.C. and use c.o.v. btw b_0 and x,

\[
v_h(x) = \zeta(b_0(x)) \quad \text{and} \quad v_l(x) = \bar{\zeta}(b_0(x)) \equiv \int_{b_0(x_L)}^{b} \zeta(\tilde{b}) \frac{g^0_{M|B}(\tilde{b}|b)}{G^0_{M|B}(b|b)} \, d\tilde{b}
\]

- note: $\zeta(b_0(x_l(r))) = v_h(x_l(r)) = r$ and $\bar{\zeta}(b_0(x_h(r))) = v_l(x_h(r)) = r$

- invert $\zeta, \bar{\zeta}$ to get \textit{tight, sharp} bounds on $b_0(x^*(r))$ (denoted $b_0(x_k(r))$)
Bound $b_0(x^*(r))$ (HMB)

- from F.O.C. and use c.o.v. btw b_0 and x,

$$v_h(x) = \xi(b_0(x)) ;\ v_l(x) = \xi_l(b_0(x)) \equiv \int_{b_0(x_L)}^{b} \xi(b) \frac{g^0_{M|B}(b|b)}{G^0_{M|B}(b|b)} dB$$

(2)

- note: $\xi(b_0(x_l(r))) = v_h(x_l(r)) = r$ and $\xi_l(b_0(x_h(r))) = v_l(x_h(r)) = r$

- invert ξ, ξ_l to get tight, sharp bounds on $b_0(x^*(r))$ (denoted $b_0(x_k(r))$)

Envelopes on δ_r: ($\{\delta_{r,k}\}_{k=l,h}$)
Bound $b_0(x^*(r))$ (HMB)

- from F.O.C. and use c.o.v. btw b_0 and x,

$$v_h(x) = \zeta(b_0(x)) ; \; v_l(x) = \zeta_l(b_0(x)) \equiv \int_{b_0(x_L)}^b \zeta(\tilde{b}) \frac{g_0^0(b|\tilde{b})}{G_0^0(b|\tilde{b})} d\tilde{b}$$

(2)

- note: $\zeta(b_0(x_l(r))) = v_h(x_l(r)) = r$ and $\zeta_l(b_0(x_h(r))) = v_l(x_h(r)) = r$

- invert ζ, ζ_l to get **tight, sharp** bounds on $b_0(x^*(r))$ (denoted $b_0(x_k(r))$)

- **Envelopes** on δ_r: ($\{\delta_{r,k}\}_{k=l,h}$)

 - solves DE in (1) with $BC\; \delta_{r,k}(b_0(x_k(r))) = r$
Bound \(b_0(x^*(r)) \) \((HMB)\)

- from F.O.C. and use c.o.v. btw \(b_0 \) and \(x \),

\[
\begin{align*}
 v_h(x) &= \xi(b_0(x)) \\
 v_l(x) &= \xi_l(b_0(x)) \equiv \int_{b_0(x_L)}^b \xi(\tilde{b}) \frac{g^0_{M|B}(\tilde{b}|b)}{G^0_{M|B}(b|b)} d\tilde{b}
\end{align*}
\]

(2)

- note: \(\xi(b_0(x_l(r))) = v_h(x_l(r)) = r \) and \(\xi_l(b_0(x_h(r))) = v_l(x_h(r)) = r \)
- invert \(\xi, \xi_l \) to get tight, sharp bounds on \(b_0(x^*(r)) \) (denoted \(b_0(x_k(r)) \))

Envelopes on \(\delta_r \): \(\{\delta_{r,k}\}_{k=l,h} \)

- solves \(DE \) in (1) with \(BC \) \(\delta_{r,k}(b_0(x_k(r))) = r \)
- \(\uparrow \) in bids

Xun TANG, University of Pennsylvania
• **Bound** $b_0(x^*(r))$ (*HMB*)

