Lumpy Capital, Labor Market Search & Employment Dynamics over Business Cycles

Zhe Li
University of Toronto
NASM 2009
“In times of recession, large employers disproportionately lose workers, while small companies, as a group, fare better.” (Kiviat 2009)
Cyclical Behaviour of the U.S. Job Creation & Job Destruction in Small and Large Firms

<table>
<thead>
<tr>
<th></th>
<th>Job creation</th>
<th>Job destruction</th>
</tr>
</thead>
<tbody>
<tr>
<td>Small</td>
<td>0.6192</td>
<td>0.1815</td>
</tr>
<tr>
<td>Large</td>
<td>0.4498</td>
<td>-0.1781</td>
</tr>
</tbody>
</table>

Correlation with GDP

<table>
<thead>
<tr>
<th>Relative standard deviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.51</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>6.18</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>2.51</th>
</tr>
</thead>
</table>

| 6.81 |

Data Source: Business Employment Dynamics (BED) data set U.S.
Chapter 2: Model and mechanism

- Labor market frictions \rightarrow lumpy investment

 Small affected more

- Aggregate productivity increases \rightarrow
 labor market tighter \rightarrow lumpy investment

 A tighter labor market deters more investment projects in small firms

 \rightarrow Investment increases by more in large firms \rightarrow
 workers move from small to large firms
Literature

- Moscarini and Postel-Vinay (2008)
 - Workers move from small to large firms in late expansions
 - Different dynamic wage strategies
 - Lumpy investment
- Cooper, Haltiwanger and Wills (2006)
 - Employment adjustment is lumpy
 - Non-convex labor search costs (abstracts from capital)
Model: households

A representative household with a unit measure of members (Tractable, Shi 1997)

Preference:

\[E_0 \sum_{t=0}^{\infty} \beta^t [U(c_t) - A N_t] \]

N: fraction of members are employed
A: marginal disutility of working

Unemployed workers search in a labor market
Model: production technology

\[y = z k^a n^b \]

\(z \): aggregate productivity (Markov chain)

\text{DRS: } a + b < 1, \ a > 0, \ b > 0
Capital and investment

Have opportunity to invest with prob. ψ

Fixed cost ξ : i.i.d., CDF $G(\xi)$

$$\begin{cases}
 k' = (1 - \delta)k & \text{with probability } (1 - \psi) \\
 k' = (1 - \delta)k + i, \ i \geq 0 & \text{with probability } \psi
\end{cases}$$
Labor search

Matching function: \[M(\bar{v}, \bar{u}) \]

\[M(\bar{v}, \bar{u}) = \min \{ \bar{v}, \bar{u}, \kappa \bar{v}^\gamma \bar{u}^{1-\gamma} \} \]

The average vacancy-filling rate:

\[h = \frac{M(\bar{v}, (1 - N))}{\bar{v}} \]

Individual vacancy-filling rate for a firm with \(v \) vacancies:

\[f(x) = C^x_v h^x v (1 - h)^{v-x} \quad x \in [0, 1] \]
State-contingent wage contract

\[
\begin{cases}
 w = \frac{A}{p} & \text{if } MP_L \leq \frac{A}{p} \\
 w = \frac{(MP_L + \frac{A}{p})}{2} & \text{if } MP_L > \frac{A}{p}
\end{cases}
\]

\(\frac{A}{p}\) is the disutility of working in terms of goods

\(MP_L\) is the marginal productivity of labor

\(p(z, \mu) = U'(c)\)
Time line

Aggregate shock z_t

Produce opportunity (k, n)

Investment decision ξ is realized

Hire or layoff decision

Matching takes place

Wage contract

Period t

Aggregate shock z_{t+1}
Investment and employment decisions

- Aggregate state variables:
 - z: aggregate productivity
 - $\bar{\mu}$: distribution of capital and labor over firms

- Individual firm’s states: k, n, ξ

- Value functions:
 - $V^0(k, n; z_i, \bar{\mu})$
 - $V^1(k, n, \xi; z_i, \bar{\mu})$
 - $\tilde{V}^1(k, n; z_i, \bar{\mu})$

