Coordination of Expectations and the Informational Role of Policy

Yang K. Lu
Ernesto Pasten

Boston University
Toulouse School of Economics

June, 2009
NASM Boston
Motivation

- Economic fluctuations are large relative to fundamental shocks
 - Hamilton (1989): Two regimes represent well the cycles;

- An appealing explanation: Multiple Equilibria
 - Strategic complementarity (Cooper & John 1988)
 - Equilibrium selection by imperfect information (Morris & Shin 1998)
 - Can a government without a "crystal ball" do something? YES! Policy affects what information is conveyed by public events.
What we do

- We study optimal taxation in an economy *a la* Chamley (1999):
 - Production externality, heterogeneity in costs and persistent shocks on fundamentals;
 - Two regimes: rational "optimism" (boom) and "pessimism" (recession);
 - Transitions: accumulation of shocks occasionally fully reveals fundamentals and triggers expectation switches.

- Informational role of policy: improve coordination.

- How? controlling the size of shocks needed to trigger transitions.

- And extracting information every period.
Key results

- Policy should exploit its dynamic effects:
 control transition & extract information

- Optimal taxation?
 - At the onset of "regimes", static optimal tax rate;
 - To extend booms, gradual and permanent tax cuts;
 - To break recessions, deep but transitory tax cuts;

- Pure policy experimentation is suboptimal:
 transitions are endogenous!
The Economy - Setup

- Agents live for one period, but observe history of aggregate activities A and taxes τ.
The Economy - Setup

- Agents live for one period, but observe history of aggregate activities A and taxes τ.
- Each agent owns one indivisible unit of labor

$$U(a, A, c_i, \tau) = \begin{cases}
(1 - \tau) m(A) - c_i + \phi(g) & \text{if } a = 1 \\
\phi(g) & \text{if } a = 0
\end{cases}$$

Productivity depends on others' actions, A – mass of participation

$$m(A) = \varepsilon + (1 - \varsigma) \varepsilon A$$

Heterogeneous participation cost $c_i H(j \theta)$, $\theta \in [0, 1]$

Signiﬁcant mass of agents with cost $2[\theta, \theta + \sigma]$ – “Cluster”

Key fundamental: $\theta \in [0, 1]$, moving one “step” a time

Public goods: $\phi(g)$ with $g = \tau m(A)$

Lu and Pasten (BU and TSE)
Coordination by Policy
June, 2009 NASM Boston
The Economy - Setup

- Agents live for one period, but observe history of aggregate activities A and taxes τ.
- Each agent owns one indivisible unit of labor

$$U(a, A, c_i, \tau) = \begin{cases} (1 - \tau) m(A) - c_i + \phi(g) & \text{if } a = 1 \\ \phi(g) & \text{if } a = 0 \end{cases}$$

- Productivity depends on others’ actions, A – mass of participation

$$m(A) = \epsilon + (1 - \zeta - \epsilon) A$$
The Economy - Setup

- Agents live for one period, but observe history of aggregate activities A and taxes τ.
- Each agent owns one indivisible unit of labor $U(a, A, c_i, \tau) = \begin{cases} (1 - \tau) m(A) - c_i + \phi(g) & \text{if } a = 1 \\ \phi(g) & \text{if } a = 0 \end{cases}$
- Productivity depends on others’ actions, A – mass of participation $m(A) = \varepsilon + (1 - \zeta - \varepsilon) A$
- Heterogeneous participation cost $c_i \sim H(\cdot | \theta) \in [0, 1]$
The Economy - Setup

- Agents live for one period, but observe history of aggregate activities A and taxes τ.
- Each agent owns one indivisible unit of labor
 \[
 U(a, A, c_i, \tau) = \begin{cases}
 (1 - \tau) m(A) - c_i + \phi(g) & \text{if } a = 1 \\
 \phi(g) & \text{if } a = 0
 \end{cases}
 \]
- Productivity depends on others’ actions, A – mass of participation
 \[
 m(A) = \epsilon + (1 - \zeta - \epsilon) A
 \]
- Heterogeneous participation cost $c_i \sim H(\cdot | \theta) \in [0, 1]$
- Significant mass of agents with cost $\in [\theta, \theta + \sigma]$ – "Cluster"
Agents live for one period, but observe history of aggregate activities A and taxes τ.

