Fundamentals Based Exchange Rate Prediction Revisited

Jan J. J. Groen

Federal Reserve Bank of New York

North American ES Summer Meetings, 6 June 2009
Predicting FX movements: where do we stand

- Meese and Rogoff (*JIE*, 1983): out-of-sample forecast performance monetary exchange rate models inferior to random walk forecasts (horizon maximal 1 year)

- Mark (*AER*, 1995):
 Present-day monetary model-based error correction terms beat random walk at horizons of 3 to 4 years.

\[\Delta s_{t+k} = \delta + \beta (s_t - f_t) + \varepsilon_{t+k,t} \]
• HOWEVER: No robust evidence for long-horizon predictability

• Only robust evidence for long-horizon predictability within multi-country panel data: Mark and Sul (*JIE*, 2001) and Groen (*JMCB*, 2005).

• Reasons:
 - short span post-Bretton Woods sample,
 - and persistence of disequilibria.

This paper: Does imperfect measurement of macroeconomic fundamentals cause persistence in disequilibria?
Overview of results

- Canadian, UK and US economies: fundamental dynamics driven by 2 dynamic factors

 Factor #1 → fundamental nominal dynamics
 Factor #2 → fundamental real dynamics

- Exchange rate is cointegrated with corresponding domestic and foreign factors

- Factors-based equilibrium error outperform RW/AR forecasts from approx. 1-year ahead onwards.
Outline

Fundamentals based exchange rate model

Estimating dynamic factors

Estimating factors-based ‘fundamental’ levels

Exchange rate forecasting

Concluding remarks
Fundamentals based exchange rate model

- Fundamentals PV exchange rate model:

\[s_t = \mu + \frac{1}{1 + \omega} \sum_{j=0}^{\infty} \left(\frac{\omega}{1 + \omega} \right)^j E_t(f_{t+j} - f^*_{t+j}) \]

- OFTEN with

\[f_t = \eta + m_t - \delta y_t \text{ and } f^*_t = \eta^* + m^*_t - \delta y^*_t: \text{ observed} \]

- Motivates the predictive regression

\[\Delta s_{t+k} = \delta + \beta [s_t - (f_t - f^*_t)] + \varepsilon_{t+k,t}. \]

- BUT: are \(f_t \) and \(f^*_t \) truly observable?
Fundamentals based exchange rate model

- Fundamentals PV exchange rate model:

\[s_t = \mu + \frac{1}{1 + \omega} \sum_{j=0}^{\infty} \left(\frac{\omega}{1 + \omega} \right)^j E_t(f_{t+j} - f_{t+j}^*) \]

- OFTEN with

\[f_t = \eta + m_t - \delta y_t \text{ and } f_t^* = \eta^* + m_t^* - \delta y_t^* : \text{ observed} \]

- Motivates the predictive regression

\[\Delta s_{t+k} = \delta + \beta [s_t - (f_t - f_t^*)] + \varepsilon_{t+k,t}. \]

- BUT: are \(f_t \) and \(f_t^* \) truly observable?
Engel and West (JPE, 2005): some imperfectly measured fundamentals with unobserved measurement error z_t.

This paper: all fundamentals are imperfectly measured

Home:

$$\frac{1}{1+\omega} \sum_{j=0}^{\infty} \left(\frac{\omega}{1+\omega} \right)^j E_t(f_{t+j} + z_{t+j}) \approx H \left(\begin{array}{c} \hat{F}_{1t} \\ \hat{F}_{2t} \end{array} \right)$$

Abroad

$$\frac{1}{1+\omega} \sum_{j=0}^{\infty} \left(\frac{\omega}{1+\omega} \right)^j E_t(f_{t+j}^* + z_{t+j}^*) \approx H^* \left(\begin{array}{c} \hat{F}_{1t}^* \\ \hat{F}_{2t}^* \end{array} \right)$$

$(\hat{F}_{1t} \hat{F}_{2t})'$ and $(\hat{F}_{1t}^* \hat{F}_{2t}^*)'$: dynamic factors of the economies
Estimating dynamic factors

- We have N data series: $X_{it}; i = 1, \ldots, N, t = 1, \ldots, T$.
- The economy is driven by r dynamic factors $F_t = (F_{1t} \cdots F_{rt})'$:
 \[
 \tilde{X}_{it} = \lambda_{i0}' F_t + \lambda_{i1}' F_{t-1} + \cdots + \lambda_{ip}' F_{t-p} + e_{it}
 \]
 \[
 e_{it} \sim I(0), \ E(e_{it}) = 0
 \]
 \[
 F_t = F_{t-1} + u_t
 \]
 \[
 u_t \sim I(0), \ E(u_t) = 0.
 \]
- How to estimate F_t?
 Rewrite in error correction form:
 \[
 \tilde{X}_{it} = \gamma_{i0}' F_t - \gamma_{i1}' \Delta F_{t-1} - \cdots - \gamma_{ip}' \Delta F_{t-p} + e_{it},
 \]
 where $\gamma_{ik} = \lambda_{ik} + \lambda_{i,k+1} + \cdots + \lambda_{ip}$.
Estimating dynamic factors

