PUBLICLY ACHIEVING PRIVACY AND TRUST IN MEDIATED NORMAL-FORM MECHANISMS

BY SERGEI IZMALKOV, MATT LEPINSKI, AND SILVIO MICALI*

February 15, 2008

Privacy and trust affect our strategic thinking, yet they have not been precisely modeled in mechanism design. In settings of incomplete information, traditional implementations of a normal-form mechanism—by disregarding the players’ privacy, or assuming trust in a mediator—may not be realistic and fail to reach the mechanism’s objectives. We thus investigate implementations of a new type.

We put forward the notion of a perfect implementation of a normal-form mechanism M: in essence, an extensive-form mechanism exactly preserving all strategic properties of M, without relying on a trusted mediator or violating the privacy of the players.

We prove that any normal-form mechanism can be perfectly implemented by a public mediator using envelopes and an envelope-randomizing device (i.e., the same tools used for running fair lotteries or tallying secret votes). Differently from a trusted mediator, a public one only performs prescribed public actions, so that everyone can verify that he is acting properly, and never learns any information that should remain private.

1. introduction

A game consists of a context—describing the outcomes, the players (including their types and beliefs), and the players’ preferences over the outcomes—and a mechanism (or a game form), describing the actions available to the players, and the way in which actions lead to outcomes. The usual goal of mechanism design consists of finding a mechanism that, for a given class of contexts, defines a game whose equilibria yield a desired outcome. While contexts can be arbitrarily complex, mechanism design strives to find simple mechanisms. A normal-form mechanism consists of a set of reports (or messages) for each player, and an outcome function mapping these reports to outcomes. Normal-form mechanisms can be designed so as to enjoy valuable theoretical properties. As defined, however, normal-form mechanisms are abstractions. Because outcome functions do not spontaneously evaluate themselves on players’ reports, normal-form mechanisms are envisaged to be executed with the help of a mediator. But, in practice, relying on mediators raises so many issues of privacy and trust that the desired properties enjoyed by the “abstract” normal-form mechanisms may no longer hold for their mediated implementations.

1.1. The Problem of Privacy and Trust in Mediated Normal-Form Mechanisms

For auctions in the private values setting, the famous second-price sealed-bid mechanism is a normal-form mechanism whose reports consist of numerical bids—one for each player—and whose outcome function returns the player with the highest bid as the winner, and the value of the second-highest bid as the price. The characteristic property of this mechanism is efficiency achieved in dominant strategies. Indeed, because it is optimal for each player to report his true valuation, no matter what the others may report, the player with the highest valuation wins the item for sale. We shall use this mechanism to illustrate the problems of privacy and trust in mediated mechanisms.

*We would like to thank participants to numerous seminars, and especially Ran Canetti, Dino Gerardi, Sergiu Hart, Bart Lipman, and Dave Parks, for their comments. We are grateful to the NSF grant SES-0551244 for financial support.
PRIVATE VS. PUBLIC MEDIATORS. Consider the following two mediated implementations of the second-price sealed-bid mechanism.

\(M_1 (\text{With a Private Mediator}) \): The players seal their bids into envelopes and hand them to the mediator, who then privately opens them, privately evaluates the outcome function, and finally publicly announces the winner and the price.

\(M_2 (\text{With a Public Mediator}) \): The players seal their bids into envelopes and hand them to the mediator, who then publicly opens all of them, so as to enable everyone to compute the winner and the price.

Notice that the mediators of these two implementations are asked to perform different types of actions. The mediator of implementation \(M_2 \) only performs public actions, so that everyone can verify that the right actions have been performed. By contrast, the mediator of \(M_1 \) is asked to perform private actions, so that only he knows whether he has performed the right actions. Accordingly, these two implementations are at opposite ends with respect to privacy and trust. On the one extreme, implementation \(M_1 \) reveals nothing more than the announced outcome, but requires total trust in the mediator. Indeed, the players cannot verify whether the mediator announces the correct outcome, or that he will keep all bids secret after the auction is over.\(^1\) On the other extreme, \(M_2 \) guarantees the correctness of the outcome, but makes the entire players' reports public knowledge. In sum, \(M_1 \) requires total trust and offers total privacy, while \(M_2 \) requires no trust and offers no privacy.

To be sure, a public mediator is still trusted, but in a different, “public” sense: he is trusted to really perform whatever public actions he is asked to perform. For instance, in implementation \(M_2 \) he is trusted not to open only half of the envelopes and destroy the other half. Clearly such trust is much milder: because any deviation from prescribed public actions is immediately observed, a public mediator can be kept accountable.

PRIVACY AND TRUST AS STRATEGIC PROBLEMS. Privacy-valuing players may avoid participating in implementation \(M_2 \), and distrustful players in implementation \(M_1 \). Such reduced participation not only causes the seller to fetch lower prices, but negatively affects efficiency. Indeed, the requirement that “the item be won by the player who values it the most” applies to all potential bidders, not just the ones trusting a given mediator. Thus, no implementation that deters some players from bidding can be efficient in a general sense. In addition, whenever (for lack of other ways of getting a desired item) distrustful players participate in \(M_1 \) or privacy-valuing players participate in \(M_2 \), neither mechanism can be efficient, even with respect to just the participating players. Let us explain.

- In \(M_1 \), a player who truly distrusts the mediator may fear that the price will always be artificially close to the winner’s bid.\(^2\) Such a player will not find it optimal to report his true valuation to the mediator; instead, he will have a strong incentive to “underbid.” Thus, the item for sale might very well go to another player, who values it less but trusts the mediator more. Therefore, concrete implementation \(M_1 \) may not be efficient.

- In \(M_2 \), a player truly valuing the privacy of his valuation receives, by definition, some negative utility from its publicity. But then the only way for him to prevent his true valuation from becoming public is to bid a different value, perhaps in a randomized fashion. This distortion may make concrete implementation \(M_2 \) inefficient as well.

More generally, privacy and trust affect the players’ strategic thinking, making it unclear whether mediated implementations satisfy the strategic properties of the abstract mechanisms they purportedly implement.

NOVELTY AND RELATIVE NATURE OF THE PROBLEM. In the second-price auction context, to preserve \(M_2 \)’s efficiency, one may be tempted to handle privacy-valuing players by (a) monetizing —somehow— privacy loss;

\(^1\)According to Rothkopf, Teisberg, and Kahn (1990), such concerns explain why second-price auctions are rarely used in practice.

\(^2\)If player \(i \) bids $1000 dollars and the mediator (auctioneer) announces that \(i \) is the winner and must pay $999 dollars, it is impossible for \(i \) to know if there was really a bid of $999. Certainly, an auctioneer has incentives to manipulate the outcome (e.g., if he is paid a percentage of the generated revenue for his services) and to betray a player’s secret (e.g., if he is offered a bribe for his disclosure).
(b) revising the players’ valuations accordingly; and then (c) relying on the traditional Vickrey machinery. In
so doing, however, the resulting auction would at best be efficient in the “revised” valuations, while Society’s
interest is that it be efficient in the “original” valuations. Integrating privacy and strategic concerns in the
design of concrete implementations of normal-form mechanisms is a new problem, and requires new techniques
and conceptual frameworks.

At a closer look, however, not even the abstract second-price auction itself may be perfectly efficient in
a private-value setting. For instance, even in a magic world where the outcome function evaluates itself on
players’ reports, everyone is bound to learn that the winner’s valuation is higher than the price; and this
small loss of the winner’s privacy may suffice to miss the target of efficiency in its purest form. But if the
abstract second-price auction itself does not achieve perfect efficiency, what goal can we set for its concrete
implementations? We answer this question with the strongest possible relativism: they should always enjoy
efficiency (or any other desired property) to exactly the same degree (whatever it may be) as the abstract
second-price auction.

More generally, any normal-form mechanism implies some loss of privacy. This is the case because the
outcome itself (being a function of the players’ reports) contains information about these reports. We regard
this loss of privacy (which potentially affects all kinds of strategic concerns) as inherent, and do not wish to
rectify or modify this—or any other—property of a normal-form mechanism. That is: in implementing a
normal-form mechanism we aim at preserving exactly all its privacy properties.

1.2. Our Result

Intuitively, it would appear that loss of privacy is unavoidable with public mediators, and reliance on trust
is unavoidable with private mediators. In either case, as argued, the strategic play of such mechanisms is
affected. Thus the above intuition raises the concern that no concrete implementation of a normal-form
mechanism M might enjoy M’s theoretical properties; which would weaken the importance of normal-form
mechanisms in mechanism design.

Against the above intuition, we show that each normal form mechanism M has a mediated implementation M'
that, guaranteeing full privacy without trusting the mediator, provably enjoys the same strategic properties of M.

OUR NOTION. Informally, we say that an extensive-form mediated mechanism M' perfectly implements
a normal-form mechanism M if the following holds:

- **No Trust:** The mediator is public —i.e., only performs a publicly and uniquely specified sequence of public
 actions.
- **Strategy Equivalence:** There is a one-to-one correspondence between each player’s strategies in M and his
 strategies in M' such that the outcome of any profile of strategies in M is identical to the outcome of the
 profile of the corresponding strategies in M'.
- **Privacy Equivalence:** No set of players gains more information (about the other players’ strategies) in M'
 than they do in M.

Consequently, from a strategy or a privacy perspective, individual players or arbitrary subsets of the players
are indifferent, for any context C, between playing the games $G = (C, M)$ and $G' = (C, M')$. In particular,
the two games enjoy identical solutions. Indeed, although M' is extensive-form, strategy equivalence states
that M and M' have identical (up to renaming and reordering of strategies) normal-form representations.

All traditional equilibrium concepts (such as Nash, Bayesian, dominant strategy, ex post, undominated Nash,
and trembling hand Nash equilibria) and set-valued solution concepts (such as rationalizability and iterated
elimination of dominated strategies) are invariant to isomorphic transformations of normal-forms.

OUR CONSTRUCTION. Conceptually, given normal-form mechanism M, we construct a publicly mediated
mechanism M' perfectly implementing M in three stages. In the input stage each player simultaneously
hands over to the public mediator a sequence of envelopes whose contents encode (in a special way) his
intended report. In the computation stage, the public mediator performs a sequence of public actions on the received sequences of envelopes so as to obtain a final sequence of envelopes that is guaranteed to encode the correct outcome. In the output stage, the public mediator opens all final envelopes so as to enable everyone to find what the outcome is. The privacy of such a mediated mechanism is provably guaranteed by the fact that, beyond the outcome, executing the required sequence of public actions reveals only random noise.

PRIVATE OUTCOMES. So far, we have discussed normal-form mechanisms just with public outcome functions, that is, mechanisms whose outcomes are publicly revealed. More generally, in addition to the public outcome, a mechanism may have a private outcome for each player; that is, it may reveal to each player a “customized piece of information.” For instance, one can envisage a second-price mechanism to be defined so as only the winner (and the seller) learns that she has won and the price she has to pay, while all other bidders learn only that they did not win.

We construct perfect implementations for such general mechanisms as well. At a high level, each player continues to hand to the mediator a sequence of envelopes encoding his own secret report, and the mediator continues to perform on these envelopes a uniquely defined sequence of public actions. But now, letting \(n \) be the number of players, these public actions produce \(n + 1 \) sequences of envelopes: the \(j \)th sequence encodes the private outcome of player \(j \), and the last sequence encodes the public outcome. Then, the mediator publicly opens the last sequence and publicly hands over the \(j \)th sequence to player \(j \).

Our construction relies on the existence of

- **Perfect Ballots.** We use ballots of two different sizes, envelopes and super-envelopes, satisfying the following properties: (1) any two ballots of the same size are identical from the outside, (2) any ballot provides no information about its content, and (3) any ballot guarantees the integrity of its content until it is opened.

- **Perfect Ballot-Box.** We rely on a bingo-like machine, the ballot-box, that randomly and secretly permutes a sequence of ballots of the same size. That is, given \(k \) ballots, the ballot-box returns with equal probability one of the \(k! \) permutations of these ballots, without revealing any information about the actual permutation.

In essence, we rely on the same “hardware” used, from time immemorial, for running fair lotteries and tallying secret votes. Yet, ultimately, our primitives are physical axioms. Theorems require axioms, and theorems about physical implementation require physical axioms.\(^3\)

Note that physical axioms underly, explicitly or not, other aspects of game theory. For instance, a fair coin is assumed to exist in many games requiring public randomization and can be modeled (like our ballot-box) as an act of Nature, uncontrollable by any player or mediator. As for another example, the existence of a private fair coin (i.e., a process capable of generating a random outcome to a prescribed player and no information about the outcome to any other player) is a physical axiom essential for any kind of mixed strategy.

