Strategic Implications of Competing For Consumers with Time Inconsistent Preferences

Alexei Alexandrov

University of Rochester (Simon School – Economics and Management)

Summer 2009 Econometric Society
Time-Inconsistency

- A big literature on all kinds of scenarios, in which consumers are time-inconsistent
Time-Inconsistency

- A big literature on all kinds of scenarios, in which consumers are time-inconsistent
- Two of the most celebrated ones – gyms (investment) and credit cards (leisure)
Time-Inconsistency

- A big literature on all kinds of scenarios, in which consumers are time-inconsistent
- Two of the most celebrated ones – gyms (investment) and credit cards (leisure)
- When you sign up, you think you’ll go to the gym every day, but then you end up not going
Time-Inconsistency

- A big literature on all kinds of scenarios, in which consumers are time-inconsistent
- Two of the most celebrated ones – gyms (investment) and credit cards (leisure)
- When you sign up, you think you’ll go to the gym every day, but then you end up not going
- You use your credit card as soon as you get it, thinking you’ll pay off in the low introductory interest rate time, but end up paying back at the normal rate
Time-Inconsistency

- A big literature on all kinds of scenarios, in which consumers are time-inconsistent
- Two of the most celebrated ones – gyms (investment) and credit cards (leisure)
- When you sign up, you think you’ll go to the gym every day, but then you end up not going
- You use your credit card as soon as you get it, thinking you’ll pay off in the low introductory interest rate time, but end up paying back at the normal rate
- Issue: how do consumers like these affect strategic competition?
What I am interested in

1. Does imperfect competition alleviate some of the consumer irrationality?
What I am interested in

1. Does imperfect competition alleviate some of the consumer irrationality?
2. If so, does it go all the way to the rational equilibrium?
What I am interested in

1. Does imperfect competition alleviate some of the consumer irrationality?
2. If so, does it go all the way to the rational equilibrium?
3. If some consumers realize that they are irrational, does that help?
Hyperbolic Consumers

- Discount as follows: 1, $\beta \delta$, $\beta \delta^2$, $\beta \delta^3$... – everything after today is discounted by β on top of the normal δ
Hyperbolic Consumers

- Discount as follows: 1, $\beta \delta$, $\beta \delta^2$, $\beta \delta^3$... – everything after today is discounted by β on top of the normal δ

- Problem: the same thing will happen tomorrow
Hyperbolic Consumers

- Discount as follows: $1, \beta \delta, \beta \delta^2, \beta \delta^3 \ldots$ – everything after today is discounted by β on top of the normal δ
- Problem: the same thing will happen tomorrow
- Example: $\delta = 1, \beta = .8$
Hyperbolic Consumers

- Discount as follows: $1, \beta \delta, \beta \delta^2, \beta \delta^3 \ldots$ — everything after today is discounted by β on top of the normal δ
- Problem: the same thing will happen tomorrow
- Example: $\delta = 1, \beta = 0.8$
- A dollar tomorrow (period 2) is the same as 80 cents today, same for the day after (period 3)
Hyperbolic Consumers

- Discount as follows: $1, \beta \delta, \beta \delta^2, \beta \delta^3 ...$ – everything after today is discounted by β on top of the normal δ
- Problem: the same thing will happen tomorrow
- Example: $\delta = 1, \beta = .8$
- A dollar tomorrow (period 2) is the same as 80 cents today, same for the day after (period 3)
- When you get to tomorrow, a dollar in period 3 is only 80 cents of the dollar in period 2
Hyperbolic Consumers

- Discount as follows: 1, $\beta\delta$, $\beta\delta^2$, $\beta\delta^3$... – everything after today is discounted by β on top of the normal δ
- Problem: the same thing will happen tomorrow
- Example: $\delta = 1$, $\beta = .8$
- A dollar tomorrow (period 2) is the same as 80 cents today, same for the day after (period 3)
- When you get to tomorrow, a dollar in period 3 is only 80 cents of the dollar in period 2
- Naive vs. Sophisticated
1. N firms in each market
Firms

1. \(N \) firms in each market
2. Firms do not discount, and are completely rational
Firms

1. N firms in each market
2. Firms do not discount, and are completely rational
3. I am interested in symmetric Nash
Product Differentiation