Each agent owns one indivisible unit of labor

$$U(a, A, c_i, \tau) = \begin{cases} (1 - \tau) m(A) - c_i + \phi(g) & \text{if } a = 1 \\ \phi(g) & \text{if } a = 0 \end{cases}$$

Productivity depends on others’ actions, A – mass of participation

$$m(A) = \varepsilon + (1 - \zeta - \varepsilon) A$$

Heterogeneous participation cost $c_i \sim H(\cdot | \theta) \in [0, 1]$.

Significant mass of agents with cost $\in [\theta, \theta + \sigma]$ – "Cluster"

Key fundamental: $\theta \in [0, 1 - \sigma]$, moving one "step" a time
The Economy - Setup

- Agents live for one period, but observe history of aggregate activities A and taxes τ.
- Each agent owns one indivisible unit of labor

$$U(a, A, c_i, \tau) = \begin{cases}
(1 - \tau) m(A) - c_i + \phi(g) & \text{if } a = 1 \\
\phi(g) & \text{if } a = 0
\end{cases}$$

- Productivity depends on others’ actions, A – mass of participation

$$m(A) = \varepsilon + (1 - \zeta - \varepsilon) A$$

- Heterogeneous participation cost $c_i \sim H(\cdot | \theta) \in [0, 1]$
- Significant mass of agents with cost $\in [\theta, \theta + \sigma]$ – "Cluster"
- Key fundamental: $\theta \in [0, 1 - \sigma]$, moving one "step" a time
- Public goods: $\phi(g)$ with $g = \tau m(A)$
Equilibria with observable fundamental

- Equilibrium cutoff strategy c^* conditional on θ

$$(1 - \tau) m [H(c^* | \theta)] = c^*$$

Distribution of Production Cost C_i
Equilibria with observable fundamental

- Equilibrium cutoff strategy c^* conditional on θ

\[(1 - \tau) m[H(c^* | \theta)] = c^*\]
Equilibria with observable fundamental

- Equilibrium cutoff strategy \(c^* \) conditional on \(\theta \)

\[
(1 - \tau) m [H (c^* \mid \theta)] = c^*
\]
Unique dynamics with unobservable fundamental

- Equilibrium cutoff strategy is now conditional on the observable A

If $c_t^* = c_L^*$ \quad $\theta_t > c_L^*$ \quad Cluster does not participate \quad A_t constant

$\theta_t < c_L^*$ \quad Part of cluster participates \quad A_t jump up

- Low regime: $\theta_t < c_L^*$ reveals its position by unexpected high A
 Transition to the high regime: $c_{t+1}^* = c_H^*$

If $c_t^* = c_H^*$ \quad $\theta_t < c_H^* - \sigma$ \quad Cluster participates \quad A_t constant

$\theta_t > c_H^* - \sigma$ \quad Part of cluster quits \quad A_t jump down

- High regime: $\theta_t > c_H^* - \sigma$ reveals its position by unexpected low A
 Transition to the low regime: $c_{t+1}^* = c_L^*$
The tax effect
Unique dynamics with uncertainty

- Tax changes transition triggers $c_L^*(\tau)$, $c_H^*(\tau)$ through payoff
Government

- Timing: taxes announced; agents’ action; taxes levied; A_t observed
- "Benevolent" government cares the aggregate welfare

$$
\max_{\{\tau_t\}_{t=0}^{\infty}} E_0 \left\{ \sum_{t=0}^{\infty} \gamma^t \left[\int_0^1 U(a, A_t, c, \tau_t) dH(c | \theta) \right] \right\}
$$

- The government only observes public information.
Government

- Timing: taxes announced; agents’ action; taxes levied; A_t observed
- "Benevolent" government cares the aggregate welfare

$$\max_{\{\tau_t\}_{t=0}^\infty} E_0 \left\{ \sum_{t=0}^\infty \gamma^t \left[\int_0^1 U(a, A_t, c, \tau_t) dH(c | \theta) \right] \right\}$$

- The government only observes public information.