- We have N data series: $X_{it}; \ i = 1, \ldots, N, \ t = 1, \ldots, T$.
- The economy is driven by r dynamic factors $F_t = (F_{1t} \cdots F_{rt})'$:

 $$\tilde{X}_{it} = \lambda'_{i0} F_t + \lambda'_{i1} F_{t-1} + \cdots + \lambda'_{ip} F_{t-p} + e_{it}$$

 $$e_{it} \sim I(0), \ E(e_{it}) = 0$$

 $$F_t = F_{t-1} + u_t$$

 $$u_t \sim I(0), \ E(u_t) = 0.$$

- How to estimate F_t?
 Rewrite in error correction form:

 $$\tilde{X}_{it} = \gamma'_{i0} F_t - \gamma'_{i1} \Delta F_{t-1} - \cdots - \gamma'_{ip} \Delta F_{t-p} + e_{it},$$

 where $\gamma_{ik} = \lambda_{ik} + \lambda_{i,k+1} + \cdots + \lambda_{ip}$.
Estimating dynamic factors

- We have N data series: $X_{it}; i = 1, \ldots, N, t = 1, \ldots, T.$
- The economy is driven by r dynamic factors $F_t = (F_{1t} \cdots F_{rt})'$:

\[
\tilde{X}_{it} = \lambda_{i0}'F_t + \lambda_{i1}'F_{t-1} + \cdots + \lambda_{ip}'F_{t-p} + e_{it}
\]

$e_{it} \sim I(0), \ E(e_{it}) = 0$

\[
F_t = F_{t-1} + u_t
\]

$u_t \sim I(0), \ E(u_t) = 0.$

- How to estimate F_t?
 Bai (*JofE*, 2004): $F_t \propto T \mathcal{S}_r$;
 \mathcal{S}_r: eigenvectors for 1 to r largest eigenvalues of

\[
\frac{\tilde{X}\tilde{X}'}{T^2N}; \quad \tilde{X} = (\tilde{X}_1 \cdots \tilde{X}_N), \quad \tilde{X}_i = (\tilde{X}_{i1} \cdots \tilde{X}_{iT})'
\]
How to determine r?

- FIRST: demeaned, standardised first differences. Determines $r + rp$, use upper bound equal to 12 for Bai and Ng (Ectrica, 2004):

 \[
 PC_1 = \ln(V(k)) + 1k \left(\left(\frac{N + T}{NT} \right) \ln \left(\frac{NT}{N + T} \right) \right);
 \]

 \[
 PC_2 = \ln(V(k)) + 1k \left(\left(\frac{N + T}{NT} \right) \ln C_{NT}^2 \right);
 \]

 \[
 PC_3 = \ln(V(k)) + 1k \left(\frac{\ln(C_{NT}^2)}{C_{NT}^2} \right);
 \]

 where $C_{NT}^2 = \min(N, T)$, $V(k) = (\sum_{i=1}^{N} \sum_{t=1}^{T} \hat{e}_{it})/NT$.
How to determine r?

- SECOND: detrended, standardised logs of levels. Determines r, use upper bound equal to $r + rp$ for Bai (*JofE*, 2004).

\[
\begin{align*}
PC_1 &= \ln(V(k)) + \frac{T}{4 \ln \ln(T)} k \left(\left(\frac{N + T}{NT} \right) \ln \left(\frac{NT}{N + T} \right) \right); \\
PC_2 &= \ln(V(k)) + \frac{T}{4 \ln \ln(T)} k \left(\left(\frac{N + T}{NT} \right) \ln C_{NT}^2 \right); \\
PC_3 &= \ln(V(k)) + \frac{T}{4 \ln \ln(T)} k \left(\frac{\ln(C_{NT}^2)}{C_{NT}^2} \right);
\end{align*}
\]

where $C_{NT}^2 = \min(N, T)$, $V(k) = (\sum_{i=1}^{N} \sum_{t=1}^{T} \hat{e}_{it})/NT$.
The data and results

- UK: 86 Macroeconomic time series. Source: Kapetanios, Labhard and Price (2005), IFS, GFD.

 US: 91 Macroeconomic time series. Source: FRED® St. Louis Federal Reserve Database, IFS, GFD.

 Canada: 96 Macroeconomic time series. Source: Galbraith and Tkacz (2007), IFS, GFD.
Results:

- What is $r + rp$?
 - UK: $PC_1 = PC_2 = 6, PC_3 = 5$.
 - US: $PC_1 = PC_2 = 6, PC_3 = 8$.
 - Canada: $PC_1 = PC_2 = 4, PC_3 = 9$.

