Costly Search and Design

Heski Bar-Isaac, Guillermo Caruana and Vicente Cuñat

NASM, June 2009
Introduction

- Firm design choices
 - product design
 - marketing/information

- Competition and search
 - falling search costs affect the nature of demand
 - changing the kinds of goods provided

- Prevalence and coexistence of very different design strategies
 - broad designs (lowest common denominator) and niche (very specialized)
Implications/Preview

- Search costs affect pricing but also product variety
 - holding variety fixed, lower search costs lead to lower prices
 - what kind of products (how niche/specialized)?

- Externalities in design choice
 - profits and prices can be non-monotonic in search costs
Superstars and the Long-Tail of the Internet

- Long tail
 - Anderson (2004,6); Brynjolfsson, Hu and Smith (2006)
 - demand side effects and long tail; Brynjolfsson, Hu and Simester (2007)

- Superstars
 - Elberse and Oberholzer-Gee (2006); Goldmanis, Hortacsu, Onsel and Syversson (2009)

- Model delivers coexistence of long-tail and superstar effects
Model Preview

- Product design and competition
 - Each firm chooses price and a distribution of matches from a family
 - More or less dispersed: broad vs nichey
 - Johnson and Myatt (2006)

- Costly sequential search (a la Diamond 1971)
 - Differentiated products
 - visit to a new firm provides a new “match” as well as a new price quote; Wolinsky (1986), Bakos (1997), Anderson and Renault (1999)
 - no modelling of spatial differentiation: new firm then independent draw from distribution of matches
Model

- Continuum of firms of measure 1
- Continuum of consumers of measure m
- Consumer l when consuming good from firm i at price p_i gains utility (not including any search costs)

$$u_{li}(p_i) = -p_i + \varepsilon_{li}$$

where ε_{li} is the value of the match
- The cost of visiting an additional firm is $c > 0$
- The utility of consumer l is given by

$$u_{li}(p_i) = -k c,$$

if she buys product i at price p_i after visiting k firms
Firm Strategy

- A firm’s strategy: choose a price p and a design $s \in [B, N]$ where ε_{li} is an independent draw from $F_s(.)$
 - $F_s(.)$ has support on some interval $(\theta_s, \bar{\theta}_s)$ is continuously differentiable and the distribution has logconcave densities $f_s(\theta)$
 - There is a family of rotation points θ^\dagger_s such that $\frac{\partial F_s(\theta)}{\partial s} < 0$ for $\theta > \theta^\dagger_s$ and $\frac{\partial F_s(\theta)}{\partial s} > 0$ for $\theta < \theta^\dagger_s$; further θ^\dagger_s is increasing in s
Demand rotations

- **single rotation point**
- **differing rotation points**
Consumer Strategy

- Consumer strategy: choose whether or not to continue search, choose whether or not to buy
 - Note with continuum firms, never revisit a previous firm
Equilibrium

We look for Symmetric Nash Equilibrium

- Firms mix in choice of price and product design
 \[\sigma \in \Delta(\mathbb{R} \times [B, N]) \]
- Consumer strategy determined by some threshold \(U \) such that continue search if anticipate that doing so yields \(U \) or more in expected net utility
- Note that there is always a trivial (and uninteresting) class of equilibria with no consumers and high prices
Firm's problem

- Firm i faces a consumer l who will buy as long as $-p_i + \varepsilon_{li} > U$
- Define $p_s(U)$ as the firm's optimal price when choosing some design s and faces consumer with stopping rule U

$$p_s(U) = \arg \max p_s(1 - F_s(p_s + U)) = \frac{1 - F_s(p_s(U) + U)}{f_s(p_s(U) + U)}$$

- Logconcavity ensures that $p_s(U)$ is uniquely-defined and is continuous and monotonic (non-increasing) in U
Firm’s problem

- Then, trivially, profits can be written as

\[p_s(U) \frac{m}{\rho} (1 - F_s(p_s(U) + U)), \]

- \(\frac{m}{\rho} \) is the mass of consumers who visit where \(\rho \) is the probability that a consumer buys from any given store.
- Firm problem then reduces to choosing \(s \) to maximize profits

Lemma

Equilibrium prices and designs do not vary with \(m \).