- Bellman equations conditional on current regime:

$$H(\mu_t) = \max_{\tau_t \in [0,1]} Z(c_H^*, \tau_t) + \gamma \left(1 - \pi_t^H \right) H(\mu_{t+1}) + \gamma \pi_t^H L(\mu_1)$$

$$L(\mu_t) = \max_{\tau_t \in [0,1]} Z(c_L^*, \tau_t) + \gamma \left(1 - \pi_t^L \right) L(\mu_{t+1}) + \gamma \pi_t^L H(\mu_1)$$
Government

- Timing: taxes announced; agents’ action; taxes levied; A_t observed
- "Benevolent" government cares the aggregate welfare

$$
\max_{\{\tau_t\}_{t=0}} E_0 \left\{ \sum_{t=0}^{\infty} \gamma^t \left[\int_0^1 U(a, A_t, c, \tau_t) \, dH(c \mid \theta) \right] \right\}
$$

- The government only observes public information.

- Bellman equations conditional on current regime:

 $H(\mu_t) = \max_{\tau_t \in [0,1]} Z(c_H^*, \tau_t) + \gamma \left(1 - \pi^H_t\right) H(\mu_{t+1}) + \gamma \pi^H_t L(\mu_1)$

 $L(\mu_t) = \max_{\tau_t \in [0,1]} Z(c_L^*, \tau_t) + \gamma \left(1 - \pi^L_t\right) L(\mu_{t+1}) + \gamma \pi^L_t H(\mu_1)$

- State variable μ_t: belief of θ_t where $\mu_{it} = \Pr[\theta_t = w_i]$
Government

- Timing: taxes announced; agents’ action; taxes levied; A_t observed
- "Benevolent" government cares the aggregate welfare

\[
\max_{\{\tau_t\}_{t=0}^{\infty}} E_0 \left\{ \sum_{t=0}^{\infty} \gamma^t \left[\int_0^1 U(a, A_t, c, \tau_t) \, dH(c \mid \theta) \right] \right\}
\]

- The government only observes public information.

- Bellman equations conditional on current regime:

\[
H(\mu_t) = \max_{\tau_t \in [0,1]} Z(c_H^*, \tau_t) + \gamma \left(1 - \pi_H^t \right) H(\mu_{t+1}) + \gamma \pi_H^t L(\mu_1)
\]

\[
L(\mu_t) = \max_{\tau_t \in [0,1]} Z(c_L^*, \tau_t) + \gamma \left(1 - \pi_L^t \right) L(\mu_{t+1}) + \gamma \pi_L^t H(\mu_1)
\]

- State variable μ_t: belief of θ_t where $\mu_{it} = \Pr[\theta_t = w_i]$
- Transition prob: $\pi_H^t = \Pr(\theta_t > c_H^* - \sigma); \pi_L^t = \Pr(\theta_t < c_L^*)$
Government

- **Timing**: taxes announced; agents' action; taxes levied; A_t observed
- "Benevolent" government cares the aggregate welfare

$$\max_{\{\tau_t\}_{t=0}^{\infty}} E_0 \left\{ \sum_{t=0}^{\infty} \gamma^t \left[\int_0^1 U(a, A_t, c, \tau_t) \, dH(c \mid \theta) \right] \right\}$$

- The government only observes public information.