 • from F.O.C. and use c.o.v. btw b_0 and x,

 $$v_h(x) = \xi(b_0(x)) ; v_l(x) = \xi_l(b_0(x)) \equiv \int_{b_0(x_L)}^{b} \xi(\tilde{b}) \frac{g_{0|M|B}(\tilde{b}|b)}{G_{0|M|B}(b|b)} d\tilde{b}$$

 (2)

 • note: $\xi(b_0(x_l(r))) = v_h(x_l(r)) = r$ and

 $\xi_l(b_0(x_h(r))) = v_l(x_h(r)) = r$

 • invert ξ, ξ_l to get *tight, sharp* bounds on $b_0(x^*(r))$ (denoted $b_0(x_k(r))$)

 • **Envelopes** on δ_r: (\{\delta_{r,k}\}_{k=l,h})

 • solves DE in (1) with BC $\delta_{r,k}(b_0(x_k(r))) = r$

 • ↑ in bids

 • inverses at p: *tight, sharp* bounds on $b_0(b_r^{-1}(p)) \forall p > r$
• Bounds on $F_{R^I(r)}(p)$: for $k = l, h$

\[
F^k_{R^I(r)}(p) = \Pr(b_0(X^{(1)}) < b_0(x_k(r)) \quad \forall p \in [v_0, r)
\]

\[
= \Pr(b_0(X^{(1)}) \leq \delta_{r,k}^{-1}(p)) \quad \forall p \in [r, +\infty)
\]
Main idea:

In SPA with r

- $\beta_r(x) = \nu_h(x) = \tilde{\zeta}(b_0(x))$ for $x \geq x^*_r$, $\beta_r(x) < r$ for $x < x^*_r$
- id. of $F_{R^I(r)}(t)$ for $t > r$ if $\nu_h(x^*_r)$ were known
- Sol'n: bound $\nu_h(x^*_r)$ by $\nu_h(x_l(r)) = r$ and $\nu_h(x_h(r)) = \tilde{\zeta}(b_0(x_h(r)))$
• Replace population distri. with empirical analogs
 • estimate bounds on $b_0(x^*(r))$ by inverting kernel estimates $\hat{\xi}$ and $\hat{\xi}_l$ at r
 • estimate the envelope on δ_r by plugging $\hat{\xi}^{-1}(r)$ and $\hat{\xi}_l^{-1}(r)$ into the solution of (1)
 • inverting the envelope at p to estimate bounds on $b_0(b_r^{-1}(p))$
 • Roadmap of consistency proof:
 • smoothness of G^0_B, and then $\hat{\xi}_l, \xi \xrightarrow{P} \xi_l, \xi$ unif. over $\hat{C}_\delta(B)$.
Replace population distri. with empirical analogs

- estimate bounds on $b_0(x^*(r))$ by inverting kernel estimates $\hat{\xi}$ and $\hat{\xi}_l$ at r
- estimate the envelope on δ_r by plugging $\hat{\xi}^{-1}(r)$ and $\hat{\xi}_l^{-1}(r)$ into the solution of (1)
- inverting the envelope at p to estimate bounds on $b_0(b_r^{-1}(p))$
- Roadmap of consistency proof:
 - smoothness of G_B^0, and then $\hat{\xi}_{l,h} \xrightarrow{P} \xi_{l,h}$ unif. over $\hat{C}_\delta(B)$
 - inverses at r ($\hat{b}^0_{k,r} \xrightarrow{P} b_0(x_k(r))$ for $k = l, h$ and interesting $r > 0$
Replace population distri. with empirical analogs