1.3. Additional Aspects of Our Result

AUTOMATISM, COMPUTATIONAL EFFICIENCY, AND STRUCTURE. The mere existence of a publicly mediated mechanism \(\mathcal{M}' \) perfectly implementing a normal-form mechanism \(\mathcal{M} \) may not be fully satisfactory if \(\mathcal{M}' \) were prohibitively complex to find or to run. Our construction instead guarantees that \(\mathcal{M}' \) is both easy to find and easy to play. In essence \(\mathcal{M}' \) is obtained by an automatic procedure that efficiently translates the outcome function \(g \) of \(\mathcal{M} \) into a sequence of public and elementary ballot actions —such as opening or destroying a ballot. Executing this entire sequence is as easy as computing the function \(g \) itself. (Indeed, if \(g \)

\(^3\)Of course, one may question the existence of perfect ballots and ballot-boxes. For instance, one can certainly believe that no ballot can hide its content —whether made out of paper, lead, or other material— and that no sequence of ballots can be perfectly randomized. But then, one should explain (1) why people have been shuffling decks of identical cards —with real stakes and for so long— and (2) why a referendum is not conducted by simply counting raised hands.
is computable by means of K elementary Boolean operations—such as AND and NOT—then \mathcal{M}' consists of no more than cK elementary ballot actions, for some constant c.)

In addition, \mathcal{M}' preserves the traditional structure of the players-mediator interaction: our players just hand to the public mediator the envelopes with their reports, and then only the mediator publicly operates on these envelopes.

To appreciate the importance of preserving computational efficiency and structure, consider the following alternative way of implementing a two-player normal form mechanism in which each player report consists of a k-bit string, and the outcome function is g.

1. A public mediator generates a $2^k \times 2^k$ matrix of envelopes as follows. For each possible pair of reports (m_i, m_j), a mediator publicly seals $g(m_i, m_j)$ into a separate envelope, and makes it the (i, j) item of the matrix. The mediator then hands the entire “envelope matrix” to Player 1.

2. Player 1 secretly permutes the rows, so that the jth row of envelopes becomes the first row if his secret report is j, and hands the permuted matrix to Player 2.

3. Player 2 secretly permutes the columns, so that his intended report corresponds to the first column, and hands the further permuted matrix to the mediator.

4. The mediator finally opens the top-left corner envelope of the matrix to reveal the outcome.

This implementation, while conceptually very simple, is totally inefficient. Indeed, although g could be quite simple to compute (e.g., the outcome function of the second-price auction requires a linear in k number of binary operations), the above implementation would require 2^{2^k} envelopes and 2^{2^k} actions. When each report consists of 300 bits, the number of envelopes involved easily exceeds the number of elementary particles in our universe, making such a simple mechanism practically infeasible. In addition, this implementation is quite dangerously structured. Indeed, in Step 3, player 2 is entrusted with a sequence of envelopes encoding the secret report of player 1, thus putting player 1’s privacy at serious risk. By contrast, the perfect implementations generated by our construction are efficient, and require that each player only handles the envelopes containing his own report.\(^4\)

Computational efficiency has not been a traditional desideratum, but we believe it crucial to future work in implementation theory. Concrete implementation requiring more than astronomical resources cannot be of practical relevance.

Collusion Power. Collusion among players may affect some concrete implementations of a normal-form mechanism \mathcal{M} more than \mathcal{M} itself. To illustrate this problem, let \mathcal{M} be the abstract second-price auction for 10 players, and consider the following “extreme” implementation of it.

\mathcal{M}^{ext}: In Step 1, all players simultaneously and privately submit their bids to players 9 and 10. In Step 2, players 9 and 10 simultaneously announce the winner w and the price p. If the announced outcome is the same, then the good is sold as announced. Else, the good is not sold and all players are fined.

Clearly, \mathcal{M}^{ext} maintains the efficient equilibrium of the second-price mechanism (although not in dominant strategies). In \mathcal{M}^{ext}, however, players 9 and 10 can fully control the outcome: indeed, they can choose, without recourse, any winner and price they want. In particular, based on the bids received in Step 1, they can implement the second-price auction only “among themselves.” That is, they can announce the winner to be the one between them with the highest bid, and the bid of the other as the price—which is individually incentive compatible.

Mechanism \mathcal{M}^{ext} illustrates that a concrete implementation of a normal-form mechanism \mathcal{M} cannot be considered adequate if it provides “excessive power” to subsets of players, thus providing additional incentives for coalitions to form. By contrast, strategy equivalence and privacy equivalence guarantee that not only any individual player but also any subset of players (including the set of all players) have identical strategic

4Consider Israelis and Palestinians implementing a negotiating mechanism. Then, our construction asks Israelis and Palestinians to hand envelopes encoding their respective negotiating positions to the UN security council, so that the latter can perform on these envelopes a sequence of public actions proven to yield the desired negotiated outcome without unnecessarily revealing the initial positions. By contrast, the above naive implementation asks the Israelis (or the Palestinians) to hand envelopes encoding their position to the other player, so that he can perform a secret operation on them.
opportunities and information in a play of \(M \) and in a play of its perfect implementation \(M' \). Therefore, perfect implementations provide no additional incentives for any coalition of players —of any size—to form. (Such bounding of coalitional power was first studied, in a slightly weaker sense, by Lepinski, Micali, Peikert, and Shelat (2004).)

Context independence. A mechanism, considered in different contexts, yields games that may enjoy different properties. (For example, the unique Bayesian-Nash equilibrium of the first-price sealed-bid auction is efficient in the symmetric independent private-values setting, and not efficient in settings with any degree of asymmetry.) In principle, therefore, an automatic and universal procedure for obtaining perfect implementations might very well consist of an algorithm that, on input an arbitrary mechanism-context pair \((M, C)\), outputs a concrete mechanism \(M'_C \), “equivalent” to \(M \) in context \(C \). The applicability of such a procedure, however, would be quite limited: while \(M \) is a simple object (a set of messages and an outcome function), \(C \) may not be. For instance, as part of \(C \), the distribution on the players’ types may be prohibitively complex to specify. Our automatic procedure is instead context-free. Namely, on input an arbitrary normal-form mechanism \(M \), it generates a concrete mechanism \(M' \) such that, for all possible contexts \(C \), the players are indifferent between playing \(M \) and playing \(M' \) in context \(C \).

In essence, therefore, our procedure achieves for mechanism implementation what Wilson (1987) advocates for mechanism design: namely, that *one should strive to find solutions minimizing dependence on the details of the problems at hand* (the “Wilson’s Doctrine”).

1.4. Handling Aborts

In an abstract normal-form mechanism, each player can only choose a report from his specified message set. However, even when running the mechanism with the help of an angel (so that there is no issue about trust) any player has the option of aborting, that is, handing to the angel an envelope containing something outside his message set—e.g., an insult— or nothing altogether. In this case, the angel has to be provided with precise instructions on what to do. Else, ultimately, the angelically mediated game is not fully specified and cannot be properly analyzed.

It should be realized that, in any concrete setting, there are infinitely many ways of aborting. For instance, consider an implementation of the second-price auction with a public mediator in which (a) each player—simultaneously with the others—is supposed to deliver to the mediator a sealed envelope containing a 20-bit bid, and (b) the mediator is supposed to public open all received envelopes. Then, what if a player \(i \) instead delivers a cat or an envelope containing a drawing? In both cases, everyone will realize that player \(i \) has aborted, either immediately or after all envelopes are publicly opened, but what should the mediator do? A natural way to complete the specification of this or any other publicly mediated normal-form mechanism consists of (1) treating all possible “illegitimate” actions as the single strategy \(\text{abort} \) and (2) treating an aborting player as having publicly submitted a specific message—e.g., the bid 0 in our auction example.\(^5\)

Technically, the original normal-form mechanism \(M \) is augmented so that (1’) the distinguished strategy \(\text{abort} \) is added to the original strategy set \(M_i \) of each player \(i \); and (2’) the input \(\text{abort} \) from player \(i \) is replaced with a specific message \(m_i \in M_i \) when evaluating the original outcome function. For an extension-free, publicly mediated mechanism \(M' \) to be a perfect implementation of the so augmented \(M \), strategy equivalence and privacy equivalence must be modified so as to account for aborting strategies. First, it must be guaranteed that the set of strategies of each player \(i \) in \(M' \) can be decomposed into two sets: a finite set of “legitimate” strategies \(M'_i \) and a (possibly infinite) set of aborting strategies, all outcome-equivalent to each other so that they can be represented by a single strategy \(\text{abort}' \). Then, strategy equivalence states that, for every player \(i \), there is a one-to-one correspondence between \(M_i \cup \{ \text{abort} \} \) and \(M'_i \cup \{ \text{abort}' \} \), mapping \(\text{abort} \) to \(\text{abort}' \), such that the outcome of any profile of strategies in \(M \) is identical to the outcome of the profile of the corresponding strategies in \(M' \). Privacy equivalence states that no set of players, whether aborting

\(^5\)Such a complete specification absorbs “aborts” into the abstract normal-form mechanism itself. But we are not constrained by this specific choice, and can adjust our construction to work with other specific ways to handle aborts.
or not, gains more information about the non-aborting strategies of the other players in M' than they do in M. (Aborting players publicly reveal that they have aborted, and no privacy protection applies to them.)

1.5. Road Map

After discussing the connection of our work with existing literature in Section 2, we proceed to prove that perfect ballot-box implementations exist in stages. In Section 3 we formalize ballots and ballot-boxes, and in Section 4 the notion of a public mediator. Then, in Sections 5 through 7 we present our main technical result. Namely that it is possible for a public mediator, given a sequence of envelopes whose contents properly encode inputs x_1, \ldots, x_n, to publicly manipulate these envelopes so as to produce a new sequence of envelopes that are guaranteed to contain the proper encoding of $g(x_1, \ldots, x_n)$ without revealing no information whatsoever about the inputs. Then, in Section 8 we present how a public mediator, again without revealing anything, can check whether a sequence of “input envelopes” contains a properly encoded input. Finally, in Section 9 we formalize the notion of a perfect implementation and prove that (1) having the players submit input envelopes encoding their private reports, (2) having the mediator check that the input envelopes contain proper encodings, (3) having the mediator transform input envelopes into output envelopes encoding g' output, and finally opening them, constitutes a perfect implementation of the finite normal-form mechanism with public outcomes whose outcome function is a g. (In the Appendix C we show how to extend out construction to normal-form mechanisms that also have private outcomes.) Section 10 concludes.

2. Relation to Prior Work

2.1. Zero Knowledge and Secure Computation

The study of privacy and correctness without trust started two decades ago, in theoretical computer science, with the zero-knowledge proofs of Goldwasser, Micali, and Rackoff (1985). Assume that a prover P wishes to prove a mathematical statement S to a verifier V, keeping private any detail of the proof. Saying “S is true” is not convincing, and a classical proof of S, though convincing, would reveal much more than just “S is true”. In contrast, a zero-knowledge proof is an interactive process that enables P to convince any distrusting V that S is indeed true but does not reveal any additional piece of knowledge. Zero-knowledge proofs are formalized via the notion of a simulator, a conceptual tool that is also used in our paper.

Another body of work on privacy and correctness without trust is secure computation, as introduced by Goldreich, Micali, and Wigderson (1987) (improving on earlier results of Yao (1986)). In essence, they show that, for any finite function f with n inputs, there exists a communication protocol P_f such that, whenever the majority of n players stick to P_f’s instructions, f can be evaluated by the players alone so as to match the privacy and correctness provided by the following process involving a private mediator M:

1. After having the opportunity to secretly communicate with the others, each player i privately hands to M either an aborting signal or a private input x_i.

2. If M receives an aborting signal, then he announces “the evaluation of f has been aborted.” Else, he announces the output y obtained by privately evaluating f on the n received inputs.

Letting f be the outcome function of a normal-form mechanism M, at least two main problems prevent a secure computation of f from being a perfect implementation of M.

The first problem is signalling. Indeed, it is well known that a play of a normal-form mechanism may result in quite different outcomes if the players can communicate before hand, and in a secure computation of f this ability is available by definition. Of course, one could remove by fiat any secret inter-player communication in the above mediated process for evaluating f, but then no known secure-computation protocol P_f would

6For instance, providing two large primes p and q whose product equals n is a proof of the statement $S = "n$ is the product of two primes." But such proof appears to contain much more knowledge than the mere statement "n is the product of two primes" (whatever they may be)!
match such a modification.\footnote{Indeed, secure-computation protocols have been developed in two main communication models: broadcasting and private channels. In the latter model, developed by Ben-Or, Goldwasser, and Wigderson (1988) and Chaum, Crépeau, and Damgård (1988), it is envisaged that between each pair of players i and j there exists a dedicated “lead pipe” that enables i and j to exchange messages so that no one else can see, alter, or gain any information about what they say to each other, nor observe whether they are communicating at all. A secure-computation protocol P_f in this model therefore enables secret inter-player communication in the easiest possible way. In the broadcasting model — indeed the communication model originally envisaged by Goldreich, Micali, and Wigderson (1987)— players speak in turns, and the identity of each speaker and what he says becomes common knowledge. (In this setting privacy relies on encryption, and thus security is computational rather than information theoretic.) Yet, secret inter-player communication is still inherent. Indeed, all secure-computation protocols require the players to execute probabilistic strategies, and thus exchange messages with positive “entropy.” Whenever this is the case, Hopper, Langford, and von Ahn (2002) prove that any pair of players can implement a covert channel of communication, so called \textit{steganographic communication}. That is, while exchanging their prescribed messages, any two players may also exchange additional information without anyone else (even a computationally unbounded observer) noticing it. By means of these covert channels, the players can signal to each other, and thus gain additional strategic opportunities not present in an evaluation of g with a trusted mediator. (Although this is not in the scope of the present paper, we notice that we can modify the protocol of Goldreich, Micali, and Wigderson (1987) so as to make signalling inconsequential for the current evaluation of g.)}

The second problem is \textit{coalitional power}. Although coalitions of less than half of the players are powerless, coalitions of more than half of the players are “omnipotent”: that is, without any recourse, they can force any output of f they want, no matter what inputs the non-collusive players might have chosen. In essence, in any secure computation protocol P_f, any majority of the players enjoy the same power that players 9 and 10 have in the concrete mechanism \mathcal{M}^{ext} of Section 1.3.\footnote{To be sure, Goldreich, Micali and Wigderson also put forward a weaker notion of secure computation where no subset of players can control f’s output. But then any single player can prevent f’s correct output to become public knowledge, for any non-trivial f — see Cleve (1986).}

Indeed, in Izmalkov, Lepinski, and Micalli (2005), we present an earlier version of our construction as achieving a stronger notion of secure computation, in a novel communication model.