- What is r?
 - UK: $IPC_1 = IPC_2 = 2, IPC_3 = 1$.
 - US: $IPC_1 = IPC_2 = IPC_3 = 2$.
 - Canada: $IPC_1 = IPC_2 = 2, IPC_3 = 1$.

Fundamental dynamics depends on 2 dynamic factors

Giannone et al. *NBER Macroeconomic Annual, 2005*.
Results:

- What is $r + rp$?
 - UK: $PC_1 = PC_2 = 6, PC_3 = 5$.
 - US: $PC_1 = PC_2 = 6, PC_3 = 8$.
 - Canada: $PC_1 = PC_2 = 4, PC_3 = 9$.

- What is r?
 - UK: $IPC_1 = IPC_2 = 2, IPC_3 = 1$.
 - US: $IPC_1 = IPC_2 = IPC_3 = 2$.
 - Canada: $IPC_1 = IPC_2 = 2, IPC_3 = 1$.

Fundamental dynamics depends on 2 dynamic factors

Giannone *et al.* (*NBER Macroeconomic Annual, 2005*).
What do the dynamic factors describe?

- Factors are purely statistical → interpretation?
- For each economy: categorise the individual series
 A: real/GDP components
 B: labour market
 C: international (import, export, terms-of-trade etc.)
 D: money and credit
 E: interest rates and stock prices
 F: prices
- For each economy:
 compute Newey and West (1987, 1994) covariance matrix between each ΔX_{it} and $(\Delta F_{1t} \quad \Delta F_{2t})$

\Rightarrow compute squared long-run correlation for $\Delta X_{it}, \Delta F_{1t}$
and $\Delta X_{it}, \Delta F_{2t}$.
Squared long-run correlations: UK
Squared long-run correlations: US
Squared long-run correlations: Canada
Estimating factors-based ‘fundamental’ levels

‘Fundamental’ exchange rate level: Rotate \(\hat{F}_t = (\hat{F}_{1t} \hat{F}_{2t})' \) and \(\hat{F}^*_t = (\hat{F}^*_1 \hat{F}^*_2)' \) to the log exchange rate \(s_t \):

\[
s_t = \alpha_0 + \alpha_1 t + \delta' \begin{pmatrix} \hat{F}_{1t} \\ \hat{F}_{2t} \\ \hat{F}^*_1 \\ \hat{F}^*_2 \end{pmatrix} + \text{error}.
\]

This suggests a ‘fundamental’ exchange rate level:

\[
s^C_t = \hat{\alpha}_0 + \hat{\alpha}_1 t + \hat{\delta'} \begin{pmatrix} \hat{F}_t \\ \hat{F}^*_t \end{pmatrix}.
\]
Cointegration test exchange rate and factors

| | | LR \textsubscript{UK/US} (q|5) | LR \textsubscript{Can/US} (q|5) | 95\% | 99\% |
|---|---|-----------------|-----------------|-------|-------|
| 3 | 0 | 99.08*** | 119.26*** | 86.96 | 95.38 |
| 1 | | 51.89 | 61.66 | 62.61 | 70.22 |
| 2 | | 33.36 | 33.83 | 42.20 | 48.59 |
| 3 | | 18.63 | 15.15 | 25.47 | 30.65 |
| 4 | | 8.71 | 5.63 | 12.39 | 16.39 |

\[
(\hat{\beta}', \hat{\beta}_0) = \begin{pmatrix}
 1 & -0.020^{**} & -0.004 & 0.016^{**} & -0.003 & -0.620^{***} & 0.002^{**} \\
 [0.007] & [0.003] & [0.007] & [0.003] & [0.047] & [0.001]
\end{pmatrix}

\textit{US dollar/UK pound sterling rate}

\[
(\hat{\beta}', \hat{\beta}_0) = \begin{pmatrix}
 1 & -0.013^{**} & -0.001 & 0.013^{***} & 0.002 & -0.133^{***} & 0.002^{***} \\
 [0.006] & [0.002] & [0.005] & [0.002] & [0.019] & [0.003]
\end{pmatrix}

\textit{US dollar/Canadian dollar rate}
Exchange rate forecasting

- Our predictive regression:

$$\Delta s_{t+h,t} = \alpha^h + \beta^h (s^c_t - s_t) + \sum_{i=1}^{p} \tilde{\rho}_i \Delta s_{t-i+1,t-i} + \epsilon_{t+h,t}$$

or

$$\Delta s_{t+h,t} = \alpha^h + \beta^h (s^c_t - s_t) + \epsilon_{t+h,t}$$

With:
- $h = 1, 2, 3, 4, 8, 12, 16$
- s^c_t: ‘fundamental’ exchange rate level \rightarrow rotation of 2 domestic dynamic factors and 2 US dynamic factors towards s_t.
Recursive updating:

2. Extract 2 domestic dynamic factors F_t and 2 US dynamic factors F_t^* from the domestic and US panels over the sample $t = 1, \ldots, t_0 - h$ to construct s_t^c for each h.
3. Estimate
\[
\Delta s_{t+h} = \alpha^h + \beta^h (s_t^c - s_t) (+ \sum_{i=1}^{p} \tilde{\gamma}_i \Delta s_{t-i+1,t-i}) + \epsilon_{t+h,t}
\]
over the sample $t = 1, \ldots, t_0 - h$ for each h.
4. Extract 2 domestic dynamic factors F_t and 2 US dynamic factors F_t^* from the domestic and US panels over the sample $t = 1, \ldots, t_0$ to construct s_t^c.
5. Generate for h the forecast
\[
\Delta \hat{s}_{t_0+h, t_0} = \hat{\alpha}_{t_0-h}^h + \hat{\beta}_{t_0-h}^h (s_{t_0}^c - s_{t_0}) (+ \sum_{i=1}^{p} \hat{\gamma}_i \Delta s_{t-i+1,t-i})
\]
6. Repeat for $t_0 + 1, \ldots, T - h$ for each h.
Recursive updating:

2. Extract 2 domestic dynamic factors F_t and 2 US dynamic factors F^*_t from the domestic and US panels over the sample $t = 1, \ldots, t_0 - h$ to construct s^c_t for each h.
3. Estimate
 \[
 \Delta s_{t+h,t} = \alpha^h + \beta^h(s^c_t - s_t) + \sum_{i=1}^{p} \tilde{\rho}_i \Delta s_{t-i+1,t-i} + \epsilon_{t+h,t}
 \]
 over the sample $t = 1, \ldots, t_0 - h$ for each h.
4. Extract 2 domestic dynamic factors F_t and 2 US dynamic factors F^*_t from the domestic and US panels over the sample $t = 1, \ldots, t_0$ to construct s^c_t.
5. Generate for h the forecast
 \[
 \Delta \hat{s}_{t_0+h,t_0} = \hat{\alpha}^h_{t_0-h} + \hat{\beta}^h_{t_0-h}(s^c_{t_0} - s_{t_0}) + \sum_{i=1}^{p} \hat{\rho}_i \Delta s_{t-i+1,t-i}
 \]
6. Repeat for $t_0 + 1, \ldots, T - h$ for each h.
Recursive updating:

2. Extract 2 domestic dynamic factors \(F_t \) and 2 US dynamic factors \(F^*_t \) from the domestic and US panels over the sample \(t = 1, \ldots, t_0 - h \) to construct \(s^c_t \) for each \(h \).

3. Estimate
 \[
 \Delta s_{t+h,t} = \alpha^h + \beta^h(s^c_t - s_t) + \sum_{i=1}^{p} \hat{\varrho}_i \Delta s_{t-i+1,t-i} + \epsilon_{t+h,t}
 \]
 over the sample \(t = 1, \ldots, t_0 - h \) for each \(h \).

4. Extract 2 domestic dynamic factors \(F_t \) and 2 US dynamic factors \(F^*_t \) from the domestic and US panels over the sample \(t = 1, \ldots, t_0 \) to construct \(s^c_t \).

5. Generate for \(h \) the forecast
 \[
 \Delta \hat{s}_{t_0+h,t_0} = \hat{\alpha}^h_{t_0-h} + \hat{\beta}^h_{t_0-h}(s^c_{t_0} - s_{t_0}) + \sum_{i=1}^{p} \hat{\varrho}_i \Delta s_{t-i+1,t-i}
 \]

6. Repeat for \(t_0 + 1, \ldots, T - h \) for each \(h \).
Recursive updating:

2. Extract 2 domestic dynamic factors F_t and 2 US dynamic factors F_t^* from the domestic and US panels over the sample $t = 1, \ldots, t_0 - h$ to construct s_t^c for each h.
3. Estimate
 \[
 \Delta s_{t+h,t} = \alpha^h + \beta^h (s_t^c - s_t) \left(+ \sum_{i=1}^{p} \tilde{\rho}_i \Delta s_{t-i+1,t-i} \right) + \epsilon_{t+h,t}
 \]
 over the sample $t = 1, \ldots, t_0 - h$ for each h.
4. Extract 2 domestic dynamic factors F_t and 2 US dynamic factors F_t^* from the domestic and US panels over the sample $t = 1, \ldots, t_0$ to construct s_t^c.
5. Generate for h the forecast
 \[
 \Delta \hat{s}_{t_0+h,t_0} = \hat{\alpha}_{t_0-h}^h + \hat{\beta}_{t_0-h}^h (s_{t_0}^c - s_{t_0}) \left(+ \sum_{i=1}^{p} \hat{\rho}_i \Delta s_{t-i+1,t-i} \right)
 \]
6. Repeat for $t_0 + 1, \ldots, T - h$ for each h.
• Compare against two non-fundamental benchmarks:
 • $AR(p)$ model:
 \[
 \Delta s_{t+h,t} = \alpha^h + \sum_{i=1}^{p} \varphi_i \Delta s_{t-i+1,t-i} + \epsilon_{t+h,t}
 \]
 • Random walk, no change forecast (see Meese and Rogoff (1983)).
 • Forecasts evaluation with the MSE criterion:
 \[
 MSE = \frac{1}{T - t_0 - h} \sum_{s=t_0}^{T-h} e_{s,s+h}^2
 \]
 relative to the MSE of the benchmark forecasts.
• Compare against two *non-fundamental* benchmarks:
 • $AR(p)$ model:
 \[
 \Delta s_{t+h, t} = \alpha^h + \sum_{i=1}^{p} \varrho_i \Delta s_{t-i+1, t-i} + \epsilon_{t+h, t}
 \]
 • Random walk, no change forecast (see Meese and Rogoff (1983)).
 • Forecasts evaluation with the MSE criterion:
 \[
 MSE = \frac{1}{T - t_0 - h} \sum_{s=t_0}^{T-h} \epsilon_{s, s+h}^2
 \]
 relative to the MSE of the benchmark forecasts.
HOWEREVER: finite-sample bias fundamentals-based MSE.