- estimate bounds on \(b_0(x^*(r)) \) by inverting kernel estimates \(\hat{\xi} \) and \(\hat{\xi}_l \) at \(r \)
- estimate the envelope on \(\delta_r \) by plugging \(\hat{\xi}^{-1}(r) \) and \(\hat{\xi}_l^{-1}(r) \) into the solution of (1)
- inverting the envelope at \(p \) to estimate bounds on \(b_0(b_r^{-1}(p)) \)
- Roadmap of consistency proof:
 - smoothness of \(G_B^0 \), and then \(\hat{\xi}_l, \hat{\xi} \xrightarrow{p} \xi_l, \xi \) unif. over \(\hat{C}_\delta(B) \)
 - inverses at \(r \) (\(\hat{b}_{k,r}^0 \xrightarrow{p} b_0(x_k(r)) \) for \(k = l, h \) and interesting \(r > 0 \))
 - \(\hat{\delta}_{k,r}(.; \hat{b}_{k,r}^0) \xrightarrow{p} \delta_{k,r}(.; b_{k,r}^0) \) unif. over \(\hat{C}_\delta(B) \) and \(\hat{\delta}_{r,k}^{-1}(t) \xrightarrow{p} \delta_{r,k}^{-1}(t) \) for all \(t \)
Replace population distri. with empirical analogs

- estimate bounds on $b_0(x^*(r))$ by inverting kernel estimates $\hat{\zeta}$ and $\hat{\zeta}_l$ at r
- estimate the envelope on δ_r by plugging $\hat{\zeta}^{-1}(r)$ and $\hat{\zeta}_l^{-1}(r)$ into the solution of (1)
- inverting the envelope at p to estimate bounds on $b_0(b_r^{-1}(p))$
- Roadmap of consistency proof:
 - smoothness of G^0_B, and then $\hat{\zeta}_l, \hat{\zeta} \xrightarrow{P} \zeta_l, \zeta$ unif. over $\hat{C}_\delta(B)$
 - inverses at r ($\hat{b}^0_{k,r} \xrightarrow{P} b_0(x_k(r))$ for $k = l, h$ and interesting $r > 0$
 - $\hat{\delta}_{k,r}(\cdot; \hat{b}^0_{k,r}) \xrightarrow{P} \delta_{k,r}(\cdot; b^0_{k,r})$ unif. over $\hat{C}_\delta(B)$ and $\delta_{r,k}^{-1}(t) \xrightarrow{P} \delta_{r,k}^{-1}(t)$ for all t
 - Glivenko-Cantelli $ULLN$: consistency of $\hat{F}^l_{RL}(r)$ and $\hat{F}^u_{RL}(r)$
Extension: obs. hetero.

- Bounds in the benchmark model extend for $F_R(r,z)$
 - condition $v_h, v, v_l, G_B^0(z), \xi_l, \xi, \delta_r, \kappa$ on z
 - practical problem: dimension of z is large

- HHS (2003) solution: "homogenization" of bids
 - $V_i = z'\gamma + \theta(X_i, X_{-i})$ and $\{X_i\}_{i \in I} \perp Z$ conditional on n.
 - $b_{0i}(x, z; n, \psi) = z'\gamma + \lambda(x; n, \psi) \forall x, z \forall i$
 - given $n, \forall (z, z; x), b_i(x, z) = b_i(x, z) - z'\gamma + R'\gamma \forall i$.

Xun TANG, University of Pennsylvania

Bounds on Revenue Distributions in Counterfactual Auctions with Reserve Prices
Extension: Binding reserve in data

- New challenges:
 - bids from screened bidders are uninformative about signals (v_l(.) unidentified from G^r_B)
 - G^r_B may be "truncated": data only include auctions with $X^{(1)} \geq x^*(r)$

- With G^r_B not truncated, bounds on $F_{R^l}(r')$ extends immediately
 - need to know n and replace v_l with
 \[v_{l,r}(x) = E[\max\{r, v_h(Y)\}|X = x, Y \leq x] \]

- With truncated G^r_B: bound conditional distribution
 \[F_{R^l}(r')|X^{(1)} \geq x^*(r). \]
 - Probability of truncation can be identified if signals are i.i.d.
U.S. municipal bonds

- Market size: $1.8 trillion outstanding as of 2005
- Initial issuance through FPA to IBs
- Value of bonds: resale price on secondary market
- Private signals: IB’s estimates of the resale prices
Data

The data (6,721 FPA from 2004-2006, *Thompson Financial Website*):

- issuers and features (rate, maturity, par, ratings)
- type of municipal support and dummy for bank-qualification
- all bids in *TIC* (total interest costs) : used for computing dollar bids ($/$100 in par)
- number and identity of syndicates