2.2. \textit{Games with Pre-Play Communication}

Our result can be viewed as generalizing and strengthening the extensive body of work on pre-play communication games (see in particular, Bárány (1992), Forges (1990), Ben-Porath (1998), Aumann and Hart (2003), Urbano and Vila (2002), Ben-Porath (2003), Gerardi (2004), Dodis, Halevi, and Rabin (2000), Gerardi and Myerson (2007), Krishna (2006)). Such games have been designed for achieving correlated equilibrium, communication equilibrium, or Bayesian-Nash equilibrium.

The general objective of these papers is obtaining the equilibrium payoffs of a given normal-form game G played with the help of a private mediator via the equilibrium payoffs of G extended by a carefully designed communication protocol. Specifically, they (1) select a particular function to be evaluated by the mediator and thus a specific mediated game $G’$; (2) focus on a set S of equilibria of $G’$; and then (3) replace the mediator in $G’$ with a communication stage, executed prior to playing G, so as to obtain an “extended” game G^* possessing equilibria that are payoff-equivalent to those in S. To achieve these objectives they require certain restrictions, either on the number of players or on their rationality.

A perfect implementation of the privately mediated game $G’$ guarantees much more than the above-mentioned properties of G^*: it (a) preserves the \textit{entire strategic and privacy structure} of $G’$; (b) preserves the computational complexity of $G’$; and (c) imposes no restrictions on the players. To explain this, let us summarize the pre-play approach in a way that enables an easy comparison with ours. We start by briefly explaining the mechanics of their mediated and extended games.

Let G be a normal-form game for n players, and f a probabilistic function mapping n inputs to a strategy profile (s_1, \ldots, s_n) of G. (As in the case of correlated equilibrium, f’s inputs may be empty.) Then G can be extended in the following two ways.

- By (f, G) we denote the privately mediated game played in three stages as follows. In the first stage, the players simultaneously provide their f-inputs to a private mediator. In the second stage, the mediator
obtains a profile of strategies \((s_1, \ldots, s_n)\) by privately evaluating \(f\) on the received inputs, and then privately hands \(s_i\) to player \(i\) as his “recommendation.” In the third stage, the players play \(G\).

- By \((P, G)\) we denote the game played as follows. First, the players communicate following a communication protocol \(P_f\), so that each player \(i\) computes a strategy \(s_i\) in \(G\). Then, they play \(G\). (The protocol \(P\) requires specific communication channels, such as exchanging messages in sealed envelopes.)

The function \(f\) is specifically chosen so that \((f, G)\) has a desired equilibrium, \(E_{f, G}\), in which the players play their recommended strategies. With this focus, therefore, the function \(f\) itself becomes a normal-form mechanism. Indeed, after the players simultaneously select an input profile \((x_1, \ldots, x_n)\) for \(f\), the outcome consists of the strategy profile \((s_1, \ldots, s_n) = f(x_1, \ldots, x_n)\) in \(G\).

With this preamble, the goal of pre-play is to come up with a communication protocol \(P\) such that, sticking to \(P\)'s instructions and then playing the computed strategies in \(G\) is an equilibrium \(E_{P, G}\) of \((P, G)\), having the same payoffs as \(E_{f, G}\). Thus, pre-play may be viewed as providing a concrete implementation of the normal-form mechanism \(f\).

Leaving aside the issue of computational efficiency, that so far is not a traditional desideratum in game theory, let us now highlight two game-theoretic reasons that make such implementations weaker than perfect ones.

Strategic Inequivalence. The requirement that \((P, G)\) has equilibria that are payoff-equivalent to some or even all the equilibria of \((f, G)\) is much weaker than strategy equivalence. In fact, \((P, G)\) may introduce additional equilibria, that is, possess equilibria having no counterparts in \((f, G)\). Therefore, a rational play of \((f, G)\) and a rational play of \((P, G)\) may be vastly different.

Again, one main way for \((P, G)\) to introduce additional equilibria is via signaling. Indeed, while in the mediated game \((f, G)\) the players do not interact with each other, in \((P, G)\) they must do so, and have plenty of opportunity to signal to each other. (In most pre-play constructions, the players are actually envisaged to communicate via private channels.)

But even if \(f\) and \(G\) were such that signaling could not introduce additional equilibria in \((P, G)\), playing \((f, G)\) may be vastly different from playing \((P, G)\). This may be the case even if, in the extreme, there were a payoff-preserving bijection between the equilibria of \((f, G)\) and those of \((P, G)\). The reason is that, even in such an extreme case, “equilibrium selection” may still be very different in the two games. We illustrate this seemingly counterintuitive phenomenon relative to achieving correlated equilibrium via pre-play. Consider the following normal-form game.

\(G\) : There are 4 players, each having action set \(\{a, b\}\).

The payoffs of strategy profile \((a, a, a, a)\) is \((0, 1, 0, 1)\);

that of \((b, b, b, b)\) is \((1, 0, 1, 0)\);

that of \((a, b, a, b)\) is \((10, 10, -100, -100)\); and

that of any other strategy profile is \((-\infty, -\infty, -\infty, -\infty)\).

Note that \(G\) has the following “attractive” correlated equilibrium: \(E = \frac{1}{2}(a, a, a, a) + \frac{1}{2}(b, b, b, b)\), which in expectation gives each player a payoff of \(\frac{1}{2}\). Now,

- Let \(f\) the function that, on no inputs, returns a 4-tuple of strategies distributed as in \(E\); and

- Let \(P\) be the following naive protocol: First players 1 and 2 flip a fair coin in a private room to obtain a private random bit \(c\). Then player 1 privately sends \(c\) to player 3, and player 2 privately sends \(c\) to player 4. All players interpret \(c = 0\) as the recommendation \(a\), and \(c = 1\) as the recommendation \(b\).

Then it is immediately seen that

- For any equilibrium \(e\) of \((f, G)\) there exists a payoff-equivalent equilibrium \(e'\) in \((P, G)\), and vice versa.

9 One might consider more general versions of \((M_f, G)\), where the players and the mediator \(M_f\) interact back and forth. Forges (1986) and Myerson (1982) show that it suffices to consider canonical mechanisms, where the players communicate with \(M_f\) in three stages as described.

10 The proof techniques often deliver more. In particular, at equilibria \(E_{f, G}\) and \(E_{P, G}\), the distributions of —respectively—the recommended and computed strategies are the same.
By colluding in \((P,G)\) — and in a private room it is easy to collude! — players 1 and 2 can “hijack any equilibrium \(E'\) so that \((a,b,a,b)\) is played.”

Indeed, despite the fact that the payoffs of \((a,b,a,b)\) are extremely unattractive to players 3 and 4, it suffices for player 1 to play \(a\) and induce player 3 to do the same by sending him 0, and for player 2 to play \(b\) and induce player 4 to do the same by sending him 1.

In \((f,G)\), even if players 1 and 2 were given for free means of private communication, it would be impossible for them to collude so as to “hijack \(E\) into \((a,b,a,b)\)”.

Accordingly, although in \((f,G)\) the equilibrium \(E\) is likely to be selected, in \((P,G)\) — because it is so easy and profitable to hijack \(E'\) into \((a,b,a,b)\) — \(E'\) is unlikely to be played out. The example illustrates that preserving all equilibrium payoffs can be too weak a goal for concrete implementations in some settings. Only strategy equivalence guarantees that the players are always indifferent between playing a mediated mechanism or its concrete implementation.

Of course, although the above \(P\) satisfies all the stated objectives of a pre-play implementation of the chosen \(f\), one might suspect that the above equilibrium-selection problem arises because \(P\) is unnecessarily naive. In other words, one may suspect that the actual pre-play techniques “deliver more than claimed.” Unfortunately, this is not the case. The same problem would arise if \(P\) were chosen to be any pre-play implementation of \(f\) in the cited literature. Although much more general (i.e., capable of handling functions with true private inputs), sophisticated, and sequentially rational, any such implementation of \(f\) enables a subset of the players to control the output of \(f\) without being even suspected by the other players. (In essence, such players have a collusive power similar to that enjoyed by players 9 and 10 in the concrete mechanism \(M^{ext}\) of Section 1.3).

Restrictions on the Players. To achieve correlated and communication equilibria that are not convex combinations of, respectively, Nash and Bayesian-Nash equilibria, the constructions of Bárány (1992), Forges (1990), Ben-Porath (1998), Aumann and Hart (2003), Ben-Porath (2003), Gerardi (2004), Gerardi and Myerson (2007) require at least 3 players. The other cited pre-play constructions work for 2 players, but restrict the rationality of the players by assuming that they cannot solve computationally complex problems — such as breaking codes.\(^{11}\) No such restrictions are required for our construction.

Secure Computation vs. Pre-Play. The above discussed implementation weaknesses of pre-play (relative to perfect implementation) are similar to those discussed for secure computation. This is not by chance. Retrospectively, in fact, one can prove that secure computation suffices to guarantee pre-play’s goals. Namely, if the number of players, \(n\), is greater or equal to 3, \(P_f\) is a secure-computation protocol for an \(n\)-input function \(f\), then, for any equilibrium \(E\) of \((f,G)\), \((P_f,G)\) has an equilibrium that is payoff-equivalent to \(E\). In fact, a weaker notion of secure computation suffices to guarantee this implication.\(^{12}\)

2.3. Other Prior Work

Spreading Trust. Some works, in particular that of Naor, Pinkas, and Sumner (1999), rather than putting trust on a single mediator, distribute it onto multiple mediators. (Thus, correctness and privacy hold only in so far these mediators do not collude with each other, nor signal information that they are not supposed to.) By contrast, our emphasis is on removing all trusted parties.

\(^{11}\) Other types of restrictions are also present. For instance, Dodis, Halevi, and Rabin (2000) relies on min-max punishments and thus on empty threats. Without loss of generality, assume that player 1 is the first, in the pre-play, to privately realize what his recommendation is. If he does not like his recommendation (i.e., if the expected payoff conditioned on his recommendation is bad for him), he may abort all communication, thus preventing player 2 from learning his own recommendation. Min-max punishment is certainly a way to prevent this, but may not be rational once player 1 aborts.

\(^{12}\) As recalled in Section 2.1, in any secure-computation implementation of \(f\), correctness and privacy are guaranteed no matter how a coordinated minority of the players deviates from their communication instructions. To guarantee pre-play’s goals it actually suffices to consider secure computations that withstand coalitions of cardinality 1, because equilibrium conditions solely check for individual deviations.
impossibility results. Whether or not a trusted mediator can be replaced by an unmediated interaction of the players alone crucially depends on the means of interaction available to the players. Because such a replacement is counter-intuitive, we informally expect it to be impossible in most interaction models. Indeed, this replacement has been proved impossible, in a formal sense, in many specific interaction models, even for a restricted class of contexts and outcome functions. Notably, Aumann and Hart (2003) prove that two players cannot reach any non-trivial correlated equilibrium via “cheap talk,” so long as the players communicate essentially by broadcasting messages. Brandt and Sandholm (2004) argue the impossibility of unconditionally privacy-preserving second-price auctions in many interaction models. By contrast, we prove that there exists a reasonable model of interaction (via ballots and a ballot box) in which replacing the mediator is possible for all outcome functions and all contexts.

3. THE BALLOT-BOX MODEL

Ballot-box mechanisms are extensive-form, imperfect-information mechanisms with Nature. Accordingly, to specify them we must specify who acts when, the actions and the information available to the players, when the play terminates, and how the outcome is determined upon termination.

A ballot-box mechanism ultimately is a mathematical abstraction, but possesses a quite natural physical interpretation. The physical setting is that of a group of players, seated around a table, acting on a set of ballots with the help of a randomizing device, the ballot-box. Within this physical setting, one has considerable latitude in choosing reasonable actions available to the players. In this paper, we make a specific choice, sufficient for our present goals.

3.1. Intuition

BALLOTS. There are two kinds of ballots: envelopes and super-envelopes. Externally, all ballots of the same kind are identical, but super-envelopes are slightly larger than envelopes. An envelope may contain a symbol from a finite alphabet, and a super-envelope may contain a sequence of envelopes. (Our constructions actually needs only envelopes containing an integer between 1 and 5, and super-envelopes capable of containing at most 5 envelopes.) An envelope perfectly hides and guarantees the integrity of the symbol it contains until it is opened. A super-envelope tightly packs the envelopes it contains, and thus keeps them in the same order in which they were inserted. Initially, all ballots are empty and in sufficient supply.

