Robust Properties of Stock Return Tails

Blake LeBaron
International Business School
Brandeis University
www.brandeis.edu/~blebaron

Econometric Society
Boston, MA
2009
Overview

➡ Why tails?

➡ Tools
 ➕ Tail exponents
 ➕ OLS Hill estimator
 ➕ Gaussian crossing points

➡ Monte-carlo

➡ Stock returns

➡ Summary
Why Stock Return Tails?

➡ Quantitative measure
 ✤ Stylized fact
 ✤ Model fitting
 ✤ Not kurtosis

➡ Approximate distributions
 ✤ Risk measures

➡ Moment failure
Connections to Volatility

- Conditional variances changing
 - Drives fat tails
- Why bother with unconditional measures?
 - Stable long-range distribution estimates
 - Testing volatility models
Overview

➡ Why tails?

➡ Tools
 ✤ Tail exponents
 ✤ OLS Hill estimator
 ✤ Gaussian crossing points

➡ Monte-carlo

➡ Stock returns

➡ Summary
Power Law Tail

\[\Pr(R < r) = F(r) \approx A |r|^{-\alpha} \]

\[\log(F(r)) \approx \log(A) - \alpha \log(|r|) \]

\(\alpha = \text{Tail exponent} \)

\(\gamma = 1/\alpha = \text{Shape parameter} \)
GM Daily Returns
Pooled Tails and Student-t

![Graph showing the relationship between daily return and probability of return exceeding a certain value, with lines for different tails labeled T3, T4, and T5. The graph has a logarithmic scale for probability on the y-axis and daily return on the x-axis.]
Hill Estimator

\[\hat{\gamma}_{n_k,n} = \frac{1}{n_k} \sum_{i=1}^{n_k} \left(\log(x_{(n-i+1)}) - \log(x_{(n-n_k)}) \right) \]

\[x_{(n)} < x_{(n-1)} < \ldots < x_{(1)} \]

\[k = \frac{n_k}{n} \]

\[\hat{\alpha} = \frac{1}{\hat{\gamma}_{n_k,n}} \]
Hill Estimator

➡ Easy to estimate
➡ Difficult to decide on tail region
+ Very sensitive to k
+ Common for all tail estimators
Hill Estimator: Bias and Variance

\[E(\hat{\gamma}) \approx \gamma + Bk^\rho \]

\[\text{var}(\hat{\gamma}) \approx \frac{\gamma^2}{n_k} = \frac{\gamma^2}{k \cdot n} \]
OLS Hill:
Huisman et al., 2001, Rev. Econ. and Statistics

\[E(\hat{\gamma}) \approx \gamma + Bk^\rho \]
Assume \(\rho=1 \)
Estimate over range of \(k \):
\((k_j, \hat{\gamma}(k_j)) \)
OLS
\(\hat{\gamma}(k_j) = a + bk_j + \epsilon_j \)
\(\hat{\gamma}_{OLS} = \hat{a} \)
Other Approaches

- Estimate bias theoretically
- Get optimal k from bootstrap/subsampling method
Gaussian Crossing Points

⇒ Quantiles where empirical CDF crosses Gaussian CDF

\[r : F(r) = F_G(r) \]
Gaussian Crossing Points

\[\text{Prob}(X<x) = F(x) \]

Gaussian

Student–t(3)
Overview

➡ Why tails?

➡ Tools
 ✞ Tail exponents
 ✞ OLS Hill estimator
 ✞ Gaussian crossing points

➡ Monte-carlo

➡ Stock returns

➡ Summary
Monte-Carlo Tests

➤ How does the OLS Hill compare to Hill?
➤ How sensitive is it to k?
➤ Sample size = 20,000
➤ Student-t, 3 degrees of freedom
OLS Hill Implementation

- OLS range
 - 5 to kn incremented by 1
- Weighted least squares
Bias Estimate: Shape Estimators

