The Empirical Saddlepoint Likelihood Estimator Applied to Two-Step GMM

Fallaw Sowell

Tepper School of Business
Carnegie Mellon University

May 2009
Overview

• New estimator empirical saddlepoint likelihood (ESPL)
• More accurate parameter estimates for models specified by moment conditions.
• Same asymptotic distribution as efficient two-step GMM.
• Smaller higher order bias than other (nonbias corrected) estimators (Newey and Smith (2004) and Schennach (2007)).
• New test for overidentifying restrictions.
• Better behavior is simulations.
How the ESPL exploits additional information

\[\sqrt{n} \, G_n(\theta_0) \sim N \left(0, \Sigma_g(\theta_0) \right) \]

NLS \hspace{1cm} \argmin_{\theta} \ G_n(\theta)' \ G_n(\theta) \hspace{1cm} \text{consistent}

GLS, GMM \hspace{1cm} \argmin_{\theta} \ G_n(\theta)' \hat{\Sigma}^{-1} \ G_n(\theta) \hspace{1cm} \text{consistent, efficient}

ML, ESPL \hspace{1cm} \argmax_{\theta} \left| \Sigma_g(\theta) \right|^{-1/2} \exp \left\{ -\frac{n}{2} \ G_n(\theta)' \Sigma_g^{-1}(\theta) \ G_n(\theta) \right\} \hspace{1cm} \text{consistent, efficient and smaller higher order bias}
Talk outline

- Two-Step GMM notation.
- Moment conditions to estimations equations (FOC’s).
- Introduce the EPSL estimator and new tests.
- Higher order bias intuition.
- Simulation comparison with other estimators and tests.
Two-step GMM

\[E \left[g(x_i, \theta_0) \right] = 0, \quad \theta \quad k \leq m, \quad g_i(\theta) \equiv g(x_i, \theta) \]

\[M_0 = E \left[\frac{\partial g_i(\theta_0)}{\partial \theta'} \right] \quad \hat{M}_n(\theta) = \frac{1}{n} \sum_{i=1}^{n} \frac{\partial g_i(\theta)}{\partial \theta'} \]

\[\sqrt{n} G_n(\theta_0) \equiv \frac{1}{\sqrt{n}} \sum_{i=1}^{n} g_i(\theta_0) \sim a \ N \left(0, \Sigma_g \right) \]

\[\hat{\theta}_{gmm} \equiv \arg\min_{\theta} G_n(\theta)' \hat{\Sigma}_g^{-1} G_n(\theta) \]

\[\hat{M}_n(\hat{\theta}_{gmm})' \hat{\Sigma}_g^{-1} G_n(\hat{\theta}_{gmm}) = 0 \]

\[J = n G_n(\hat{\theta}_{gmm})' \hat{\Sigma}_g^{-1} G_n(\hat{\theta}_{gmm}) \sim \chi^2_{m-k} \]
Estimation Equations from moment conditions

The saddlepoint density needs a just identified system.

\[
\hat{M}_n(\hat{\theta}_{gmm})'\hat{\Sigma}_g^{-1}G_n(\hat{\theta}_{gmm}) = 0_{k \times 1}
\]

\[
\left(\hat{M}_n(\hat{\theta}_{gmm})'\hat{\Sigma}_g^{-1/2}\right)\left(\hat{\Sigma}_g^{-1/2}G_n(\hat{\theta}_{gmm})\right) = 0
\]

\[
C_1(\hat{\theta}_{gmm})'\left(\hat{\Sigma}_g^{-1/2}G_n(\hat{\theta}_{gmm})\right) = 0
\]

\(C_1(\hat{\theta}_{gmm})\) is an orthonormal basis for the span of \(\hat{\Sigma}_g^{-1/2}\hat{M}_n(\hat{\theta}_{gmm})\).