BALLOT-BOX ACTIONS. There are 8 classes of ballot-box actions. Each action in the first 7 classes is referred to as a public action, because it is performed in plain view, so that all players know exactly which action has been performed. These classes are: (1) publicly writing a symbol on a piece of paper and sealing it into a new, empty envelope; (2) publicly opening an envelope to reveal its content to all players; (3) publicly sealing a sequence of envelopes into a new super-envelope; (4) publicly opening a super-envelope to expose its inner envelopes; (5) publicly reordering a sequence of envelopes; (6) publicly destroying a ballot; and (7) do nothing. The last three classes of public actions are not actually necessary, but considerably simplify the description of our construction. Note that each public action has the same effects, no matter which player performs it.

An action in the eighth class is referred to as an action of Nature. Such an action consists of “ballot boxing” a publicly chosen sequence of ballots. That is, it consists of reordering the chosen ballots according to a permutation randomly chosen by — and solely known to — Nature.

PUBLIC INFORMATION. Conceptually, the players observe which actions have been performed on which ballots. Formally, (1) we associate to each ballot a unique identifier, a positive integer that is common information to all players (these identifiers correspond to the order in which the ballots are placed on the table for the first time or returned to the table — e.g., after being ballot-boxed); and (2) we have each action generate, when executed, a public string of the form “A, j, k, l, ...”; where A is a string identifying the action and j, k, l, ... are the identifiers of the ballots involved. The public record is the concatenation of the public strings generated by all actions executed thus far.
3.2. Formalization

BASIC NOTATION. We denote by Σ the alphabet consisting of English letters, arabic numerals, and punctuation marks; by Σ^* the set of all finite strings over Σ; by S_k the group of permutations of k elements; by $x := y$ the operation that assigns value y to variable x; by $p := \text{rand}(S_k)$ the operation that assigns to variable p a randomly selected permutation in S_k; and by \emptyset the empty set.

If S is a set, by S^0 we denote the empty set, and by S^k the Cartesian product of S with itself k times. If x is a sequence, by either x' or x_i we denote x's ith element,\footnote{For any given sequence, we shall solely use superscripts, or solely subscripts, to denote all of its elements.} and by $\{x\}$ the set $\{z : x^i = z$ for some $i\}$. If x and y are sequences, respectively of length j and k, by $x \circ y$ we denote their concatenation (i.e., the sequence of $j + k$ elements whose ith element is x^i if $i \leq j$, and y^{i-j} otherwise). If x and y are strings (i.e., sequences with elements in Σ), we denote their concatenation by xy.

If A is a probabilistic algorithm, the distribution over A’s outputs on input x is denoted by $A(x)$. A probabilistic function $f : X \rightarrow Y$ is finite if X and Y are both finite sets and, for every $x \in X$ and $y \in Y$, the probability that $f(x) = y$ has a finite binary representation.

BALLOTS AND ACTIONS. An envelope is a triple $(j, c, 0)$, where j is a positive integer, and c a symbol of Σ. A super-envelope is a triple (j, c, L), where both j and L are positive integers, and $c \in \Sigma^L$. A ballot is either an envelope or a super-envelope. If (j, c, L) is a ballot, we refer to j as its identifier, to c as its content, and to L as its level. (As we shall see, L represents the number of inner envelopes contained in a ballot.)

A set of ballots B is well-defined if distinct ballots have distinct identifiers. If B is a well-defined set of ballots, then I_B denotes the set of identifiers of B’s ballots. For $j \in I_B$, B_j (or the expression ballot j) denotes the unique ballot of B whose identifier is j. For $J \subset I_B$ and B_J denotes the set of ballots of B whose identifiers belong to J. To emphasize that ballot j actually is an envelope (super-envelope) we may use the expression envelope j (super-envelope j).

Relative to a well-defined set of ballots B: if j is an envelope in B, then $\text{cont}_B(j)$ denotes the content of j; if $x = j^1, \ldots, j^k$ is a sequence of envelope identifiers in I_B, then $\text{cont}_B(x)$ denotes the concatenation of the contents of these envelopes, that is, the string $\text{cont}_B(j^1) \cdots \text{cont}_B(j^k)$.

A global memory consists of a pair (B, R), where

- B is a well-defined set of ballots; and
- R is a sequence of strings in Σ^*, $R = R^1, R^2, \ldots$.

We refer to B as the ballot set; to R as the public record; and to each element of R as a record. The empty global memory is the global memory for which the ballot set and the public record are empty. We denote the set of all possible global memories by GM.

Ballot-box actions are functions from $GM \rightarrow GM$. The subset of ballot-box actions available at a given global memory gm is denoted by A_{gm}. The actions in A_{gm} are described below, grouped in 8 classes. For each $a \in A_{gm}$ we provide a formal identifier; an informal reference (to facilitate the high-level description of our constructions); and a functional specification. If $gm = (B, R)$, we actually specify $a(gm)$ as a program acting on variables B and R. For convenience, we include in R the auxiliary variable ub, the identifier upper-bound: a value equal to 0 for an empty global memory, and always greater than or equal to any identifier in I_B.

1. (NewEn, c) —where $c \in \Sigma$.
 “Make a new envelope with public content c.”
 $\text{ub} := \text{ub} + 1$; $B := B \cup \{(\text{ub}, c, 0)\}$; and $R := R \circ (\text{NewEn}, c, \text{ub})$.

2. (OpenEn, j) —where j is an envelope identifier in I_B.
 “Publicly open envelope j to reveal content $\text{cont}_B(j)$.”
 $B := B \setminus \{B_j\}$ and $R := R \circ (\text{OpenEn}, j, \text{cont}_B(j), \text{ub})$.

3. (NewSup, j_1, \ldots, j_L) —where $L \leq 5$, and $j_1, \ldots, j_L \in I_B$ are distinct envelope identifiers.
 “Make a new super-envelope containing the envelopes j_1, \ldots, j_L.”
4. (OpenSup, j) — where \(j \in I_B \) is the identifier of a super-envelope of level \(L \). Letting \(\text{cont}_B(j) = (c_1, \ldots, c_L) \), \(B := B \cup \{(ub + 1, c_1, 0), \ldots, (ub + L, c_L, 0)\} \); \(B := B \setminus \{B_j\} \);
\(\text{ub} := \text{ub} + L \); and \(R := R \circ (\text{NewSup}, j, j, \text{ub}) \).

5. (PublicPermute, \(j_1, \ldots, j_k, p \)) — where \(k \leq 5 \), \(p \in S_k \), and \(j_1, \ldots, j_k \in I_B \) are distinct identifiers of ballots with the same level \(L \).

6. (Destroy, j) — where \(j \) is a ballot identifier in \(I_B \).

7. (DoNothing).

8. (BallotBox, \(j_1, \ldots, j_k \)) — where \(k \leq 5 \) and \(j_1, \ldots, j_k \in I_B \) are distinct identifiers of ballots with the same level \(L \).

We refer to a member of the first 7 classes as a public action and to a member of the 8th class as an action of Nature.

REMARKS.

- All ballot-box actions are deterministic functions, except for the actions of Nature.
- The variable \(\text{ub} \) never decreases and coincides with the maximum of all identifiers “ever in existence.” Notice that we never re-use the identifier of a ballot that has left, temporarily or for ever, the table. This ensures that different ballots get different identifiers.
- Even though we could define the operations NewSup, PublicPermute, and BallotBox to handle an arbitrary number of ballots, it is a strength of our construction that we never need to operate on more than 5 ballots at a time. We thus find it convenient to define such bounded operations to highlight the practical implementability of our construction.

DEFINITION 1: A global memory \(\text{gm} \) is feasible if there exists a sequence of global memories \(\text{gm}^0, \text{gm}^1, \ldots, \text{gm}^k \), such that \(\text{gm}^0 \) is the empty global memory; \(\text{gm}^k = \text{gm} \); and, for all \(i \in [1, k] \), \(\text{gm}^i = a^i(\text{gm}^{i-1}) \) for some \(a^i \in A_{\text{gm}^{i-1}} \).

If \((B, R) \) is a feasible memory, we refer to \(R \) as a feasible public record.

Notice that if \(\text{gm} = (B, R) \) is feasible, then \(A_{\text{gm}} \) is easily computable from \(R \) alone. Indeed, what ballots are in play, which ballots are envelopes and which are super-envelopes, et cetera, are all deducible from \(R \). Therefore, different feasible global memories that have the same public record also have the same set of available actions. This motivates the following definition.

DEFINITION 2: If \(R \) is a feasible public record, by \(A_R \) we denote the set of available actions for any feasible global memory with public record \(R \).

\(^{14} \) All the ballot-box actions involving multiple super-envelopes require as inputs and produce as outputs the ballots of the same level (see below). Thus, the level of any ballot can be deduced from the public record.
DEFINITION 3: Let \(\mathcal{P} \) be a sequence of \(K \) functions. We say that \(\mathcal{P} \) is a public ballot-box mediator (of length \(K \)) if, for all \(k \in [1, K] \) and public records \(R \), \(P^k(R) \) is a public ballot-box action in \(\mathcal{A}_R \).

An execution of \(\mathcal{P} \) on an initial feasible global memory \((B^0, R^0)\) is a sequence of global memories \((B^0, R^0), \ldots, (B^K, R^K)\) such that \((B^k, R^k) = a^k(B^{k-1}, R^{k-1}) \) for all \(k \in [1, K] \), where \(a^k = P^k(R^{k-1}) \).

If \(e \) is an execution of \(\mathcal{P} \), by \(B^k(e) \) and \(R^k(e) \) we denote, respectively, the ballot set, the public record, and the private history profile of \(e \) at round \(k \). By \(R^k_{\mathcal{P}}(e) \) we denote the last \(k \) records of \(R^k(e) \) (i.e., “the records appended to \(R^0 \) by executing \(\mathcal{P} \”).

REMARKS.

- Note that the above definition captures our intuitive desideratum that no special trust is bestowed on a public mediator. Because he performs a sequence of public ballot-box actions, any one can verify that
 (i) he performs the right sequence of actions;
 (ii) he does not choose these actions; and
 (iii) he does not learn any information that is not publicly available.
- Note too that if \(\mathcal{P} = P^1, \ldots, P^K \) and \(Q = Q^1, \ldots, Q^K \) are public mediators, then their concatenation, that is, \(P^1, \ldots, P^K, Q^1, \ldots, Q^K \) is a public mediator too.

5. THE NOTION OF A BALLOT-BOX COMPUTER FOR A FUNCTION \(f \)

DEFINITION 4: An address is a finite sequence \(x \) of distinct positive integers. An address vector \(x \) is a vector of mutually disjoint addresses, that is, \(\{x_i\} \cap \{x_j\} = \emptyset \) whenever \(i \neq j \). The identifier set of an address vector \(x = (x_1, \ldots, x_k) \) is denoted by \(I_x \) and defined to be the set \(\bigcup_{i=1}^{k} \{x_i\} \). If \(B \) is a set of ballots, then we define \(\text{cont}_B(x) \) to be the vector \((\text{cont}_B(x_1), \ldots, \text{cont}_B(x_k))\). If \(i \) is a positive integer, then \(x+i \) is the address vector whose \(j \)-th component is \(x_j + i \) (i.e., each element of sequence \(x_j \) is increased by \(i \)).

As usual, an address profile is an address vector indexed by the set of players.

A ballot-box computer \(\mathcal{P} \) for a function \(f \) is a special public ballot-box mediator. Executed on an initial global memory in which specific envelopes (the “input envelopes”) contain an input \(x \) for \(f \), \(\mathcal{P} \) replaces such envelopes with new ones (the “output envelopes”) that will contain the corresponding output \(f(x) \). Of course, no property is required from \(\mathcal{P} \) if the initial memory is not of the proper form.

DEFINITION 5: Let \(f : X^a \to Y^b \) be a finite function, where \(X, Y \subset \Sigma^* \); and let \(x = x_1, \ldots, x_a \) be an address vector. We say that a feasible global memory \(gm = (B, R) \) is proper for \(f \) and \(x \) if \(I_x \subset I_B \) and \(\text{cont}_B(x) \in X^a \).

DEFINITION 6: Let \(f : X^a \to Y^b \) be a finite function, where \(X, Y \subset \Sigma^* \); let \(x \) and \(w \) be two address vectors. We say that a public ballot-box mediator \(\mathcal{P} \) is a ballot-box computer for \(f \), with input address vector \(x \) and output address vector \(w \), if there exists a probabilistic algorithm \(\text{SIM} \) such that, for any execution \(e \) of \(\mathcal{P} \) on an initial memory \(gm^0 = (B^0, R^0) \), proper for \(f \) and \(x \) and with identifier upper-bound \(\mathcal{U}_0 \), the following three properties hold:

1. Correctness: \(\text{cont}_{B^K(e)}(w + ub) = f(\text{cont}_B(x)) \).
2. Privacy: \(R^k_{\mathcal{P}}(e) = \text{SIM}(ub) \).
3. Clean Operation: \(B^K(e) = B_{\{w+ub\}} \cup B^0 \setminus B_{\{x\}} \).