$E(\gamma) - \gamma$

Tail Fraction

Hill

OLS Hill
Variance Estimate: Shape Estimators

Estimated Shape Variance vs Tail Fraction

- Hill
- OLS Hill
Mean Squared Error

\[MSE = \frac{1}{M} \sum_{j=1}^{M} (\hat{\gamma}_j - \gamma)^2 \]

\[\gamma = \frac{1}{3} \]
MSE: Shape Estimators

Min(Hill) = 1.1E-3, Min(OLS Hill) = 1.8E-4
Robustness

- Bands for “reasonable” k
- Move to 1.25 optimal MSE
- Record k
- Range of acceptable k’s
- Sample lengths: 2,000-20,000
MSE Optimal Tail: Hill OLS
(+/- 25 Percent Bands)
Overview

➡ Why tails?

➡ Tools

➕ Tail exponents

➕ OLS Hill estimator

➕ Gaussian crossing points

➡ Monte-carlo

➡ Stock returns

➡ Summary
Data

- CRSP daily log returns with dividends
- Small set (14 firms)
 - Near dow
 - Full sample
- Sample size
 - Period: Jan 1926 - Dec 2004
 - N = 21016 daily observations
- Demeaned, normalized by std.
Summary Statistics

<table>
<thead>
<tr>
<th></th>
<th>Skewness</th>
<th>Kurtosis</th>
</tr>
</thead>
<tbody>
<tr>
<td>ATT</td>
<td>-0.11</td>
<td>26.7</td>
</tr>
<tr>
<td>Coke</td>
<td>-0.30</td>
<td>17.9</td>
</tr>
<tr>
<td>DuPont</td>
<td>-0.20</td>
<td>14.9</td>
</tr>
<tr>
<td>Edison</td>
<td>-1.10</td>
<td>38.3</td>
</tr>
<tr>
<td>Exxon</td>
<td>-0.13</td>
<td>17.0</td>
</tr>
<tr>
<td>GE</td>
<td>0.04</td>
<td>13.1</td>
</tr>
<tr>
<td>GM</td>
<td>0.19</td>
<td>13.8</td>
</tr>
<tr>
<td>Goodrich</td>
<td>0.48</td>
<td>21.4</td>
</tr>
<tr>
<td>IBM</td>
<td>-0.26</td>
<td>15.8</td>
</tr>
<tr>
<td>Kansas Southern</td>
<td>0.24</td>
<td>23.3</td>
</tr>
<tr>
<td>Navistar</td>
<td>0.23</td>
<td>21.6</td>
</tr>
<tr>
<td>Sears</td>
<td>-0.26</td>
<td>30.8</td>
</tr>
<tr>
<td>US Steel</td>
<td>-0.21</td>
<td>27.7</td>
</tr>
<tr>
<td>Woolworth</td>
<td>0.35</td>
<td>12.9</td>
</tr>
<tr>
<td>VW Index</td>
<td>-0.13</td>
<td>20.9</td>
</tr>
</tbody>
</table>
Left Tail Exponents

<table>
<thead>
<tr>
<th></th>
<th>k=0.15</th>
<th>k=0.25</th>
<th>k=0.20</th>
<th>Std.</th>
</tr>
</thead>
<tbody>
<tr>
<td>ATT</td>
<td>3.22</td>
<td>3.58</td>
<td>3.38</td>
<td>0.15</td>
</tr>
<tr>
<td>Coke</td>
<td>3.41</td>
<td>3.71</td>
<td>3.53</td>
<td>0.12</td>
</tr>
<tr>
<td>Exxon</td>
<td>3.61</td>
<td>3.91</td>
<td>3.64</td>
<td>0.15</td>
</tr>
<tr>
<td>GM</td>
<td>3.31</td>
<td>3.69</td>
<td>3.45</td>
<td>0.13</td>
</tr>
<tr>
<td>IBM</td>
<td>3.24</td>
<td>3.47</td>
<td>3.26</td>
<td>0.13</td>
</tr>
<tr>
<td>VW Index</td>
<td>3.03</td>
<td>3.40</td>
<td>3.15</td>
<td>0.10</td>
</tr>
</tbody>
</table>
Gaussian Comparison (k=0.20)
Monte-carlo: 1000, N=20,000