1. Perloff-Salop (1985)
Product Differentiation

1. Perloff-Salop (1985)
2. Each consumer-brand preference, θ_{firm} is drawn from a p.d.f. $g(\bullet)$
Product Differentiation

1. Perloff-Salop (1985)
2. Each consumer-brand preference, θ_{firm} is drawn from a p.d.f. $g(\bullet)$
3. All the consumer-brand preferences are i.i.d. – each consumer takes N draws from $g(\bullet)$
Product Differentiation

1. Perloff-Salop (1985)
2. Each consumer-brand preference, θ_{firm} is drawn from a p.d.f. $g(\bullet)$
3. All the consumer-brand preferences are i.i.d. – each consumer takes N draws from $g(\bullet)$
4. t is the strength of preferences in a given market – roughly the same as the travel cost in Hotelling
Product Differentiation

1. Perloff-Salop (1985)
2. Each consumer-brand preference, θ_{firm} is drawn from a p.d.f. $g(\bullet)$
3. All the consumer-brand preferences are i.i.d. – each consumer takes N draws from $g(\bullet)$
4. t is the strength of preferences in a given market – roughly the same as the travel cost in Hotelling
5. No outside option
Structure

- Each consumer has to sign up for a gym in period 1, and pay a fixed fee F.
Structure

- Each consumer has to sign up for a gym in period 1, and pay a fixed fee F
- Derives some brand-pleasure ($t\theta_{firm}$) when signs up
Each consumer has to sign up for a gym in period 1, and pay a fixed fee F

Derives some brand-pleasure ($t\theta_{firm}$) when signs up

After signing up the consumer might or might not attend the gym in period 2, and pay p if attending
Each consumer has to sign up for a gym in period 1, and pay a fixed fee F

Derives some brand-pleasure ($t\theta_{firm}$) when signs up

After signing up the consumer might or might not attend the gym in period 2, and pay p if attending

If the consumer attends the gym, then gets some fixed benefit B in period 3
Each consumer has to sign up for a gym in period 1, and pay a fixed fee F

Derives some brand-pleasure ($t\theta_{firm}$) when signs up

After signing up the consumer might or might not attend the gym in period 2, and pay p if attending

If the consumer attends the gym, then gets some fixed benefit B in period 3

Important: differentiation happens before the attendance decision
N symmetric firms
N symmetric firms

Simultaneously set Fs and ps before the game starts
Firms

- N symmetric firms
- Simultaneously set F_s and p_s before the game starts
- It costs a firm c if a consumer attends after signing up
Consumer Attendance Choice

$t\theta_i - F_i - \beta p_i + \beta B$ if the consumer attends
Consumer Attendance Choice

- $t \theta_i - F_i - \beta p_i + \beta B$ if the consumer attends
- $t \theta_i - F_i$ if the consumer does not attend
Consumer Attendance Choice

- $t \theta_i - F_i - \beta p_i + \beta B$ if the consumer attends
- $t \theta_i - F_i$ if the consumer does not attend
- Is $p_i < B$? (are the benefits of attendance more than the price)
 Actual Choice

- In period 2, the fixed fee had been paid already, the brand benefits had been received, and the only question is do I attend the gym today and pay p to get the (discounted!) benefits tomorrow?
In period 2, the fixed fee had been paid already, the brand benefits had been received, and the only question is do I attend the gym today and pay \(p \) to get the (discounted!) benefits tomorrow?

Is \(p_i < \beta B \)? (are the discounted benefits of attendance more than the price)
Actual Choice

- In period 2, the fixed fee had been paid already, the brand benefits had been received, and the only question is do I attend the gym today and pay p to get the (discounted!) benefits tomorrow?

- Is $p_i < \beta B$? (are the discounted benefits of attendance more than the price)

- Firms: not clear whether they want to dupe the consumers
In period 2, the fixed fee had been paid already, the brand benefits had been received, and the only question is do I attend the gym today and pay p to get the (discounted!) benefits tomorrow?