We refer to \(\text{SIM} \) as \(\mathcal{P} \)'s simulator; to \(B_{\{x\}} \) as the input envelopes; and to \(B_{\{y+ub\}} \) as the output envelopes. For short, when no confusion may arise, we refer to \(\mathcal{P} \) as a computer.

\footnote{Note that the executions of \(\mathcal{P} \) are, in general, random since \(P^k(R) \) may return an action of Nature.}
REMARKS.

- **Correctness.** Semantically, Correctness states that the output envelopes will contain \(f \) evaluated on the contents of the input envelopes. Syntactically, Correctness implies that each integer of each address \(w_j + ub \) is the identifier of an envelope in \(B^K(e) \).
- **Privacy.** By running a computer \(P \) for \(f \), the only additional information about \(f \)’s inputs or outputs gained by the players consists of \(R_P^K \), the portion of the public record generated by \(P \)’s execution. Privacy guarantees that this additional information is actually useless. Indeed, (1) the identifier upper-bound \(ub \) is deducible from \(R^0 \), and thus already known to the players, and (2) \(R_P^K \) can be generated “with exactly the same odds as in a random execution of \(P \)” by \(P \)’s simulator only on input \(ub \). Since such simulator is a fixed algorithm, \(R_P^K \) cannot contain any information about \(f \)’s inputs and outputs that is not deducible from \(ub \).
- **Clean Operation.** As we shall see, our construction is modular, that is, we build computers for complex functions from computers for more elementary ones. Therefore, we actually envision that an execution of a computer \(P \) may be preceded and/or followed by the execution of other computers. We thus insist that \(P \) does not “touch” any ballots of the initial memory besides its input envelopes. This way, partial results already computed, if any, will remain intact. Accordingly, Clean Operation guarantees that \(P \)

1. Never touches an initial ballot that is not an input envelope (in fact, if a ballot is acted upon, then it is either removed from the ballot set, or receives a new identifier), and
2. Eventually replaces all input envelopes with the output envelopes (i.e., other ballots generated by \(P \) are temporary, and will not exist in the final ballot set).

Clean Operation property is very important, because it is hard—if not impossible!— to constrain what may happen after a mechanism ends, and thus to control what happens to any residual information in the system. Indeed, if such information existed and were related to the players’ strategies, its fate might affect the very play of the mechanism.\(^{16}\)

6. THREE ELEMENTARY BALLOT-BOX COMPUTERS

In this section we first provide ballot-box computers for three elementary functions. (These computers will later on be used as building blocks for constructing computers for arbitrary finite functions.) Our three elementary functions are:

1. **Permutation Inverse**, mapping a permutation \(p \in S_5 \) to \(p^{-1} \).
2. **Permutation Product**, mapping a pair of permutations \((p,q) \in S_5 \times S_5 \) to \(pq \) —i.e., the permutation of \(S_5 \) so defined: \(pq(i) = p(q(i)) \).
3. **Permutation Clone**, mapping a permutation \(p \in S_5 \) to the pair of permutations \((p,p) \).

Encodings. Note that the notion of a ballot-box computer \(P \) for \(f \) applies to functions \(f \) from strings to strings. (Indeed, \(f \)’s inputs and outputs must be represented as the concatenation of, respectively, the symbols contained in \(P \)’s input and output envelopes.) Thus we need to encode the inputs and outputs of Permutation Inverse, Product and Clone as strings of symbols. This is naturally done as follows.

Definition 7: We identify a permutation \(p \in S_5 \) with the 5-long string \(p_1 p_2 p_3 p_4 p_5 \), such that \(p_j = p(j) \). Relative to a well-defined set of ballots \(B \), we say that a sequence \(\sigma \) of 5 envelope identifiers is an envelope encoding of a permutation if \(\text{cont}_B(\sigma) \in S_5 \).

\(^{16}\)For instance, let \(\mathcal{M} \) be the following normal-form mechanism for running a secret referendum: player \(i \)’s message \(m_i \) is either YES or NO, and the public outcome is the tally of YES votes. Let now \(\mathcal{M}’ \) be an implementation of \(\mathcal{M} \) that, while correctly and privately computing the desired tally, also generates and hands to each player \(i \) a sequence of unopened envelopes, \(E_i \), encoding \(m_i \). Such an \(\mathcal{M}’ \) can hardly be considered to be a satisfactory implementation of \(\mathcal{M} \), as it makes “buying votes” easier than in \(\mathcal{M} \). Indeed, in \(\mathcal{M}’ \) player \(i \) can ex-post prove how he voted to some other player \(j \) by handing over \(E_i \) to \(j \), or by opening them in front of him. By contrast, after a play of \(\mathcal{M} \) player \(i \) could only claim to another player \(j \) what his vote \(m_i \) was.
If σ is an envelope encoding of a permutation in S_5, we refer to this permutation by $\hat{\sigma}$. We consistently use lower-case Greek letters to denote envelope encodings.

Public-Mediator Conventions. To simplify our description of a public mediator P we adopt the following conventions.

- Rather than describing P as a sequence of K functions that, on input a public record R, output a ballot-box action feasible for any global memory with public record R, we present P as a list of K actions a^1, \ldots, a^K (to be performed no matter what the public record may be). Should any such a^k be infeasible for a particular global memory, we interpret it as the “do nothing” action, which is always feasible.

- We describe each action a^k via its informal reference (as per Definition 3.2), using an explicit and convenient reference to the identifiers it generates. For instance, when we say “Make a new envelope x with public content c”, we mean (1) “Make a new envelope with public content c” and (2) “refer to the identifier of the newly created envelope as x” — rather than $ub + 1$.

- We often collapse the actions of several rounds into a single conceptual round, providing convenient names for the ballot identifiers generated in the process. For instance, if p is a permutation in S_5, the conceptual round “Create an envelope encoding σ of p” stands for the following 5 actions:

 - Make a new envelope σ_1 with public content p_1.
 - Make a new envelope σ_2 with public content p_2.
 - Make a new envelope σ_3 with public content p_3.
 - Make a new envelope σ_4 with public content p_4.
 - Make a new envelope σ_5 with public content p_5.

6.1. A Ballot-Box Computer for Permutation Inverse

Public mediator INV_σ

Input address: σ — an envelope encoding of a permutation in S_5.

(1) Create an envelope encoding α of the identity permutation $I = (12345)$.

(2) For $\ell = 1$ to 5: make a new super-envelope A_ℓ containing the pair of envelopes $(\alpha_\ell, \sigma_\ell)$.

(3) Ballotbox A_1, \ldots, A_5 to obtain A'_1, \ldots, A'_5.

(4) For $\ell = 1$ to 5: open super-envelope A'_ℓ to expose envelope pair (μ_ℓ, ν_ℓ).

(5) For $\ell = 1$ to 5: publicly open ν_ℓ, and denote its content by $\check{\nu}_\ell$. Set $\check{\nu} = \check{\nu}_1 \circ \cdots \circ \check{\nu}_5$.

(6) Publicly permute μ_1, \ldots, μ_5 according to $\check{\nu}^{-1}$ to obtain ρ_1, \ldots, ρ_5. Set $\rho = \rho_1, \ldots, \rho_5$.

Output address: 26, 27, 28, 29, 30.

Lemma 1: For any 5-long address σ, INV_σ is a ballot-box computer for permutation inverse, with input address σ and output address 26, . . . , 30.

Proof. As per Definition 6, let us establish Correctness, Privacy and Clean Operation for INV_σ. Consider an execution of INV_σ on any initial memory gm^0 proper for permutation inverse and σ, and let ub^0 be the identifier upper-bound of gm^0.

Correctness. Step 1 generates 5 new identifiers (increasing ub^0 by 5). Step 2 binds together, in the same super-envelope A_ℓ, the ℓth envelope of α and σ. It generates 5 new identifiers, and all of its actions are feasible since $\sigma \in I_B$. Step 3 applies the same, random and secret, permutation to both $\hat{\alpha}$ and $\hat{\sigma}$, generating 5 new identifiers. Letting x be this secret permutation, Step 4 “puts on the table” the envelope encodings $\mu = \mu_1, \ldots, \mu_5$ and $\nu = \nu_1, \ldots, \nu_5$ where $\check{\mu} = xI = x$ and $\check{\nu} = x\sigma$, and generates 10 new identifiers. At the end of Step 4, both $\check{\nu}$ and $\check{\mu}$ are totally secret. Step 5, however, reveals $\check{\nu}$ to all players, so that all players can compute $\check{\nu}^{-1}$ and verify that Step 6 is correctly executed. The action of Step 6 is feasible because $\hat{\sigma} \in S_5$
and so $\hat{\nu} \in S_5$. Step 6 produces five new identifiers: 26th to 30th, counting from the start of the execution. Thus, $\rho = \hat{u}_b^0 + 26, \ldots, u_b^0 + 30$ and $\hat{\rho} = \hat{\nu}^{-1}\hat{\mu} = \hat{\sigma}^{-1}x^{-1}x = \hat{\sigma}^{-1}$ as desired.

Privacy. Consider the following probabilistic algorithm.

Algorithm $SIM-I\mathcal{NV}_\sigma$

Input: ub — an integer.

Randomly select a permutation $r \in S_5$, and output the following sequence of records (grouped so as to correspond to the records generated by each conceptual step of protocol $I\mathcal{NV}_\sigma$):

$(\text{NEWEN}, 1, ub + 1) \cdots (\text{NEWEN}, 5, ub + 5)$
$(\text{NEWSUP}, ub + 1, \sigma_1, ub + 6) \cdots (\text{NEWSUP}, ub + 5, \sigma_5, ub + 10)$
$(\text{BALLOTBOX}, ub + 6, \ldots, ub + 10, ub + 15)$
$(\text{OPENSUP}, ub + 11, ub + 17) (\text{OPENSUP}, ub + 12, ub + 19) \cdots (\text{OPENSUP}, ub + 15, ub + 25)$
$(\text{OPENEN}, ub + 17, r_1, ub + 25) (\text{OPENEN}, ub + 19, r_2, ub + 25) \cdots (\text{OPENEN}, ub + 25, r_5, ub + 25)$
$(\text{PUBLICPERMUTE}, ub + 16, ub + 18, ub + 20, ub + 22, ub + 24, r^{-1}, ub + 30)$

To see that $SIM-I\mathcal{NV}_\sigma$ is the required simulator for $I\mathcal{NV}_\sigma$, consider a random execution e of $I\mathcal{NV}_\sigma$ on gm^0 and a random output E of $SIM-I\mathcal{NV}_\sigma(ub^0)$. First observe that the first 16 records of e and E (corresponding to Steps 1–4) are identical. The remaining 6 records of the public record of e are:

$(\text{OPENEN}, ub^0 + 17, \hat{\nu}_1, ub^0 + 25) \cdots (\text{OPENEN}, ub^0 + 25, \hat{\nu}_5, ub^0 + 25)$
$(\text{PUBLICPERMUTE}, ub^0 + 16, ub^0 + 18, ub^0 + 20, ub^0 + 22, ub^0 + 24, \hat{v}^{-1}, ub^0 + 30)$

Thus, while the last 6 records produced by e and E may very well be different, they are identically distributed. In fact, $r = r_1 r_2 r_3 r_4 r_5$ is the random permutation selected by the simulator; and $\hat{\nu} = \hat{\nu}_1 \hat{\nu}_2 \hat{\nu}_3 \hat{\nu}_4 \hat{\nu}_5 = x\hat{\sigma}$, where x is the random permutation (secretly) selected by the ballot box. Since the product of a random permutation in S_5 and a fixed permutation in S_5 is a random permutation in S_5, public records of e and E are identically distributed.

Clean Operation. Trivially follows by construction. $Q.E.D.$

6.2. A Ballot-Box Computer for Permutation Product

Public mediator $\mathcal{MULC}_{\sigma,\tau}$

Input addresses: σ and τ — each an envelope encoding of a permutation in S_5.

(1) Execute computer $I\mathcal{NV}_\sigma$ to obtain the envelope encoding α.
(2) For $\ell = 1$ to 5: make a new super-envelope A_ℓ containing the pair of envelopes (τ_ℓ, α_ℓ).
(3) Ballot box A_1, \ldots, A_5 to obtain A_1', \ldots, A_5'.
(4) For $\ell = 1$ to 5: open super-envelope A_ℓ' to expose envelope pair (μ_ℓ, ν_ℓ).
(5) For $\ell = 1$ to 5: publicly open envelope ν_ℓ, and denote its content by $\hat{\nu}_\ell$. Set $\hat{\nu} = \hat{\nu}_1 \circ \cdots \circ \hat{\nu}_5$.
(6) Publicly permute μ according to $\hat{\nu}^{-1}$ to obtain ρ.

Output address: 51, 52, 53, 54, 55.

Lemma 2: For any two, disjoint, 5-long addresses σ and τ, $\mathcal{MULC}_{\sigma,\tau}$ is a ballot-box computer for permutation product, with input addresses σ and τ and output address 51, . . . , 55.

Proof. Consider an execution of $\mathcal{MULC}_{\sigma,\tau}$ on any initial memory gm^0 proper for permutation product and σ, τ, and let ub^0 be the identifier upper-bound of gm^0.