The reference auction: \(n = 4 \) with features

- \(WACR \) : 4%
- \(WAPN \) : 21 semiannual coupons
- *Total Par*: $4.84 million
- Backed by full credit of municipalities
CF screening prob

<table>
<thead>
<tr>
<th>r</th>
<th>$\hat{b}_0(x_l(r))$</th>
<th>$\hat{b}_0(x_h(r))$</th>
<th>$b.w.$ of $b_0(x^*_r)$</th>
<th>$\hat{F}^l_{R^l(r)}(r_-)$</th>
<th>$\hat{F}^u_{R^l(r)}(r_-)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>98</td>
<td>97.18</td>
<td>97.86</td>
<td>0.67</td>
<td>0.029</td>
<td>0.077</td>
</tr>
<tr>
<td>99</td>
<td>98.13</td>
<td>98.87</td>
<td>0.75</td>
<td>0.105</td>
<td>0.259</td>
</tr>
<tr>
<td>100</td>
<td>98.87</td>
<td>99.75</td>
<td>0.88</td>
<td>0.259</td>
<td>0.583</td>
</tr>
<tr>
<td>101</td>
<td>99.62</td>
<td>100.64</td>
<td>1.02</td>
<td>0.539</td>
<td>0.846</td>
</tr>
<tr>
<td>102</td>
<td>100.23</td>
<td>101.45</td>
<td>1.22</td>
<td>0.747</td>
<td>0.937</td>
</tr>
<tr>
<td>103</td>
<td>100.91</td>
<td>102.20</td>
<td>1.29</td>
<td>0.877</td>
<td>0.965</td>
</tr>
</tbody>
</table>
Percentiles in CFR distri.

<table>
<thead>
<tr>
<th></th>
<th>l.b.(1st)</th>
<th>u.b.(1st)</th>
<th>l.b.(2nd)</th>
<th>u.b.(2nd)</th>
<th>l.b.(3rd)</th>
<th>u.b.(3rd)</th>
</tr>
</thead>
<tbody>
<tr>
<td>97</td>
<td>98.87</td>
<td>98.90</td>
<td>99.54</td>
<td>99.55</td>
<td>100.27</td>
<td>100.28</td>
</tr>
<tr>
<td>98</td>
<td>98.90</td>
<td>98.99</td>
<td>99.55</td>
<td>99.60</td>
<td>100.28</td>
<td>100.31</td>
</tr>
<tr>
<td>99</td>
<td>99.00</td>
<td>99.27</td>
<td>99.60</td>
<td>99.76</td>
<td>100.31</td>
<td>100.40</td>
</tr>
<tr>
<td>100</td>
<td>ν₀</td>
<td>ν₀</td>
<td>ν₀</td>
<td>ν₀</td>
<td>100.18</td>
<td>100.44</td>
</tr>
<tr>
<td>101</td>
<td>ν₀</td>
<td>ν₀</td>
<td>ν₀</td>
<td>ν₀</td>
<td>101.17</td>
<td></td>
</tr>
</tbody>
</table>
About optimal reserve

- compare formats for both RA and RN sellers
 - need measures of v_0.
 - 95.71 : present value of cash flows from the reference bond

- Utility specifications for RA bidders
 - $DARA : u(t) = \log(t)$ and $CRRA \ u(t) = \frac{t^{1-\rho}}{1-\rho}$ with $\rho = 0.6$ and 0.9
Summary of findings

- Rev. ranking confirmed

- RA seller’s optimal choice of format depends on utility specifications

- Very marginal increase in Exp. Rev. for RN bidders if switch from naive RP to the optimal RP
Conclusion

- Distr. of bids in FPA gives informative bounds on CFR distr.
 - robust, tight, efficient
 - extend for obs. hetero. and data from binding reserve (with \(n \) known)
 - consistent N.P. estimator with convincing finite-sample performance

- Some informative answers to policy questions in our application

- Future directions
 - Asymmetry, unknown \# of potential bidders