The other information in the moments is contained in

\[
C_2(\hat{\theta}_{gmm})'\left(\hat{\Sigma}_g^{-1/2}G_n(\hat{\theta}_{gmm})\right) = \hat{\lambda}_{(m-k) \times 1}
\]

\[
J = nG_n(\hat{\theta}_{gmm})'\hat{\Sigma}_g^{-1}G_n(\hat{\theta}_{gmm})
\]

\[
= nG_n(\hat{\theta}_{gmm})'\hat{\Sigma}_g^{-1/2}C_2(\hat{\theta}_{gmm})C_2(\hat{\theta}_{gmm})'\hat{\Sigma}_g^{-1/2}G_n(\hat{\theta}_{gmm})
\]

\[
= n\hat{\lambda}'\hat{\lambda} \sim \chi^2_{m-k}
\]
Just identified estimation equations

• Jointly estimate \(\theta \) and \(\lambda \) with estimation equations

\[
\Psi_n(\alpha) \equiv \hat{\Sigma}_g^{-1/2} G_n(\theta) - C_2(\theta) \lambda = 0_{m \times 1}
\]

where \(\alpha = [\theta', \lambda']' \).
The empirical saddlepoint density

\[\hat{f}_s(\alpha) = \left(\frac{n}{2\pi} \right)^{\frac{m}{2}} \left| \sum_{i=1}^{n} \exp \left\{ \tau_n' \psi_i(\alpha) \right\} \psi_i(\alpha) \psi_i(\alpha)' \right|^{\frac{1}{2}} \times \left| \sum_{i=1}^{n} \exp \left\{ \tau_n' \psi_i(\alpha) \right\} \frac{\partial \psi_i(\alpha)}{\partial \alpha'} \right|^{-1} \times \exp \left\{ \left(n - \frac{m}{2} \right) \ln \left(\frac{1}{n} \sum_{i=1}^{n} \exp \left\{ \tau_n' \psi_i(\alpha) \right\} \right) \right\} \]

where \(\tau_n \) solves

\[\sum_{i=1}^{n} \psi_i(\alpha) \exp \left\{ \tau' \psi_i(\alpha) \right\} = 0 \]
The ESPL estimator

The ESPL estimator is the parameter value where $\hat{f}_s(\alpha)$ takes its maximum.
Alternatively where its natural log is maximized

$$\alpha_{espl} \equiv \arg\max_{\alpha} L_n(\alpha)$$

$$L_n(\alpha) = \frac{1}{2n} \ln \left(\left| \sum_{i=1}^{n} \exp \{ \tau'_n \psi_i(\alpha) \} \psi_i(\alpha) \psi_i(\alpha)' \right| \right)$$

$$- \frac{1}{n} \ln \left(\left| \sum_{i=1}^{n} \exp \{ \tau'_n \psi_i(\alpha) \} \frac{\partial \psi_i(\alpha)}{\partial \alpha'} \right| \right)$$

$$+ \left(1 - \frac{m}{2n} \right) \ln \left(\frac{1}{n} \sum_{i=1}^{n} \exp \{ \tau'_n \psi_i(\alpha) \} \right)$$
Conditional ESPL (CESPL) estimator

- Recall $\alpha = [\theta', \lambda']'$ and λ judges the overidentifying restrictions.
- Estimate θ conditional on $\lambda = 0$, i.e. the overidentifying restrictions being true.

$$\hat{\theta}_{cespl} \equiv \arg\max_{\theta} \mathcal{L}_n(\theta, \lambda = 0)$$
New tests for overidentifying restrictions

- **LR** \[2n \left(\mathcal{L}_n(\hat{\theta}_{espl}, \hat{\lambda}_{espl}, \hat{\tau}_{espl}) - \mathcal{L}_n(\hat{\theta}_{cespl}(0), 0, \hat{\tau}_{espl}) \right)\]
- **Wald** \[n \hat{\lambda}'_{espl} \hat{\lambda}_{espl}\]
- **Score** \[n \frac{\partial \mathcal{L}_n(\hat{\theta}_{cespl}(0), 0, \hat{\tau}_{cespl})}{\partial \lambda'} \frac{\partial \mathcal{L}_n(\hat{\theta}_{cespl}(0), 0, \hat{\tau}_{cespl})}{\partial \lambda}\]
- **Tilting** \[n \hat{\tau}(\hat{\theta}_{cespl}(0), 0)' \Sigma_g \hat{\tau}(\hat{\theta}_{cespl}(0), 0).\]
- **Jr** \[n \psi_n(\hat{\theta}_{cespl}(0), 0)' \Sigma_g \psi_n(\hat{\theta}_{cespl}(0), 0)\]

If moment conditions are true \(\chi^2_{m-k}\).