Correctness. Note that by Lemma 1, Step 1 generates 30 new identifiers (increasing ub^0 by 30) and produces envelope encoding α with $\hat{\alpha} = \hat{\sigma}^{-1}$. Step 2 binds together, in the same super-envelope A_ℓ, the ℓth envelope of τ and α. It generates 5 new identifiers, and all of its actions are feasible since α is an
envelope encoding. Step 3 applies the same, random and secret, permutation to both \(\hat{\tau} \) and \(\hat{\alpha} \), generating 5 new identifiers. Letting \(x \) be this secret permutation, Step 4 “puts on the table” the envelope encodings \(\mu = \mu_1, \ldots, \mu_5 \) and \(\nu = \nu_1, \ldots, \nu_5 \) where \(\hat{\mu} = x\hat{\tau} \) and \(\hat{\nu} = x\hat{\alpha} = x\hat{\sigma}^{-1} \), and generates 10 new identifiers. At the end of Step 4, both \(\hat{\nu} \) and \(\hat{\mu} \) are totally secret. Step 5, however, reveals \(\hat{\nu} \) to all players, so that all players can compute \(\hat{\nu}^{-1} \) and verify that Step 6 is correctly executed. The action of Step 6 is feasible because \(\hat{\alpha} \in S_5 \) and so \(\hat{\nu} \in S_5 \). Step 6 produces five new identifiers: 51th to 55th, counting from the start of the execution. Thus, \(\rho = ub^0 + 51, \ldots, ub^0 + 55 \) and \(\hat{\rho} = \hat{\nu}^{-1}\hat{\mu} = \hat{\sigma}x^{-1}x\hat{\tau} = \hat{\sigma}\hat{\tau} \) as desired.

Privacy. Consider the following probabilistic algorithm.

Algorithm SIM-MULT\(_{\sigma,\tau}\)

Input: \(ub \) — an integer;
Run \(SIM-I\bar{N}V_\sigma(ub) \): randomly select a permutation \(r \in S_5 \); and add to the output the following sequence of records:

\[
\text{(NEWSup, } ub + 26, \tau_1, ub + 31) \ldots \text{(NEWSup, } ub + 30, \tau_5, ub + 35) \\
\text{(BALLOTBox, } ub + 31, \ldots, ub + 35, ub + 40) \\
\text{(OPENSup, } ub + 36, ub + 42) \text{(OPENSup, } ub + 37, ub + 44) \ldots \text{(OPENSup, } ub + 40, ub + 50) \\
\text{(OPENEN, } ub + 42, r_1, ub + 50) \text{(OPENEN, } ub + 44, r_2, ub + 50) \ldots \text{(OPENEN, } ub + 50, r_5, ub + 50) \\
\text{(PUBLICPermute, } ub + 41, ub + 43, ub + 45, ub + 47, ub + 49, r^{-1}, ub + 55) \\
\]

To see that \(SIM-MULT_{\sigma,\tau} \) is the required simulator for \(M\bar{U}L\bar{C}T_{\sigma,\tau} \), consider a random execution \(e \) of \(M\bar{U}L\bar{C}T_{\sigma,\tau} \) on \(gm^0 \) and a random execution \(E \) of \(SIM-MULT_{\sigma,\tau}(ub^0) \). Lemma 1 implies that the 22 records produced by protocol \(I\bar{N}V_\sigma \) in conceptual Step 1 of execution \(e \) are distributed identically to the first 22 produced by \(SIM\text{-invert}_\sigma(ub^0) \) in \(E \). Next, 11 records produced by Steps 2-4 of \(M\bar{U}L\bar{C}T_{\sigma,\tau} \) are identical to the next 11 records in \(E \) by construction (they are constant).

The remaining 6 records of \(e \) and \(E \) differ only in the permutation they use, respectively, \(\hat{\nu} \) and \(r \). Since both \(\hat{\nu} \) and \(r \) are random permutations in \(S_5 \), these are identically distributed. In addition, random permutations of Step 1 of \(SIM-I\bar{N}V_\sigma(ub^0) \) and of Step 2 of \(SIM-MULT_{\sigma,\tau}(ub^0) \) are selected independently from each other. The same holds for (secret) permutations selected by the ballot-box in Steps 6 of \(I\bar{N}V_\sigma \) and of \(M\bar{U}L\bar{C}T_{\sigma,\tau} \). Therefore, the whole records produced by \(e \) and \(E \) are identically distributed.

Clean Operation. Evident from our construction.

\[Q.E.D.\]

6.3. A Ballot-Box Computer for Permutation Clone

Public mediator \(C\bar{C}ON\bar{E}_\sigma \)

Input address: \(\sigma \) — an envelope encoding of a permutation in \(S_5 \).

1. Execute computer \(I\bar{N}V_\sigma \) to obtain the envelope encoding \(\alpha \).
2. Create two envelope encodings, \(\beta \) and \(\gamma \), of the identity permutation \(I \).
3. For \(\ell = 1 \) to 5: make a new super-envelope \(A_\ell \) containing the triple of envelopes \((\beta_\ell, \gamma_\ell, \alpha_\ell) \).
4. Ballotbox \(A_1, \ldots, A_5 \) to obtain \(A'_1, \ldots, A'_5 \).
5. For \(\ell = 1 \) to 5: open super-envelope \(A'_\ell \) to expose envelope triple \((\mu_\ell, \nu_\ell, \eta_\ell) \).
6. For \(\ell = 1 \) to 5: publicly open envelope \(\eta_\ell \), and denote its content by \(\hat{\eta}_\ell \). Set \(\hat{\eta} = \hat{\eta}_1 \circ \cdots \circ \hat{\eta}_5 \).
7. Publicly permute \(\mu \) and \(\nu \) according to \(\hat{\eta}^{-1} \).

Output addresses: 66, 67, 68, 69, 70 and 71, 72, 73, 74, 75.

\(^{17}\)Note that Steps 2-7, in essence, correspond to a protocol for permutation inverse that on input \(\alpha \) produces two identical envelope encodings, each encoding \(\hat{\alpha}^{-1} \).
Lemma 3: For any 5-long address \(\sigma \), \(\text{CLONE}_\sigma \) is a ballot-box computer for permutation clone, with input address \(\sigma \) and output addresses 66, \ldots, 70 and 71, \ldots, 75.

Proof. In light of the previous two proofs, this one is quite straightforward. The simulator required by Privacy is the probabilistic algorithm below.

Algorithm \(\text{SIM} - \text{CLONE}_\sigma \)

Input: \(ub \) — an integer.

1. Run \(\text{SIM} - \text{INV}_\sigma(ub) \);
2. Randomly select a permutation \(r \in S_5 \) and add to the output the following sequence of records:
 - \(\text{NEWEN}, ub + 31 \) \(\ldots \) \(\text{NEWEN}, ub + 35 \) \(\ldots \) \(\text{NEWEN}, ub + 40 \)
 - \(\text{NEWSUP}, ub + 26, ub + 31, ub + 36, ub + 41 \) \(\ldots \) \(\text{NEWSUP}, ub + 30, ub + 35, ub + 40, ub + 45 \)
 - \(\text{BALLOTBOX}, ub + 41, \ldots, ub + 45, ub + 50 \)
 - \(\text{OPENSUP}, ub + 46, ub + 53 \) \(\ldots \) \(\text{OPENSUP}, ub + 47, ub + 56 \) \(\ldots \) \(\text{OPENSUP}, ub + 50, ub + 65 \)
 - \(\text{OPENEN}, ub + 53, r_1, ub + 65 \) \(\ldots \) \(\text{OPENEN}, ub + 56, r_2, ub + 65 \)
 - \(\text{PUBLICPERMUTE}, ub + 51, ub + 54, ub + 57, ub + 60, ub + 63, r^{-1}, ub + 70 \)
 - \(\text{PUBLICPERMUTE}, ub + 52, ub + 55, ub + 58, ub + 61, ub + 64, r^{-1}, ub + 75 \)

Q.E.D.

7. General Ballot-Box Computers

Without loss of generality, any finite function can be represented as a binary function \(f : \{0, 1\}^a \rightarrow \{0, 1\}^b \), and it is well known in theoretical computer science that any such \(f \) can be represented as a fixed sequence of the following basic functions:

- \(\text{COIN} \), the probabilistic function that, on no input, returns a random bit;
- \(\text{DUPLICATE} \), the function that, on input a bit \(b \), returns a pair of bits \((b, b) \);
- \(\text{AND} \), the function that, on input a pair of bits \((b_1, b_2) \), returns 1 if and only if \(b_1 = b_2 = 1 \); and
- \(\text{NOT} \), the function that, on input a bit \(b \), returns the bit \(1 - b \).

We thus intend to prove that each of these basic functions has a ballot-box computer, and then obtain a ballot-box computer for any desired \(f : \{0, 1\}^a \rightarrow \{0, 1\}^b \) by utilizing these 4 basic computers. To this end, we must first decide how to encode binary strings and binary functions.

Definition 8: We define the \(S_5 \) encoding of a \(k \)-bit binary string \(z = b_1, \ldots, b_k \), denoted by \(\bar{z} \), to be \(\bar{b}_1 \cdots \bar{b}_k \), where

\[
\bar{0} = 12345; \quad \bar{1} = 12453.
\]

The \(S_5 \) encoding is immediately extended to binary functions as follows: \(\bar{f}(\bar{z}) = \bar{f}(z) \) for all \(z \).

One of our basic computer has already been constructed: namely,

Lemma 4: For any envelope encoding \(\sigma \), \(\text{CLONE} \) is a ballot-box computer for \(\text{DUPLICATE} \) with input address \(\sigma \).

Proof. Because \(\text{CLONE} \) duplicates any permutation in \(S_5 \), in particular it duplicates 12345 and 12453.

Q.E.D.
7.1. A Ballot-Box Computer for COIN

Public mediator COIN

(1) Create an envelope encoding α of I and an envelope encoding β of a.
(2) Make new super-envelopes A and B containing envelopes $\alpha_1, \ldots, \alpha_5$ and β_1, \ldots, β_5, respectively.
(3) Ballotbox A and B to obtain super-envelopes C and D.
(4) Open C to expose an envelope encoding γ. Destroy D.

Output address: 15, 16, 17, 18, 19.

Lemma 5: COIN is a ballot-box computer for COIN, with no input address and output address 15, ..., 19.

Proof. The only non-trivial part to prove Correctness is to demonstrate that contents of γ are random and belong to $\{I, a\}$. Indeed, at the end of Step 2, A contains a sequence of 5 envelopes encoding I, and B contains a sequence of 5 envelopes encoding permutation a. At the end of Step 3, the contents of C are either those of A or of B with equal probabilities. Thus, at the end of Step 4, the content of address γ is random and is either I or a.

Clean Operation is trivial, and Privacy straightforwardly follows by noting that the required simulator for COIN is the following probabilistic algorithm.

Algorithm $\text{SIM}-\text{COIN}$

Input: ub — an integer.

Output: the following sequence of records:

$$\text{(NEWEN, 1, } ub + 1) \text{ (NEWEN, 2, } ub + 2) \text{ (NEWEN, 3, } ub + 3) \text{ (NEWEN, 4, } ub + 4) \text{ (NEWEN, 5, } ub + 5) \text{ (NEWEN, 6, } ub + 7) \text{ (NEWEN, 4, } ub + 8) \text{ (NEWEN, 5, } ub + 9) \text{ (NEWEN, 3, } ub + 10)$$

$$\text{(NEWSUP, 1, 2, 3, 4, 5, } ub + 11) \text{ (NEWSUP, 6, 7, 8, 9, 10, } ub + 12) \text{ (BALLOTBOX, 11, 12, } ub + 14) \text{ (OPENSUP, 13, } ub + 14) \text{ (DESTROY, 14, } ub + 14)$$

Q.E.D.

7.2. Ballot-Box Computers for NOT and AND

In proving the existence of ballot-box computers for NOT and AND we rely on the result of Barrington (1986) that the Boolean functions NOT and AND can be realized as sequences of group operations in \mathbb{S}_5.\(^\text{18}\)

Here is our rendition of it.

Let $I = 12345$, $a = 12453$, $b = 25341$, $c_1 = 34125$, $c_2 = 12354$, and $c_3 = 42153$; and let \tilde{x}, x' and x^* be the operators defined to act on a permutation $x \in \mathbb{S}_5$ as follows:

$$\tilde{x} = c_1^{-1}xc_1, \quad x' = c_2^{-1}xc_2, \quad \text{and} \quad x^* = c_3^{-1}xc_3.$$

Then, recalling that $\emptyset = I$ and $I = a$, the following lemma can be verified by direct inspection.

\(^\text{18}\)Note that neither DUPLICATE nor COIN can be realized in \mathbb{S}_5, and thus one cannot compute arbitrary functions in \mathbb{S}_5. Indeed, the result of Barrington (1986) was solely concerned with implementing a restricted class of finite functions called NC. At high level, we bypass this limitation by (1) representing permutations in \mathbb{S}_5 as sequences of 5 envelopes and (2) using these physical representations and our ballot-box operations for implementing DUPLICATE and COIN (in addition to NOT and AND). That is, rather than viewing a permutation in \mathbb{S}_5 as a single, 5-symbol string, we view it a sequence of 5 distinct symbols, and put each one of them into its own envelope, which can then be manipulated separately by our ballot-box operations. Such “segregation” of permutations of \mathbb{S}_5 into separate envelopes is crucial to our ability of performing general computation, and in a private way too.
Barrington’s Lemma. If \(x_1 = \overline{b_1} \) and \(x_2 = \overline{b_2} \), where \(b_1 \) and \(b_2 \) are bits, then
\[
\overline{b_1} = (x_1 a^{-1})^*, \quad \text{and} \quad \overline{b_1} \land b_2 = (x_1 \overline{x_2} x_1^{-1} \overline{x_2}^{-1})'.
\]

Lemma 6: There exist ballot-box computers \(\text{NOT} \) and \(\text{AND} \) for, respectively, \(\overline{\text{NOT}} \) and \(\overline{\text{AND}} \).