use ‘adjusted’ MSE for fundamentals forecasts (Clark and West (2006a, 2006b)):

\[
MSE_{F}^{adj} = MSE_{F} - \left(\frac{1}{T - t_0 - h} \sum_{s=t_0}^{T-h} \left(\Delta \hat{s}^B_{s,s+h} - \Delta \hat{s}^F_{s,s+h} \right)^2 \right);
\]

- Test for significance MSE difference

\[
z_{MSE} = \sqrt{T - t_0 - h} \left(\frac{MSE_B - MSE_{F}}{\sqrt{\text{Var}(u_{t+h} - (MSE_B - MSE_{F}))}} \right)
\]

\[
z_{MSE} = \sqrt{T - t_0 - h} \left(\frac{MSE_B - MSE_{F}^{adj}}{\sqrt{\text{Var}(u_{t+h}^{adj} - (MSE_B - MSE_{F}^{adj}))}} \right)
\]

based on one-sided bootstrap distributions.
Algorithm Bootstrap Distributions

- DGP Benchmark: $\Delta s_t = c + \sum_{j=1}^{p} \rho_j \Delta s_{t-j} + \epsilon_t$; RW: $\rho_1 = \cdots = \rho_p = 0$
- DGPs Macro data (analogous for the foreign variables):

$$
\Delta \hat{F}_t = \sum_{j=1}^{p} \chi_j \Delta \hat{F}_{t-j} + u_t
$$
$$
\hat{e}_{it} = \sum_{j=1}^{p} \zeta_j \hat{e}_{i,t-j} + u_{it}^\delta; i = 1, \ldots, N
$$
$$
\tilde{X}_{it} = \hat{\gamma}_{i0} \hat{F}_t - \hat{\gamma}_{i1} \Delta \hat{F}_{t-1} - \cdots - \hat{\gamma}_{ip} \Delta \hat{F}_{t-p} + \hat{e}_{it}
$$

- Resample ϵ_t, u_t and the u_{it}^δ's \rightarrow artificial data: $\hat{s}_t, \hat{X}_{1t}, \ldots, \hat{X}_{Nt}, \hat{X}^*_1, \ldots, \hat{X}^*_N$.
- Extract home and foreign dynamic factors from $\hat{X}_{1t}, \ldots, \hat{X}_{Nt}, \hat{X}^*_1, \ldots, \hat{X}^*_N$ \rightarrow artificial factors-based ‘fundamental’ exchange rate \hat{s}_t^c.
- Do forecast evaluation exercise and save z_{MSE} test statistics.
- Repeat 10,000 times and compute p-value of empirical z_{MSE} statistics.
Algorithm Bootstrap Distributions

- DGP Benchmark: $\Delta s_t = c + \sum_{j=1}^{p} \rho_j \Delta s_{t-j} + \epsilon_t$; $RW: \rho_1 = \cdots = \rho_p = 0$

- DGPs Macro data (analogous for the foreign variables):

\[
\Delta \hat{F}_t = \sum_{j=1}^{p} \chi_j \Delta \hat{F}_{t-j} + u_t
\]

\[
\hat{e}_{it} = \sum_{j=1}^{p} \zeta_j \hat{e}_{i,t-j} + u_{it}^e; i = 1, \ldots, N
\]

\[
\tilde{X}_{it} = \hat{\gamma}_{i0} \hat{F}_t - \hat{\gamma}_{i1} \Delta \hat{F}_{t-1} - \cdots - \hat{\gamma}_{ip} \Delta \hat{F}_{t-p} + \hat{e}_{it}
\]

- Resample ϵ_t, u_t and the u_{it}^e's \rightarrow artificial data:

$\hat{s}_t, \hat{X}_{1t}, \ldots, \hat{X}_{Nt}, \hat{X}_{1t}^*, \ldots, \hat{X}_{Nt}^*$.