Imbens, Spady and Johnson (1998) test \(ET_r = n \hat{\tau}(\hat{\theta}_{et})' \Sigma_g \hat{\tau}(\hat{\theta}_{et}).\)
Higher Order Bias

The $O(n^{-1})$ part of the bias. The expectation of the first term ignored in the asymptotic distribution. (Newey and Smith (2004))

$$E(\hat{\theta}_{gmm} - \theta_0) = \frac{1}{n} (B_I + B_G + B_\Omega + B_W) + O(n^{-3/2})$$

$$E(\hat{\theta}_{el} - \theta_0) = \frac{1}{n} (B_I) + O(n^{-3/2})$$

$$E(\hat{\theta}_{espl} - \theta_0) = \frac{1}{n} (B_D + B_I) + O(n^{-3/2}).$$

For many models B_D reduces to $-B_I$.

Hall and Horowitz (1996) model

\[
g_i(\theta) = \begin{bmatrix}
\exp \{\mu - \theta (x_i + y_i) + 3y_i\} - 1 \\
y_i \left(\exp \{\mu - \theta (x_i + y_i) + 3y_i\} - 1 \right) \\
(z_{i3}^2 - 1) \left(\exp \{\mu - \theta (x_i + y_i) + 3y_i\} - 1 \right) \\
\vdots \\
(z_{im}^2 - 1) \left(\exp \{\mu - \theta (x_i + y_i) + 3y_i\} - 1 \right)
\end{bmatrix}
\]

where \(\theta_0 = 3 \),
\(x_i \) and \(y_i \) are iid from \(N(0, .16) \),
\(z_{ij} \) are iid \(N(0, 1) \) for \(j = 3, \ldots, m \).
\(\mu = -.72 \) is known.
Bias Comparison

<table>
<thead>
<tr>
<th>Model (m)</th>
<th>50</th>
<th>100</th>
<th>200</th>
<th>200</th>
<th>200</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>0.012</td>
<td>0.020</td>
<td>0.007</td>
<td>0.048</td>
<td>0.036</td>
</tr>
<tr>
<td>10</td>
<td>0.113</td>
<td>0.057</td>
<td>0.029</td>
<td>0.059</td>
<td>0.137</td>
</tr>
<tr>
<td>4</td>
<td>0.112</td>
<td>0.056</td>
<td>0.029</td>
<td>0.055</td>
<td>0.108</td>
</tr>
<tr>
<td>10</td>
<td>0.155</td>
<td>0.073</td>
<td>0.037</td>
<td>0.098</td>
<td>0.236</td>
</tr>
</tbody>
</table>

Table: The bias of the **ESPL**, **CESPL**, EL, ETEL and ET estimators for the Hall and Horowitz model. The sample size is denoted \(n\) and the number of moment conditions is \(m\).
Bias

Figure: Cumulative distribution functions for the ESPL, CESPL, EL, ETEL and ET estimators of θ in the Hall and Horowitz model. The sample size is denoted by n and the number of moment conditions is m. These c.d.f.’s were calculated using 10000 simulated samples.
Tests of overidentifying restrictions

Figure: QQplots for tests of the overidentifying restrictions for the Hall and Horowitz model. The sample size is denoted by n and the number of moment conditions is m. These were calculated using 10000 simulated samples. Vertical lines show the nominal .95 and .99 levels, and the 45 degree line would represent perfect agreement.
Extensions and future work

- Other sets of moment conditions.
- Errors with weak dependence.
- Large number of overidentifying restrictions.