Proof. The lemma follows by combining Barrington’s Lemma 6 and our Lemmas 1, 2 and 3. That is, each of \(\text{NOT} \) and \(\text{AND} \) is obtained in four steps. First, by expanding the operators of the formulas of Lemma 6 so as to show all relevant constants \(a, c_1, c_2 \) and \(c_3 \). Second, by generating envelope encodings for each occurrence of each constant. Third, in the case of \(\overline{\text{AND}} \), by using our elementary computer \(\text{CLONE} \) so as to duplicate \(x_1 \) and \(x_2 \). Forth, by replacing each occurrence of permutation inverse and permutation product in the formulas of Lemma 6 with, respectively, our elementary computers \(\text{INV} \) and \(\text{MULT} \). Accordingly, the simulators for \(\text{NOT} \) and \(\text{AND} \) can be obtained by running the simulators of their individual elementary computers in the proper order (feeding them as input the right values of \(\text{ub} \)).

Q.E.D.

7.3. Ballot-Box Computers for Arbitrary Finite Functions

Theorem 1: For any finite function \(f \) there exists a ballot-box computer \(P_f \) for \(f \).

Proof. Basic results of complexity theory guarantee that for any finite binary function \(f : \{0,1\}^a \rightarrow \{0,1\}^b \), there exists a fixed sequence \(C_f = F_1, F_2, \ldots, F_K \) such that:
- Each \(F_i \) is either \(\text{COIN} \), \(\text{DUPLICATE} \), \(\text{NOT} \) or \(\text{AND} \);
- Each input bit of \(F_i \) is either one of the original input bits or one of the output bits of \(F_j \) for \(j < i \); and
- For each \(a \)-bit input \(x \), the \(b \)-bit output \(f(x) \) can be computed by evaluating (in order) all functions \(F_i \) on their proper inputs, and then concatenating (in order) all their output bits not used as inputs by some \(F_j \). (Such bits are guaranteed to be exactly \(b \) in total.)

Define now \(P_i \) as follows:
\[
P_i = \text{COIN} \text{ if } F_i = \text{COIN}; \quad P_i = \text{CLONE} \text{ if } F_i = \text{DUPLICATE}; \quad P_i = \text{NOT} \text{ if } F_i = \text{NOT}; \quad P_i = \text{AND} \text{ if } F_i = \text{AND}.
\]

Let \(P \) be the concatenation of \(P_1, \ldots, P_K \), with appropriately chosen input addresses, so that the \(l \)-th input address of \(P_i \) matches the \(m \)-th output address of \(P_j \) whenever the \(l \)-th input bit of \(F_i \) is the \(m \)-th output bit of \(F_j \). Then, \(P \) is a ballot-box computer for \(f \). In fact, \(P \)'s correctness follows from the correctness of each computer \(P_i \). Furthermore, \(P \)'s privacy follows from the fact that each \(P_i \) has a simulator \(\text{SIM} \), and thus a simulator \(\text{SIM} \) for \(P \) can be obtained by executing (in order) \(\text{SIM}_1, \text{SIM}_2, \ldots, \text{SIM}_K \). Specifically, on input an identifier upper-bound \(\text{ub}_0 \), \(\text{SIM} \) runs \(\text{SIM}_1(\text{ub}_0) \) to generate a public record \(R_1 \), computes the identifier upper-bound \(\text{ub}_1 \) of \(R_1 \), runs \(\text{SIM}_2(\text{ub}_1) \) to obtain a public record \(R_2 \) and computes \(\text{ub}_2 \), and so on. At the end, \(\text{SIM} \) returns the public record \(R = R_1 \circ R_2 \circ \cdots \circ R_K \). Finally, the clean operation of \(P \) follows from the clean operation of each \(P_i \).

Q.E.D.

For completeness, we explicitly exhibit the sequence \(C_f \) and our computer \(P \) in, respectively, Appendices A and B.

19 Notice that there are two ways of computing \(\text{ub}_i \). The first is “extracting” \(\text{ub}_i \) from \(R_i \). The second is to add a specific constant to \(\text{ub}_{i-1} \), since each of \(\text{COIN}, \text{CLONE}, \text{NOT}, \) and \(\text{AND} \) generates a fixed number of new identifiers.
sequence has been prepared by player information, verifies whether or not a sequence of 5 constructs a special public ballot-box mediator, the
Ultimately, however,
memories. That is, we have assumed that
verification end up “destroying” the original envelopes.
So far, we have assumed that a ballot-box computer
The final condition is that checking for the validity of a player’s
Let us now focus on
Definition
Correctness:
Privacy:
Ideally,
what will be revealed will depend on the actual contents of E chosen by the player as well as on the way in which C operates.
Indeed, any ballot-box action accessing the content of an envelope j removes j, for ever, from the set of ballot identifiers.
3. Clean Operation: $B^R(e) = B_{\{w+ab\}} \cup B^0 \setminus B_{\{x\}}$.

Lemma 7: For any L, there exists an L-bit input checker.

Proof. Let C_1 be the public ballot-box mediator that, given an envelope encoding x of a bit b, operates as follows:

1. run $\text{CLONE} \times 2$ to generate three envelope encodings of b, namely, σ, β, γ;
2. run NOT on β to obtain the envelope encoding δ of the complementary bit, $1 - b$;
3. create super-envelopes A and B containing, respectively, the envelope sequence γ and the envelope sequence δ;
4. ballot-box A and B to obtain super-envelopes C and D;
5. open C and D to reveal, respectively, a sequence of 5 envelopes ρ and κ; and
6. open all the envelopes of ρ and κ.

Then notice that the contents revealed in step 6 are, with equal probability, either (I, a) or (a, I). Notice too, that C_1 is perfectly simulatable, and thus does not reveal anything about b.

Consider now executing C_1 when x is the encoding of a permutation $p \in S_5$ that is neither $I = 12345$ nor $a = 12453$. Then, in Step 6, ρ and κ will continue to be envelope encoding of permutations of S_5, but neither ρ nor κ will equal I or a. Indeed, recall that the Barrington function for NOT, $f(x) = (xa^{-1})^*$, is a bijection from S_5 to S_5. Therefore, $f(x) \in \{I, a\}$ if and only if $x \in \{I, a\}$. Thus, because our ballot-box mediator NOT “literally translates” $f(x)$, it will generate a envelope encoding of a bit if and only if it starts with the envelope encoding of a bit. Thus, revealing ρ and κ in Step 6 proves that x was not the encoding of a bit.

Finally, consider executing C_1 when x is not the encoding of a permutation in S_5. In this case, when executing the first conceptual step of CLONE (i.e., when executing $I \text{NY}$), the original envelopes of x will be first randomly permuted and then opened, publicly proving that $\text{cont}(x) \notin S_5$.

Therefore, constructing an L-bit input checker is rather simple. Given an address vector $x = x_1, \ldots, x_L$, one runs C_1 on each x_i. If for each i, x_i is revealed to be an envelope encoding of a bit, the input checker generates for each i envelopes σ_i, which content is guaranteed to be identical to the content of envelopes x_i. If for some i, it is revealed that the content of x_i were different from I or a, then the input checker should destroy any envelopes it had generated so far and publicly generate L envelope encodings of I.

Since the content of all opened envelopes becomes part of the public record, the required predicate Ch is trivially constructed. It evaluates to 0 when it becomes clear that for some i x_i is not a permutation or a permutation different from I and a; and to 1, otherwise. The required simulator SIM is also trivially obtained by executing, in appropriate order, simulators of the corresponding computers for CLONE and NOT and generating records of steps 3-6 of each C_1 in a manner analogous to that of our previously constructed simulators (e.g. $\text{SIM} - \text{MULT}$).

Q.E.D.

9. **Perfect Ballot-box Implementations**

In this Section we finally show that any normal-form mechanism has a perfect implementation. We do so in three steps. First, as discusses in Section 1.3., we augment the notion of a normal-form mechanism with “aborts.” Then, we formalize the notion of a perfect implementation. Lastly, we show that perfect implementations always exist.

9.1. **Augmented Normal-form Mechanisms**

Let us start by formally recalling traditional normal-form mechanisms.

Definition 10: A normal-form mechanism is a tuple $M = (N, M, Y, g)$, where:

- N, the set of players, is a finite set;
• M, the message space, is the Cartesian product of n subsets of Σ^*, $M = M_1 \times \cdots \times M_n$;
• Y, the outcome set, is a subset of Σ^*; and
• g, the outcome function, is a probabilistic function, $g : M \to Y$.

We refer to each M_i as the message space (or strategy set) of player i, and to each $m \in M_i$ as a message (or strategy) of i. \mathcal{M} is finite if M and Y are finite sets and g is a finite function.

A normal-form mechanism $\mathcal{M} = (N, M, Y, g)$ is a standard normal-form mechanism if $M_1 = \cdots = M_n = Y = \{0, 1\}^L$ for some integer L; that is, $\mathcal{M} = (N, (\{0, 1\}^L)^n, \{0, 1\}^L, g)$.

Notice that, without any loss of generality, we can focus on just standard normal-form mechanisms.\(^{23}\) We now include aborts into standard normal-form mechanisms.

Definition 11: We say that a normal-form mechanism $\mathcal{M} = (N, M, Y, \hat{g})$ is an L-bit augmented normal-form mechanism if there exists a standard normal-form mechanism $(N, (\{0, 1\}^L)^n, \{0, 1\}^L, g)$ such that

- For each i, $M_i = \{0, 1\}^L \cup \{\text{abort}\}$, and
- $Y = (\{0, 1\}^L) \times \{0, 1\}^N$.

The outcome function $\hat{g} : M \to Y$ of \mathcal{M} is defined via g as follows:

$$\hat{g}(m_1, \ldots, m_n) = (g(m'_1, \ldots, m'_n), (b_1, \ldots, b_n)),$$

where for each i we have: $m'_i = m_i$ and $b_i = 0$ if $m_i \in \{0, 1\}^L$, and $m'_i = 0^L$ and $b_i = 1$ otherwise.

The choice of 0^L as the message of an aborting player is without loss of generality. We could have chosen any fixed element (or a random element) of $\{0, 1\}^L$ instead.

9.2. The Notion of a Perfect Implementation

We present our notion of a perfect implementation so as to be independent of ballots and ballot-boxes. That is, we present it for general implementation models of imperfect information, where the set of players includes a mediator and Nature.

Definition 12: An implementation model is a triple $\mathfrak{M} = (N^*, \mathcal{H}, \mathcal{A})$, where:

- $N^* = N \cup \{\mathfrak{M}, \mathfrak{N}\}$ is a finite set of players, where each of the n members of N is referred to as an ordinary player, \mathfrak{M} as the mediator, and \mathfrak{N} as Nature.
- $\mathcal{H} = \mathcal{H}^0 \cup_{i \in N^*} \mathcal{H}^i$ is the set of histories. A member H^0 of \mathcal{H}^0 is referred to as a public history, and a member H^i of \mathcal{H}^i as the private history of player i. Each history is a sequence of strings, called records.
- \mathcal{A} is the set of actions. Each action of \mathcal{A} appends a new record (possibly empty) to each of the current $n + 3$ histories.

A perfect implementation is an extensive-form mechanism of imperfect information. Such a mechanism (see Osborne and Rubinstein (1997) for a formal definition) is a game form of an extensive-form game G, that is, G without preferences over the termination nodes and initial moves of Nature assigning types to the players. (Of course, for equilibrium analysis both must be added back.) Accordingly, Nature is a special player that, at each of its decision nodes, chooses its actions according to a pre-specified and commonly known distribution. By convention, we think of Nature’s private history as encoding the “state of the world.”

\(^{23}\)Indeed, any finite, mediated normal-form mechanism $\mathcal{M} = (N, M, Y, g)$ can be put into standard form as follows. Let z be the cardinality of the largest set among M_1, \ldots, M_n, and Y. Choose $L = \lceil \log(z) \rceil$. Letting c_i be the cardinality of message set M_i, encode the elements of M_i as the lexicographically first c_i strings in $\{0, 1\}^L$ and consider any string $x \in \{0, 1\}^L$ lexicographically greater than c_i as an alternative encoding of the first element of M_i. Analogously encode the outcome set Y as elements of $\{0, 1\}^L$. Define now $g' : (\{0, 1\}^L)^n \to \{0, 1\}^L$ to be the following function: if x'_i is an encoding of $x_i \in M_i$ for all $i \in N$, and if y' is an encoding of $y \in Y$, then $g'(x'_1, \ldots, x'_n) = y'$ if and only if $g(x_1, \ldots, x_n) = y$. Then, $\mathcal{M} = (N, (\{0, 1\}^L)^n, \{0, 1\}^L, g')$ is a standard normal-form mechanism equivalent to \mathcal{M}.

