The Rise of Vertical Specialization Trade

Benjamin Bridgman
Bureau of Economic Analysis

The views expressed in this presentation are solely those of the author and not necessarily those of the U.S. Bureau of Economic Analysis or the U.S. Department of Commerce.
Postwar Trade Growth

• World trade has grown significantly since the mid-1960s.

• Vertical Specialization (VS) trade has increased:
 Trade in goods incorporated in goods that are also traded.
 1997: 12 percent of U.S. exports.

Source: Chen, Kondratowicz and Yi (2005)
Why has VS trade increased?

• Not due to increasing trade in inputs.

• Type of intermediates trade has changed.

 Shift from raw materials to manufactured parts.

• Manufacturing trade grown faster than total trade...

 ...despite being a smaller share of output.

• Rise of VS trade is driven by increase in manufactured inputs trade.
Falling Share of Materials Trade:
Paper Summary: Model Overview

- Tractable two country trade Ricardian model.

- Three stages of production:

 Raw materials used to make parts.

 Parts used to make consumption goods.
Paper Summary: Results

• Falling trade costs can account for:
 Increase in VS trade.
 Faster growth of mfg. trade.

• Key ingredients for result:
 Trade costs fall more for intermediate mfg. goods.
 Manufacturing less dependent on endowments, more sensitive to trade barriers.
Measuring Trade Costs by Use

- Allocate freight costs/tariffs to input-output codes.
- Assume import share is same across uses.
- Trade weight by good/use.
U.S. Import Costs

- Trade costs for mfg. fall more than raw materials.

<table>
<thead>
<tr>
<th>Variable</th>
<th>1967</th>
<th>1997</th>
</tr>
</thead>
<tbody>
<tr>
<td>Interm. (Mfg.)</td>
<td>14.4</td>
<td>7.1</td>
</tr>
<tr>
<td>Interm. (Non-Mfg.)</td>
<td>14.9</td>
<td>11.9</td>
</tr>
<tr>
<td>Final</td>
<td>14.2</td>
<td>6.6</td>
</tr>
</tbody>
</table>
Endowments: Materials vs. Manufacturing

• 1967 trade costs by good similar, but much more trade in materials.

• Materials more dependent on endowments:
 Copper mines have to be placed at copper deposits.
 → Strong comparative advantage.

• Manufacturing siting more flexible.
 Can ship in inputs.
 Weaker comparative advantage.
 → Need low trade costs to trade.
Households

- Two countries $i = 1, 2$
- Each with representative HH, endowed with labor $N^i = 1 \forall t$.
- Preferences over consumption C^i: $U = \left[\sum_{j=1,2} \phi^i_j (C^i_j)^\rho \right]^{\frac{1}{\rho}}$.
- $\phi^i_j = \phi$ if $j = i$ and $\phi^i_j = 1 - \phi$ and if $j \neq i$.

Raw Materials Sector

- Each country produces a raw materials good $Y^i_m = A^i_m N^i_m$.
- Domestic good: $j = i$.
Manufactured Parts Sector

- There is a continuum of manufactured parts \(x^i(z) \).

- Each country can produce parts:
 \[
 Y^i_x(z) = A^i_x(z)(N^i_x(z))^\alpha((\sum_j (M^i_j(z))^\sigma)^{\frac{1}{\sigma}})^{1-\alpha}.
 \]

- Mirror image productivity parameters: \(A^1(z) = \frac{1}{(1+z)\theta} \) and \(A^2(z) = \frac{1}{(2-z)\theta} \),

Final Goods Sector

- Each country produces a final good on same name as country:
 If \(i = j \),
 \[
 Y^i_{c,j} = A^i_c(N^i_c)^{\alpha_c}(\int_0^1 ln(x^i(z))dz)^{1-\alpha_c}
 \]
Trade

- All goods can be traded.
- Incur good specific iceberg transportation cost f_k and tariff τ_k for $k \in \{m, x, c\}$
- Tariff revenue rebated lump sum to domestic HH.
Equilibrium

- Calibrate symmetric equilibrium.
 HH parameters, policies same in both countries.
 Production parameters mirror each other.

- Generates closed form solution.

Calibration

- Trade costs: U.S. import costs:
 Non-Mfg Interm: Materials.
 Mfg. Interm.: Parts.
 Mfg. Final goods: Final goods.

- Trade weighting biased downward.
 Use Mercantilist Trade Resistance Index (Anderson and Van Wincoop 2003): Uniform tariff that gives same trade.
 Scale up by 69%: MTRI/Trade wtd. tariff in Kee, et al. (2005).
Calibration (2)

- HH elasticity ρ: 0.85 (Ruhl 2003).

- Comp. Adv. in interm. mfg. θ: 0.24 Set to match 1972 VS trade share = 0.06.

- Home bias ϕ: 0.545 Set to match mfg. export share in 1967 = 9 percent.

- Interm. Share α, α_c: 0.5 (Jones 2008).

- Mat. elasticity σ: -1 (Jones 2008).

Parameters

<table>
<thead>
<tr>
<th>Variable</th>
<th>ρ</th>
<th>θ</th>
<th>α</th>
<th>α_c</th>
<th>σ</th>
<th>A_m</th>
<th>A_c</th>
<th>ϕ</th>
</tr>
</thead>
<tbody>
<tr>
<td>Value</td>
<td>0.85</td>
<td>0.24</td>
<td>0.5</td>
<td>0.5</td>
<td>-1</td>
<td>1</td>
<td>1</td>
<td>0.545</td>
</tr>
</tbody>
</table>
Simulation Results

U.S. Exports/Value Added, Model and Data 1967-2006
Other Moments

<table>
<thead>
<tr>
<th>Variable</th>
<th>Model</th>
<th>Data</th>
</tr>
</thead>
<tbody>
<tr>
<td>VS Trade 1997</td>
<td>18.9</td>
<td>14.1</td>
</tr>
<tr>
<td>Interm. Trade Share 1972</td>
<td>53.4%</td>
<td>50.4%</td>
</tr>
<tr>
<td>Interm. Share Mfg. Trade 1997</td>
<td>38.4%</td>
<td>30.7%</td>
</tr>
<tr>
<td>Mat. trade share growth (67-02)</td>
<td>9.5%</td>
<td>26.0%</td>
</tr>
</tbody>
</table>

Sources: Chen, et al. (2005); Athukorala & Yamashita (2006); BEA
Conclusion

- Trade costs have an important role in explaining increase in and composition of VS trade.

To Be Done

- Add more years:
 Concord intervening years to trade costs data.