- Is $p_i < \beta B$? (are the discounted benefits of attendance more than the price)
- Firms: not clear whether they want to dupe the consumers
- If the consumers are deceived, the firms save c, but forego p
Rational Equilibrium

- Suppose the firms do NOT want to deceive, then...
Suppose the firms do NOT want to deceive, then...

\[p^* = c + \frac{t}{\beta M(N)} \]
Suppose the firms do NOT want to deceive, then...

\[p^* = c + \frac{t}{\beta M(N)} \]

\[F^* = 0 \]
Rational Equilibrium

- Suppose the firms do NOT want to deceive, then...
- \(p^* = c + \frac{t}{\beta M(N)} \)
- \(F^* = 0 \)
- \(M(N) = N(N - 1) \int G^{N-2}(\theta)g^2(\theta)d\theta \) increases in \(N \) if \(G(\bullet) \) is log-concave
Suppose the firms do NOT want to deceive, then...

\[p^* = c + \frac{t}{\beta M(N)} \]

\[F^* = 0 \]

\[M(N) = N(N - 1) \int G^{N-2}(\theta)g^2(\theta)d\theta \]

increases in \(N \) if \(\overline{G}(\bullet) \) is log-concave

Same as with fully rational consumers
Deceiving Equilibrium

- Suppose the firms DO want to deceive, then...
Deceiving Equilibrium

- Suppose the firms DO want to deceive, then...
- \(p^* = \beta B \)
Deceiving Equilibrium

- Suppose the firms DO want to deceive, then...
- $p^* = \beta B$
- $F^* = \frac{t}{M(N)}$
Deceiving Equilibrium

- Suppose the firms DO want to deceive, then...
- \(p^* = \beta B \)
- \(F^* = \frac{t}{M(N)} \)
- Consumers think that they will attend, but do not, and do not pay \(p \)
Deceiving Equilibrium

- Suppose the firms DO want to deceive, then...
- \[p^* = \beta B \]
- \[F^* = \frac{t}{M(N)} \]
- Consumers think that they will attend, but do not, and do not pay \(p \)
- Fixed sign-up fee is the same as in the same game with only the sign up period (since the firms know that consumers do not attend)
When does which equilibrium happen?

Figure: Equilibria of the investment good competition with naive time inconsistent consumers.
Suppose σ of the consumers are sophisticated
Sophisticated Consumers

- Suppose σ of the consumers are sophisticated
- No problem in the rational eq
Sophisticated Consumers – Deceiving Eq

- Suppose really close to the cutoff, playing deceiving eq – marginal costs of the firms are just a bit above the discounted benefits of the consumers.
Sophisticated Consumers – Deceiving Eq

- Suppose really close to the cutoff, playing deceiving eq – marginal costs of the firms are just a bit above the discounted benefits of the consumers
- Sophisticates know they will not attend
Sophisticated Consumers – Deceiving Eq

- Suppose really close to the cutoff, playing deceiving eq – marginal costs of the firms are just a bit above the discounted benefits of the consumers
- Sophisticates know they will not attend
- Lowering attendance price by a little bit means that all the sophisticates realize that they will actually attend – huge demand increase
Sophisticated Consumers – Deceiving Eq

- Suppose really close to the cutoff, playing deceiving eq – marginal costs of the firms are just a bit above the discounted benefits of the consumers
- Sophisticates know they will not attend
- Lowering attendance price by a little bit means that all the sophisticates realize that they will actually attend – huge demand increase
- The firm loses money from consumer attendance, but can make it up in the fixed fee
Sophisticated Consumers – Deceiving Eq

- Suppose really close to the cutoff, playing deceiving eq – marginal costs of the firms are just a bit above the discounted benefits of the consumers
- Sophisticates know they will not attend
- Lowering attendance price by a little bit means that all the sophisticates realize that they will actually attend – huge demand increase
- The firm loses money from consumer attendance, but can make it up in the fixed fee
- But if everyone does it, not profitable – no symmetric eq, just mixed with some firms catering to sophisticates
When do the firms play what?

Figure: Equilibria of the investment good competition with some sophisticated consumers.
Takeaways

1. Imperfect competition for time-inconsistent consumers
Takeaways

1. Imperfect competition for time-inconsistent consumers
2. Sometimes fully alleviates inconsistency
Takeaways

1. Imperfect competition for time-inconsistent consumers
2. Sometimes fully alleviates inconsistency
3. Big difference between investment and leisure goods
Takeaways

1. Imperfect competition for time-inconsistent consumers
2. Sometimes fully alleviates inconsistency
3. Big difference between investment and leisure goods
4. Mixed equilibria with sophisticates