- Extract home and foreign dynamic factors from $\hat{X}_{1t}, \ldots, \hat{X}_{Nt}, \hat{X}_{1t}^*, \ldots, \hat{X}_{Nt}^*$ \rightarrow artificial factors-based ‘fundamental’ exchange rate \hat{s}_t^c.

- Do forecast evaluation exercise and save z_{MSE} test statistics.

- Repeat 10,000 times and compute p-value of empirical z_{MSE} statistics.
Algorithm Bootstrap Distributions

- DGP Benchmark: $\Delta s_t = c + \sum_{j=1}^{p} \rho_j \Delta s_{t-j} + \epsilon_t$; $RW: \rho_1 = \cdots = \rho_p = 0$
- DGPs Macro data (analogous for the foreign variables):

$$\Delta \hat{F}_t = \sum_{j=1}^{p} \chi_j \Delta \hat{F}_{t-j} + u_t$$

$$\hat{e}_{it} = \sum_{j=1}^{p} \zeta_j \hat{e}_{i,t-j} + u_{it}^e; i = 1, \ldots, N$$

$$\tilde{X}_{it} = \hat{\gamma}'_{i0} \hat{F}_t - \hat{\gamma}'_{i1} \Delta \hat{F}_{t-1} - \cdots - \hat{\gamma}'_{ip} \Delta \hat{F}_{t-p} + \hat{e}_{it}$$

- Resample ϵ_t, u_t and the u_{it}^e's → artificial data: $\tilde{s}_t, \tilde{X}_{1t}, \ldots, \tilde{X}_{Nt}, \tilde{X}_{1t}^*, \ldots, \tilde{X}_{Nt}^*$.
- Extract home and foreign dynamic factors from $\tilde{X}_{1t}, \ldots, \tilde{X}_{Nt}, \tilde{X}_{1t}^*, \ldots, \tilde{X}_{Nt}^*$ → artificial factors-based ‘fundamental’ exchange rate \tilde{s}_t^c.
- Do forecast evaluation exercise and save z_{MSE} test statistics.
- Repeat 10,000 times and compute p-value of empirical z_{MSE} statistics.
Also: performance ‘traditional’ fundamental forecasts relative to the $AR(p)$ and RW benchmarks using

$$
\Delta s_{t+h,t} = \alpha^h + \beta^h (s^M_t - s_t) + \sum_{i=1}^{p} \tilde{\gamma}_i \Delta s_{t-i+1,t-i} + \epsilon_{t+h,t}
$$

with

$$
s^M_t = \hat{\alpha}_0 + \hat{\alpha}_1 t + (m_t - m^*_t) - (y_t - y^*_t)
$$

This is the specification used by Mark (1995).
Out-of-sample forecasts: 1-qtr ahead
Out-of-sample forecasts: 4-qtrs ahead
Out-of-sample forecasts: 16-qtrs ahead
US dollar/pound sterling: AR benchmark

<table>
<thead>
<tr>
<th>h</th>
<th>$(\text{MSE}{\text{AR}}-\text{MSE}{\text{F}})$</th>
<th>$(\text{MSE}{\text{AR}}-\text{MSE}{\text{F}}^{adj})$</th>
<th>$(\text{MSE}{\text{AR}}-\text{MSE}{\text{M}})$</th>
<th>$(\text{MSE}{\text{AR}}-\text{MSE}{\text{M}}^{adj})$</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>6.27 (1.27)</td>
<td>10.32 (2.06)</td>
<td>-1.31 (-0.41)</td>
<td>2.53 (0.78)</td>
</tr>
<tr>
<td>2</td>
<td>10.19 (1.66)</td>
<td>17.51 (2.85)</td>
<td>-4.22 (-0.70)</td>
<td>3.03 (0.51)</td>
</tr>
<tr>
<td>3</td>
<td>15.67 (1.84)</td>
<td>27.58 (3.07)</td>
<td>-7.12 (-0.76)</td>
<td>3.89 (0.42)</td>
</tr>
<tr>
<td>4</td>
<td>17.67 (1.80)</td>
<td>35.42 (2.92)</td>
<td>-11.69 (-0.97)</td>
<td>3.58 (0.29)</td>
</tr>
<tr>
<td>8</td>
<td>29.24 (2.87)</td>
<td>64.01 (2.25)</td>
<td>-23.01 (-1.44)</td>
<td>12.22 (0.67)</td>
</tr>
<tr>
<td>12</td>
<td>25.41 (2.53)</td>
<td>57.77 (2.33)</td>
<td>-46.45 (-3.86)</td>
<td>17.11 (0.86)</td>
</tr>
<tr>
<td>16</td>
<td>7.93 (3.57)</td>
<td>25.51 (5.96)</td>
<td>-64.28 (-6.29)</td>
<td>25.27 (1.03)</td>
</tr>
</tbody>
</table>
US dollar/Canada dollar: AR benchmark