Corollary

Endogenizing \(m \) (through free entry and zero profit condition with a fixed cost of entry) would lead to identical prices, designs and consumer surplus.
Design Choice (Preliminary Result)

Proposition

Firms choose extremal designs, that is either \(s = H \) or \(s = L \).

Proof.

Recall design chosen to optimize

\[
\frac{m}{\pi \sigma} p_d (U_{\sigma})(1 - F_d (p_d (U_{\sigma}) + U_{\sigma})) \quad \text{or equivalently} \quad p (1 - F_d (p + U_{\sigma}))
\]

with respect to both \(p \) and \(d \): affine transforms of demand rotations are still rotations, and the firm is a monopolist on this residual demand curve so that Proposition 1 of Johnson and Myatt (2006) can be applied.
optimal price is above the point of rotation: more “nichey” design

optimal price is below the point of rotation: more “broad” design
Summary

- For very high c no trade possible
- For c high enough all broad equilibrium and decreasing prices in this region as c falls
- For c low enough all niche equilibrium and decreasing prices in this region as c falls
- Intermediate c then mixed strategy
 - unique if $c_B > c_N$
 - *increasing* prices in this region as c falls if $c_B > c_N$

Corollary

Prices and profits can be non-monotonic in search costs.
Comparative Statics

- **All niche**
 - As c increases
 - Prices increase
 - Profits increase
 - CS falls
 - Sales constant

- **Mixed**
 - As c increases
 - Ave prices decrease
 - Profits decrease
 - More broad firms
 - Fewer niche firms
 - CS constant
 - lower sales for niche firms
 - lower sales for broad firms

- **All broad**
 - As c increases
 - Prices increase
 - Profits increase
 - CS falls
 - Sales constant

- **No trade:**
 - “Diamond paradox” intuition
 - lower sales for niche firms
 - lower sales for broad firms
Comparative Statics II

- prices and profits non-monotonic
- surplus monotonic
- In intermediate region
 - both types of firm have higher sales
 - overall sales constant (from set-up of model)
 - more niche firms
 - long-tail effects (niche firms have higher sales)
 - superstar effects (broad firms have higher sales)
 - coexistence of “superstar” and “long tail” effects
Related Literature

- **Search models (design exogenous)**
 - Diamond (1971); Wolinsky (1986); Bakos (97); Anderson and Renault (1999)

- **Product design and demand rotations (monopoly models)**
 - Johnson and Myatt (2006); Lewis and Sappington (1994); Bar-Isaac, Caruana and Cuñat (2009)

- **Search and product design**
 - Kuksov (2004): two firms, consumers know the varieties available but not location, different designs come with different costs associated
 - Cachon, Terwiesch and Xu (forthcoming) focus specifically on multi-product firms, where consumers search costlessly within a firm but at some cost between firms and “design” = product range.
Long tail and superstar effects
 - Anderson (2004,6), Brynjolfsson, Hu and Smith (2006)
 - demand side effects and long tail; Brynjolfsson, Hu and Simester (2007)
 - superstars; Elberse and Oberholzer-Gee (2006), Goldmanis, Hortacsu, Onsel and Syversson (2009)
Conclusions

- Search costs affect product design
- Different design-styles can coexist in equilibrium
- Prices, profits and consumer surplus may be non-monotonic in search costs
 - lower search cost induce lower prices fixing design
 - but lower search cost can induce more niche designs which in turn soften price competition
Extensions and further notes

- Endogenous firm entry
- Endogenous consumer entry
- Coordinated industry behaviour (industry-sponsored websites etc)
- Prominence and search order
- Search on price and product attributes separately
- Targeted search and advertising
- Ex-ante firm heterogeneity: “superstar” effects