- Decisions:
 - Invest or not
 - Optimal level of capital
 - Hire or fire workers
Firm’s values

After investment shock

\[\tilde{V}^1(k, n; z_i, \bar{\mu}) = zf(k, n) - wn + \tilde{\Delta}_{no} \]

\[V^1(k, n, \xi; z_i, \bar{\mu}) = zf(k, n) - wn + \max(\tilde{\Delta}_f, \tilde{\Delta}_{no}) \]

The beginning of period expected value of a firm:

\[V^0(k, n; z_i, \bar{\mu}) \equiv (1 - \psi)\tilde{V}^1(k, n; z_i, \bar{\mu}) + \psi \int_0^{\xi} V^1(k, n, \xi; z_i, \bar{\mu})G(d\xi) \]
Continuation value when not invest

\[\tilde{\Delta}_{no} = \max_{v, f^i} \left[-ev + \sum_{j=1}^{J} \pi_{ij} d_j(z, \bar{u}) \int_{0}^{1} V^0 ((1 - \delta)k, n'; z_j, \bar{u}') F(dx) \right] \]

\[n' = (1 - \varphi)n + vx - f^i \]

\(v \) : vacancies

\(f^i \) : firing

\(d \) : MRS between current and future consumption
Continuation value when invest

\[\tilde{\Delta}_{no} = \max_{v, f} \left[-ev + \right. \]

\[\left. \sum_{j=1}^{J} \pi_{ij} d_j(z, \bar{\mu}) \int_{0}^{1} V^0((1 - \delta)k, n'; z_j, \bar{\mu}') F(dx) \right] \]

\[\tilde{\Delta}_i = \max_{k_i} \left\{ -\xi - i + \max_{v, f} \left[-ev + \right. \right. \]

\[\left. \left. \left. \sum_{j=1}^{J} \pi_{ij} d_j(z, \bar{\mu}) \int_{0}^{1} V^0(k_i', n'; z_j, \bar{\mu}') F(dx) \right] \right\} \]

\[\xi: \text{ fixed cost of investment} \]

\[i: \text{ investment} \]
Recursive equilibrium

A recursive equilibrium is consists of a set of value functions \((W, V^0, V^1, \tilde{V}^1)\); a set of policy functions for the household \(C\) and \(\Lambda\); a set of policy functions for the establishments \(k^e, v, f^l\); a set of prices \(p\) and \(\bar{p}\); a set of average matching rate \(h\), and a set of distribution measures \(\tilde{\lambda}\) and \(\bar{\mu}\) such that:

1. Househould and establishments optimize;
2. The law of motions:
 \[
 N' = \int_S \int_0^1 \left[(1 - \varphi) n(k,n;z, \bar{\mu}) + v(k,n;z, \bar{\mu}) x - f^l(k,n;z, \bar{\mu}) \right] dF(x) \mu(d[k \times n])
 \]
 \[
 K' = \int_S \left[(1 - \delta) k(k,n;z, \bar{\mu}) + i(k,n;z, \bar{\mu}) \right] \mu(d[k \times n])
 \]
 \[
 \bar{\mu}' = \Gamma(z, \bar{\mu});
 \]
3. The share market clears, i.e. \(\Lambda(k,n,\lambda, N; z, \bar{\mu}) = \mu(k,n)\);
4. The goods market clears.
<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
<th>Targets or comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Preference parameters</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Time preference β</td>
<td>0.996</td>
<td>4% real interest rate</td>
</tr>
<tr>
<td>Intertemporal substitution θ</td>
<td>0.4</td>
<td>Standard deviation of labor / output</td>
</tr>
<tr>
<td>Disutility from working A</td>
<td>1.44</td>
<td>60% employment-population ratio</td>
</tr>
<tr>
<td>Production technology parameters</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Productivity shock persistence ρ</td>
<td>0.98</td>
<td>Prescott (1986)</td>
</tr>
<tr>
<td>Productivity shock standard deviation σ</td>
<td>0.0021</td>
<td>Veracierto (2008)</td>
</tr>
<tr>
<td>Capital share a</td>
<td>0.22</td>
<td>NIPA share of capital</td>
</tr>
<tr>
<td>Labor share b</td>
<td>0.64</td>
<td>NIPA share of labor</td>
</tr>
<tr>
<td>Capital adjustment</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Capital depreciation rate δ</td>
<td>0.008</td>
<td>Investment capital ratio 0.0221</td>
</tr>
<tr>
<td>Investment opportunity ψ</td>
<td>1/12</td>
<td>Investment duration 1 year</td>
</tr>
<tr>
<td>Capital adjustment cost upper bound ζ</td>
<td>0.028K</td>
<td>Average adjustment cost 0.91% of K</td>
</tr>
<tr>
<td>Capital adjustment cost distribution β_p</td>
<td>1.2</td>
<td>18.6% investment spikes</td>
</tr>
<tr>
<td>Capital adjustment cost distribution β_q</td>
<td>0.8</td>
<td>free</td>
</tr>
<tr>
<td>Labor market</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Matching technology κ</td>
<td>0.508</td>
<td>Vacancy duration of 45 days</td>
</tr>
<tr>
<td>Matching rate elasticity γ</td>
<td>0.7</td>
<td>Shimer (2005)</td>
</tr>
<tr>
<td>Vacancy posting cost e</td>
<td>0.15</td>
<td>10% of one month wage bills</td>
</tr>
<tr>
<td>Exogenous job destruction rate φ</td>
<td>3.7%</td>
<td>3.7% job separation rate</td>
</tr>
</tbody>
</table>
Compare two steady states:
1% permanent increase in productivity

Benchmark model:

<table>
<thead>
<tr>
<th>Job creation</th>
<th>Job destruction</th>
</tr>
</thead>
<tbody>
<tr>
<td>Small</td>
<td>Large</td>
</tr>
<tr>
<td>+1.93%</td>
<td>+0.63%</td>
</tr>
</tbody>
</table>

Why generates these in particular Mechanism
- Increase in labor market tightness
 - Large: invest, next period create job
 - Small: do not invest, next period destroy
What if there is no labor market search?
(Lumpy capital only)

<table>
<thead>
<tr>
<th>Job creation</th>
<th>Job destruction</th>
</tr>
</thead>
<tbody>
<tr>
<td>Small</td>
<td>Large</td>
</tr>
<tr>
<td>+1.31%</td>
<td>+0.00%</td>
</tr>
<tr>
<td>Small</td>
<td>Large</td>
</tr>
<tr>
<td>+0.00%</td>
<td>+2.44%</td>
</tr>
</tbody>
</table>
Further contrast

- Benchmark model predicts the right signs
 - Investment rate increases by 5% in small and 14% in large firms
 - Workers move from small to large firms

- Lumpy capital model:
 - Investment increases more strongly in small firms
 - Opposite worker flows: from large to small firms

 ➔ Labour search frictions change investment behaviour in firms with different sizes
Dynamic equilibrium result

<table>
<thead>
<tr>
<th></th>
<th>Job creation</th>
<th>Job destruction</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Small</td>
<td>Large</td>
</tr>
<tr>
<td>Correlation with GDP</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Data</td>
<td>0.6192</td>
<td>0.4498</td>
</tr>
<tr>
<td>Model</td>
<td>0.5324</td>
<td>0.3332</td>
</tr>
<tr>
<td>Relative standard deviation</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Data</td>
<td>2.51</td>
<td>6.18</td>
</tr>
<tr>
<td>Model</td>
<td>6.20</td>
<td>4.64</td>
</tr>
</tbody>
</table>
Business cycle features

- The model successfully predicts the cyclicality

- The model predicts a large volatility in small firms relative to large firms
 - Idiosyncratic risk in small firms (for example exit)
Conclusion

- Documents difference of job creation and job destruction in small vs. large firms

- A mechanism:
 - firm sizes can affect firms’ lumpy investment decision in the presence of labor search frictions
 - in turn, different investment rates in small and large firms affect worker flows between small and large firms