<table>
<thead>
<tr>
<th>h</th>
<th>$(\text{MSE}_{\text{AR}}-\text{MSE}_F)$</th>
<th>$(\text{MSE}_{\text{AR}}-\text{MSE}_F^{adj})$</th>
<th>$(\text{MSE}_{\text{AR}}-\text{MSE}_M)$</th>
<th>$(\text{MSE}_{\text{AR}}-\text{MSE}_M^{adj})$</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>4.22 (1.02)</td>
<td>6.09 (1.46)</td>
<td>-6.96 (-1.57)</td>
<td>-4.96 (-1.12)</td>
</tr>
<tr>
<td>2</td>
<td>4.79 (1.20)</td>
<td>6.68 (1.67)</td>
<td>-9.04 (-1.73)</td>
<td>-6.23 (-1.25)</td>
</tr>
<tr>
<td>3</td>
<td>6.73 (1.45)</td>
<td>9.32 (1.98)</td>
<td>-8.23 (-1.59)</td>
<td>-5.55 (-1.14)</td>
</tr>
<tr>
<td>4</td>
<td>5.53 (1.07)</td>
<td>8.92 (1.72)</td>
<td>-9.57 (-1.65)</td>
<td>-5.78 (-1.08)</td>
</tr>
<tr>
<td>8</td>
<td>2.21 (0.44)</td>
<td>10.98 (2.65)</td>
<td>-12.99 (-2.43)</td>
<td>-5.69 (-1.41)</td>
</tr>
<tr>
<td>12</td>
<td>1.96 (0.33)</td>
<td>12.08 (0.00)</td>
<td>-14.77 (-4.09)</td>
<td>-6.55 (-2.94)</td>
</tr>
<tr>
<td>16</td>
<td>1.15 (2.46)</td>
<td>11.64 (2.46)</td>
<td>-13.53 (-3.47)</td>
<td>-6.49 (-2.98)</td>
</tr>
</tbody>
</table>
US dollar/pound sterling: RW benchmark

<table>
<thead>
<tr>
<th>h</th>
<th>$(\text{MSE}_{\text{RW}}-\text{MSE}_F)$</th>
<th>$\text{MSE}_{\text{RW}}-\text{MSE}_F^{adj}$</th>
<th>$(\text{MSE}_{\text{RW}}-\text{MSE}_M)$</th>
<th>$\text{MSE}_{\text{RW}}-\text{MSE}_M^{adj}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>3.84</td>
<td>5.88</td>
<td>-3.86</td>
<td>-0.40</td>
</tr>
<tr>
<td></td>
<td>(1.04)</td>
<td>(1.56)</td>
<td>(-1.24)</td>
<td>(-0.13)</td>
</tr>
<tr>
<td></td>
<td>0.15</td>
<td>0.06</td>
<td>0.89</td>
<td>0.55</td>
</tr>
<tr>
<td>2</td>
<td>7.60</td>
<td>12.66</td>
<td>-7.24</td>
<td>0.08</td>
</tr>
<tr>
<td></td>
<td>(1.29)</td>
<td>(2.15)</td>
<td>(-1.15)</td>
<td>(0.01)</td>
</tr>
<tr>
<td></td>
<td>0.10</td>
<td>0.02</td>
<td>0.88</td>
<td>0.49</td>
</tr>
<tr>
<td>3</td>
<td>11.75</td>
<td>19.41</td>
<td>-11.78</td>
<td>-1.08</td>
</tr>
<tr>
<td></td>
<td>(1.54)</td>
<td>(2.63)</td>
<td>(-1.12)</td>
<td>(-0.11)</td>
</tr>
<tr>
<td></td>
<td>0.06</td>
<td>0.00</td>
<td>0.87</td>
<td>0.54</td>
</tr>
<tr>
<td>4</td>
<td>15.07</td>
<td>26.73</td>
<td>-15.80</td>
<td>-1.26</td>
</tr>
<tr>
<td></td>
<td>(1.61)</td>
<td>(2.86)</td>
<td>(-1.10)</td>
<td>(-0.10)</td>
</tr>
<tr>
<td></td>
<td>0.05</td>
<td>0.00</td>
<td>0.86</td>
<td>0.54</td>
</tr>
<tr>
<td>8</td>
<td>27.72</td>
<td>54.46</td>
<td>-27.47</td>
<td>5.16</td>
</tr>
<tr>
<td></td>
<td>(3.18)</td>
<td>(2.55)</td>
<td>(-1.48)</td>
<td>(0.31)</td>
</tr>
<tr>
<td></td>
<td>0.00</td>
<td>0.01</td>
<td>0.93</td>
<td>0.34</td>
</tr>
<tr>
<td>12</td>
<td>25.67</td>
<td>55.15</td>
<td>-46.56</td>
<td>12.03</td>
</tr>
<tr>
<td></td>
<td>(3.17)</td>
<td>(2.69)</td>
<td>(-3.67)</td>
<td>(0.75)</td>
</tr>
<tr>
<td></td>
<td>0.00</td>
<td>0.00</td>
<td>1.00</td>
<td>0.23</td>
</tr>
<tr>
<td>16</td>
<td>12.67</td>
<td>35.15</td>
<td>-60.17</td>
<td>19.42</td>
</tr>
<tr>
<td></td>
<td>(3.58)</td>
<td>(3.84)</td>
<td>(-5.02)</td>
<td>(1.12)</td>
</tr>
<tr>
<td></td>
<td>0.00</td>
<td>0.00</td>
<td>1.00</td>
<td>0.13</td>
</tr>
</tbody>
</table>
US dollar/Canada dollar: RW benchmark