- **Bellman equations conditional on current regime**:

 \[
 H(\mu_t) = \max_{\tau_t \in [0,1]} Z(c^*_H, \tau_t) + \gamma \left(1 - \pi^H_t \right) H(\mu_{t+1}) + \gamma \pi^H_t L(\mu_1)
 \]

 \[
 L(\mu_t) = \max_{\tau_t \in [0,1]} Z(c^*_L, \tau_t) + \gamma \left(1 - \pi^L_t \right) L(\mu_{t+1}) + \gamma \pi^L_t H(\mu_1)
 \]

- **State variable** μ_t: belief of θ_t where $\mu_{it} = \Pr[\theta_t = w_i]$.

- **Transition prob**: $\pi^H_t = \Pr(\theta_t > c^*_H - \sigma)$; $\pi^L_t = \Pr(\theta_t < c^*_L)$

- **Bayesian updating** μ_t: $\theta_t \in [c^*_L, c^*_H - \sigma]$ if no transition
Trade-offs

- Concave momentary welfare $Z(c^*_S, \tau_t)$
 - Current welfare losses if tax deviates from static optimal level

- Dynamic gain of extending high regimes and shortening low regimes:
 - Tax cuts reduce transition prob in high regimes;
 - Raise transition prob in low regimes.

- Bayesian learning from occurrence of transitions
 - Under tax cuts, if a low regime persists or a high regime ends, fundamentals are learnt to be particularly bad.

Trade-off: current welfare v.s. future chance of being in a high regime taking into account the learning effect.

Lu and Pasten (BU and TSE)
Coordination by Policy
June, 2009 NASM Boston
Trade-offs

- Concave momentary welfare \(Z(c^*_S, \tau_t) \)
 - Current welfare losses if tax deviates from static optimal level

- Dynamic gain of extending high regimes and shortening low regimes:
 - Tax cuts reduce transition prob in high regimes;
 raise transition prob in low regimes.
Trade-offs

- Concave momentary welfare $Z(c^*_S, \tau_t)$
 - Current welfare losses if tax deviates from static optimal level

- Dynamic gain of extending high regimes and shortening low regimes:
 - Tax cuts reduce transition prob in high regimes;
 raise transition prob in low regimes.

- Bayesian learning from occurrence of transitions
 - Under tax cuts, if a low regime persists or a high regime ends, fundamentals are learnt to be particularly bad.
Trade-offs

- Concave momentary welfare $Z(c^*_S, \tau_t)$
 - Current welfare losses if tax deviates from static optimal level

- Dynamic gain of extending high regimes and shortening low regimes:
 - Tax cuts reduce transition prob in high regimes;
 raise transition prob in low regimes.

- Bayesian learning from occurrence of transitions
 - Under tax cuts, if a low regime persists or a high regime ends, fundamentals are learnt to be particularly bad

- Trade-off:
 current welfare v.s. future chance of being in a high regime taking into account the learning effect
Optimal policy - Properties

- Static optimal tax rates right after transitions.
 - revealing extreme θ value implies no transition prob for $\forall \tau \in [0, 1]$

- In a high regime, small tax cuts set transition prob to zero.
 - Bayesian learning from no transition implies
 \[
 \theta + \sigma < c_H^*(\tau) < c_H^*(\tau - \varepsilon)
 \]

- In a low regime, deep tax cuts increase transition prob but only last for one period if no transition to a high regime.
 - tax cuts are less effective in raising trigger value $c_L^*(\tau)$
 - extremely bad information of θ is revealed if no transition
Gradual tax cuts to extend optimism; violent tax cuts to break pessimism.
Optimal policy - Accumulated transition probability

- The government has partial, yet relevant control on dynamics.
Optimal policy - Welfare

- The active plan generates significant (ex-ante) welfare improvement over static optimal flat rates
Conclusions

- Large fluctuations without large shocks may be the result of strategic complementarity, heterogeneity and imperfect observation of fundamentals.

- A government – without information superiority – may still improve coordination through the effect of taxes on the amount of information conveyed by past events.

- The key: the triggers for large revisions in expectations.

- Asymmetric policies in business cycles:
 tax cuts should be gradual and permanent in booms
 but violent and transitory in recessions.

- The "informational role of policy" has many other applications:
 technology adoption; speculative attack