<table>
<thead>
<tr>
<th>Mean</th>
<th>Std</th>
<th>Min</th>
<th>Max</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.93</td>
<td>0.45</td>
<td>6.82</td>
<td>9.55</td>
</tr>
</tbody>
</table>
Tail Exponent Differences ($k = 0.20$)

<table>
<thead>
<tr>
<th></th>
<th>Left</th>
<th>Right</th>
<th>P-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>ATT</td>
<td>3.38</td>
<td>3.58</td>
<td>0.20</td>
</tr>
<tr>
<td>Coke</td>
<td>3.53</td>
<td>3.92</td>
<td>0.03</td>
</tr>
<tr>
<td>Exxon</td>
<td>3.64</td>
<td>3.60</td>
<td>0.60</td>
</tr>
<tr>
<td>GM</td>
<td>3.45</td>
<td>3.51</td>
<td>0.32</td>
</tr>
<tr>
<td>IBM</td>
<td>3.26</td>
<td>3.50</td>
<td>0.10</td>
</tr>
<tr>
<td>VW Index</td>
<td>3.15</td>
<td>2.82</td>
<td>0.98</td>
</tr>
</tbody>
</table>
Tail Exponent Differences (Right/Left)

- Observations for $p < 0.05$: 2
- Observations for $0.05 < p < 0.95$: 12
- Observations for $p > 0.95$: 1
First - Last 5000 (daily returns)

<table>
<thead>
<tr>
<th>Company</th>
<th>First</th>
<th>Last</th>
<th>P-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>ATT</td>
<td>4.06</td>
<td>3.45</td>
<td>0.91</td>
</tr>
<tr>
<td>Coke</td>
<td>3.18</td>
<td>3.67</td>
<td>0.13</td>
</tr>
<tr>
<td>Exxon</td>
<td>3.58</td>
<td>3.81</td>
<td>0.27</td>
</tr>
<tr>
<td>GM</td>
<td>3.46</td>
<td>3.97</td>
<td>0.09</td>
</tr>
<tr>
<td>IBM</td>
<td>2.91</td>
<td>3.20</td>
<td>0.23</td>
</tr>
<tr>
<td>VW Index</td>
<td>3.34</td>
<td>4.36</td>
<td>0.00</td>
</tr>
</tbody>
</table>
First - Last (5,000 daily returns)

- $p < 0.05$: 4 observations
- $0.05 < p < 0.95$: 11 observations
- $p > 0.95$: 0 observations
<table>
<thead>
<tr>
<th></th>
<th>Left</th>
<th>Right</th>
<th>P-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>ATT</td>
<td>0.026</td>
<td>0.032</td>
<td>0.05</td>
</tr>
<tr>
<td>Coke</td>
<td>0.023</td>
<td>0.038</td>
<td>0.00</td>
</tr>
<tr>
<td>Exxon</td>
<td>0.025</td>
<td>0.028</td>
<td>0.21</td>
</tr>
<tr>
<td>GM</td>
<td>0.022</td>
<td>0.034</td>
<td>0.00</td>
</tr>
<tr>
<td>IBM</td>
<td>0.024</td>
<td>0.032</td>
<td>0.03</td>
</tr>
<tr>
<td>VW Index</td>
<td>0.030</td>
<td>0.018</td>
<td>1.00</td>
</tr>
</tbody>
</table>
Crossing points

Observations

- $p < 0.05$: 7
- $0.05 < p < 0.95$: 7
- $p > 0.95$: 1
Summary

➡ Magnitude
 ✤ Near 3
 ✤ 4th moments and beyond??

➡ Stability
 ✤ Relatively stable

➡ Symmetry
 ✤ Mixed
Tail Methodology

- OLS (Huisman et al.) Hill estimator
- Augment kurtosis measures
- Gaussian crossing point
Future

➡ Volatility
 ➕ Range-based estimators
 ➕ Multi-horizon/long memory
➡ Long term risk measures
➡ Correlations and moment failure
 ➕ Beta/hedge ratios
➡ Robust/stylized facts and other series