<table>
<thead>
<tr>
<th>h</th>
<th>$(\text{MSE}_{RW} - \text{MSE}_F)$</th>
<th>$(\text{MSE}_{RW} - \text{MSE}_F^{adj})$</th>
<th>$(\text{MSE}_{RW} - \text{MSE}_M)$</th>
<th>$(\text{MSE}_{RW} - \text{MSE}_M^{adj})$</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.52</td>
<td>2.38</td>
<td>−8.03</td>
<td>−4.22</td>
</tr>
<tr>
<td></td>
<td>(0.12)</td>
<td>(0.56)</td>
<td>(−1.17)</td>
<td>(−0.62)</td>
</tr>
<tr>
<td></td>
<td>0.45</td>
<td>0.29</td>
<td>0.88</td>
<td>0.73</td>
</tr>
<tr>
<td>2</td>
<td>1.74</td>
<td>3.63</td>
<td>−9.62</td>
<td>−5.05</td>
</tr>
<tr>
<td></td>
<td>(0.42)</td>
<td>(0.90)</td>
<td>(−1.23)</td>
<td>(−0.66)</td>
</tr>
<tr>
<td></td>
<td>0.34</td>
<td>0.18</td>
<td>0.89</td>
<td>0.88</td>
</tr>
<tr>
<td>3</td>
<td>2.25</td>
<td>4.84</td>
<td>−10.28</td>
<td>−5.20</td>
</tr>
<tr>
<td></td>
<td>(0.49)</td>
<td>(1.11)</td>
<td>(−1.20)</td>
<td>(−0.62)</td>
</tr>
<tr>
<td></td>
<td>0.31</td>
<td>0.13</td>
<td>0.88</td>
<td>0.73</td>
</tr>
<tr>
<td>4</td>
<td>3.96</td>
<td>7.35</td>
<td>−10.07</td>
<td>−4.44</td>
</tr>
<tr>
<td></td>
<td>(0.82)</td>
<td>(1.61)</td>
<td>(−1.23)</td>
<td>(−0.56)</td>
</tr>
<tr>
<td></td>
<td>0.21</td>
<td>0.05</td>
<td>0.89</td>
<td>0.71</td>
</tr>
<tr>
<td>8</td>
<td>3.83</td>
<td>12.60</td>
<td>−10.99</td>
<td>−3.48</td>
</tr>
<tr>
<td></td>
<td>(0.77)</td>
<td>(2.94)</td>
<td>(−1.84)</td>
<td>(−0.56)</td>
</tr>
<tr>
<td></td>
<td>0.22</td>
<td>0.00</td>
<td>0.97</td>
<td>0.71</td>
</tr>
<tr>
<td>12</td>
<td>5.82</td>
<td>15.94</td>
<td>−10.56</td>
<td>−3.84</td>
</tr>
<tr>
<td></td>
<td>(1.65)</td>
<td>(2.09)</td>
<td>(−4.04)</td>
<td>(−1.04)</td>
</tr>
<tr>
<td></td>
<td>0.05</td>
<td>0.02</td>
<td>1.00</td>
<td>0.85</td>
</tr>
<tr>
<td>16</td>
<td>5.39</td>
<td>15.88</td>
<td>−8.98</td>
<td>−4.38</td>
</tr>
<tr>
<td></td>
<td>(3.44)</td>
<td>(2.53)</td>
<td>(−3.54)</td>
<td>(−1.48)</td>
</tr>
<tr>
<td></td>
<td>0.00</td>
<td>0.01</td>
<td>1.00</td>
<td>0.93</td>
</tr>
</tbody>
</table>
Concluding remarks

- A better measurement of fundamental drivers
 → better measurement of ‘long-run’ exchange rate levels.

- ‘Fundamental factors’-actual exchange rate gap
 → good forecasts over long horizons (as in other studies)
 but also over the next year (or shorter).

- Work ahead:
 - Other exchange rates
 - Forecasting conventional (monetary) fundamentals?