24
Definition 13: Let \(M = (N, M, Y, \hat{g}) \) be an augmented normal-form mechanism and \(M' \) an extensive-form mechanism, in an implementation model \(IM = (N^*, \mathcal{H}, \mathcal{A}) \), played starting with empty histories. We say that \(M' \) is a perfect implementation of \(M \) if the following properties are satisfied:

- **Public Outcome.** The outcome of \(M' \) is a pre-specified function of the final public history.
- **Public Mediation.** The private history of \(M \) is always empty, and at each of \(M \)'s decision nodes there is only one available action, determined by a pre-specified function of \(H^0 \).
- **Strategy and Privacy Equivalence.** Letting \((N, S', Y', g')\) be the normal form representation of \(M' \),

 1. \(Y' = Y \)
 2. For all \(i \in N \), \(S'_i = M'_i \cup \{A_i\} \)
 (Comment: as we shall see, \(A_i \) represents the set of all “aborting” strategies of \(i \) in \(M' \))

For all \(i \in N \), there exists \(\bar{m}_i \in M'_i \) such that, arbitrarily fixing \(\bar{s}_i \in A_i \)

 3. For all \(s_i \in A_i \) and all \(s_{-i} \in S'_{-i} \), \(g'(s_i, s_{-i}) = g'(\bar{s}_i, s_{-i}) \)
 (Comment: all aborting strategies of \(i \) in \(M' \) are outcome-equivalent to each other)

 4. There exists a bijection \(\psi_i : M_i \leftrightarrow M'_i \cup \{\bar{s}_i\} \) such that \(\psi_i(\text{abort}) = \bar{s}_i \), \(\psi_i(0^L) = \bar{m}_i \), and for all \((m_1, \ldots, m_n) \in M \), \(\hat{g}(m_1, \ldots, m_n) = g'(\psi_1(m_1), \ldots, \psi_n(m_n)) \)

 5. There exists a probabilistic function \(SIM \) such that, for any subset \(C \subseteq N \), any strategy profile \(s = (s_C, s_{-C}) \) such that \(s_{-C} \in M'_C \), and any \(y \in Y' \), in a random execution of \(M' \) with strategy profile \(s \) and outcome \(y \), the vector of final histories \((H^0, H^C) \) is distributed as \(SIM(C, s_C, y) \).
 (Comment: This expresses that, provided that corresponding strategies are used and the same outcome obtained, the information about the other players collectively available to the members of \(C \) after a play of \(M' \) and after a play of \(M \) coincide, provided that the players in \(-C \) use non-aborting strategies. If a player \(i \in -C \) aborts, then his identity is part of \(y \) in any case, and we do not care whether information about his specific aborting strategy is revealed.)

9.3. The Existence of Perfect Ballot-Box Implementations

Let us now transform the ballot-box model of Section 3 into the following implementation model \(BB = (N^*, \mathcal{H}, \mathcal{A}) \). In Section 4, each global memory \(gm \) consists of the current set of ballots \(B \) and public record \(R \). In \(BB \), the public-record sequence \(R \) is simply identified as the public history \(H^0 \), and \(B \) is considered part of \(IM \)'s private record. All ballot-box actions continue to be actions in \(BB \). Specifically, the 7 classes of public actions are reserved to \(RM \), and actions of Nature are reserved to \(\mathcal{A} \). (Thus, when \(IM \) ballot-boxes a sequence of \(K \) ballots, the actual permutation \(\pi \in S_K \) is appended to \(H^R \).) Finally, we complete our specification of \(BB \) by adding the following class of actions for the \(n \) players in \(N \):

\[
(SIM\text{PrivEn}, L_1, c_1), \ldots, (SIM\text{PrivEn}, L_n, c_n)
\]

where \(c_i \in \Sigma^{L_i} \).

“Each \(i \in N \) simultaneously makes a sequence of \(L_i \) envelopes (with contents \(c_i \)).”

\[
B := B \cup \{(ub + 1, c_1^L, 0), \ldots, (ub + L_1 + \cdots + L_n, c_n^{L_n})\}; \ ub := ub + L_1 + \cdots + L_n;
\]

\[
H^1 := c_1; \ldots; H^n := c_n; \text{ and } H^0 := H^0 \circ (SIM\text{PrivEn}, L_1, \ldots, L_n, ub).
\]

We refer to the so specified \(BB \) as the ballot-box implementation model.

Theorem 2: Every \(L \)-bit augmented normal-form mechanism \(M = (N, M, Y, \hat{g}) \) has a perfect implementation in \(BB \).

Proof. Consider the following extensive-form mechanism \(B \):

(Initialization.) For each \(i \in N \), the bit variable \(b_i \) is set to 0.

\[\text{24}\] The public mediator and Nature do not enter the set of players of the normal-form representation as they have no choice in performing their actions and no preferences defined over final outcomes.
1. Each player $i \in N$, simultaneously and privately, makes a sequence E_i of envelopes.
2. If i did not make $5L$ envelopes, then the mediator (1) destroys all of i’s envelopes, if any, (2) publicly generates a sequence of envelopes E_i consisting of L envelope encodings of 0, and (3) sets $b_i = 1$.
3. For each $i \in N$, the public verifier (1) runs the L-bit checker constructed in Lemma 7 on the sequence E_i, so as to generate a sequence E_i' of $5L$ envelopes, and (2) if $b_i = 0$, sets b_i to the value of the checking predicate.
4. The public verifier executes a ballot-box computer P_g for the function g on input envelopes E_1', \ldots, E_n', so as to obtain a sequence of output envelopes T_1, \ldots, T_L.
5. The public verifier publicly opens all output envelopes so as to reveal an L-bit string y.
6. The outcome of B is the S_5 decoding of y and the n-bit vector (b_1, \ldots, b_n).

Let us now prove that B is a perfect implementation of M.

First of all, note that each player $i \in N$ acts only once, in Step 1, when his information set is “empty.” Thus, the set of i’s strategies S_i consists of all possible actions $(\text{SimPrivEn}, L_i, c_i)$. We now partition S_i into M_i' and A_i as follows: a strategy belongs to M_i' if and only if it coincides with the action $(\text{SimPrivEn}, 5L, c)$, where c is the Barrington encoding of some $z \in \{0,1\}^L$. For any $z \in \{0,1\}^L$, we refer to this strategy as $s_{i,z}$. After an arbitrary selection of $\bar{s}_i \in A_i$ and setting $\bar{m}_i = s_{i,0^L}$, we define the bijection ψ_i as follows: $\psi_i(z) = s_{i,z}$ for all $z \in \{0,1\}^L$ and $\psi_i(\text{abort}) = \bar{s}_i$.

For each player i, at the end of Step 3 and independently of the strategies of the other players, a strategy $s_i \in A_i$ leads to $b_i = 1$ and $\text{cont}(E_i') = 0^L$. (Indeed, if s_i does not make $5L$ envelopes, b_i is set to 1 in Step 2, and the mediator publicly generates a sequence E_i of $5L$ envelopes consisting of L envelope encodings of 0. Thus, when the input checker is run on such E_i, it generates a new sequence E_i' whose contents are the Barrington encoding of 0^L, and keeps $b_i = 1$. Else, if i makes exactly $5L$ envelopes, but their contents is not the S_5 encoding of an L-bit string, then in Step 3 the input checker sets for the first time $b_i = 1$ and again generates a sequence of envelopes E_i' with contents 0^L. If, instead, i plays a strategy $s_{i,z} \in M_i'$, then by the correctness of the input checker, at the end of Step 3 $b_i = 0$ and the content of E_i' is \bar{z}. In turn, for all players, the correctness property of computer P_g implies that the content of envelopes T coincides with $g(\text{cont}(E_1'), \ldots, \text{cont}(E_n'))$. Therefore: (a) Property 1 of Definition 13 is trivially established; (b) any strategy $s_i \in A_i$ leads to the same outcome as any other aborting strategy, which establishes Property 3; and (c) for any strategy profile s so that, for all i, $s_i \in M_i' \cup \{\bar{s}_i\}$, the outcome $g'(s)$ of B equals $\tilde{g}(\psi_1^{-1}(s_1), \ldots, \psi_n^{-1}(s_n))$, which establishes Property 4.

Finally, let us establish Property 5. Arbitrarily fix a subset $C \subseteq N$, a strategy profile $s = (s_C, s_{-C})$ such that $s_{-C} \in M_{-C}$, and a possible outcome y for a play of B with s. Note that the private histories H_C deterministically depend on s_C alone. (Indeed, for each $i \in C$, the private history H_i in a play of B consists of the content of the envelopes made by i.) Accordingly, the existence of an algorithm SIM that, on input s_C, outputs the correct sub-profile of histories H_C is trivial. The only difficulty is to establish the existence of a probabilistic SIM that, on input y, outputs H^0 according the proper distribution. We proceed in a case-by-case basis. If $y = (v, (0, \ldots, 0))$ —i.e., if no player aborts— then SIM probabilistically generates H^0 by running $(n$ times) the simulator of the input checker, then running the simulator of the ballot-box computer P_f, and, finally, appending to H^0 a sequence of OPENEN records with revealed contents being the S_5 encoding of v. Assume now that, for some $i \in C$, $b_i = 1$. Then, part of H^0 also depends on s_i. Letting $s_i = (\text{SimPrivEn}, L_i, c_i)$ we distinguish two cases: (1) $L_i \neq 5L$, and (2) $L_i = 5L$ and $c_i \neq \bar{z}$ for some $z \in \{0,1\}^L$. In case 1, the public record of Step 1 contains L_i, and the public records appended to H^0 in Step 2 are a fixed string of $L_i + 5L$ records (namely, L_i destroy-envelope records and $5L$ new-envelope records). Clearly SIM can generate these records on input s_i, or even L_i only. In case 2, the specified L-bit checker, for alleged envelope-encoding of i, reveals a random permutation of the 5 strings contained in the corresponding 5 envelopes. Since these 5 strings are part of s_i (indeed part of just c_i), SIM can trivially randomly permute them. In both cases, the rest of H^0 is generated (with the right odds) by the simulators of the input checkers and computer P_f. Q.E.D.
10. Final Remarks

The universality of our construction. As for the earlier constructions of Gödel and Turing, in logic and computation respectively, the universality of ours stems from the ability of “equating subjects and objects.” In the case of Gödel numberings, for example, the coherence of Peano’s arithmetics is itself encoded as a sentence in such arithmetics. In our case, we represent data and operations as permutations of the integers 1 through 5 as follows: each permutation \(p \) is encoded into a sequence of 5 envelopes, so that envelope \(j \) contains \(p(j) \). Such a sequence of envelopes is both a piece of (really physical!) data, as well as an algorithm, which via the ballot box is capable of operating on other data. For instance, one of the crucial subroutines of our construction is a procedure that, given two sequences of 5 envelopes —the first sequence encoding a permutation \(p \) and the second a permutation \(q \)— interprets the first sequence as a multiplication program and returns (without revealing any information about \(p \) or \(q \)) a sequence of 5 envelopes encoding the product permutation \(pq \), that is, the permutation mapping each \(i \) between 1 and 5 to \(p(q(i)) \).

Complementing mechanism design. The practical meaningfulness of any abstraction depends on whether concrete implementations that adequately approximate it exist. In a sense, therefore, our contributions enhance the practical meaningfulness of the very notion of a normal-form mechanism: no matter how “delicate,” its theoretical properties will continue to hold intact for at least one concrete implementation (i.e., its ballot-box implementation).

We view our results as complementary to mechanism design. As remarkable as they may be, the solutions offered by mechanism design are, most of the time, abstract normal-form mechanisms, which may not retain their properties when straightforwardly played by players who value privacy or do not trust anyone.\(^{25}\) Thus, while we do not help a designer in engineering new mechanisms, by perfectly implementing whatever abstract mechanisms he finds, we do enable him to ignore issues of privacy and trust in his work.

Extensions and conclusions. In this paper, we have shown that any single normal-form mechanism can be implemented without altering its strategic and privacy properties. In a forthcoming paper, we generalize the present results so as to implement perfectly multiple mediated mechanisms. Such mechanisms may also be interdependent in an arbitrary way: that is, they can be executed simultaneously or sequentially, and their mediators may privately communicate with each other.\(^{26}\) Achieving these results will require a more general treatment of modularity in mechanism design.

These results are just a start, and much more needs to be done. People care about privacy. And to make more accurate predictions and develop more meaningful models, privacy should intrinsically inform any general study of human interactions. In particular, we believe and hope that a rigorous and comprehensive treatment of privacy will become an integral part of game theory.

\(^{25}\)Sjöström and Maskin (2002) provide a comprehensive survey of mechanism design and implementation theory literature. Normal-form mechanisms are also extensively used in more applied fields, such as auction theory and contract theory, see Krishna (2002), Bolton and Dewatripont (2005). Often the problems of privacy and trust are by-passed by explicit additional assumptions. For instance, it is typically assumed that the seller (and similarly the principal) can fully commit to the mechanism she offers to the buyers (and similarly to the agents)—and, since buyers know that, their rationality dictates they must trust the seller.

\(^{26}\)For instance, in implementing two auctions one after the other, the first mediator may announce the winner and the second highest bid, but pass on to the second mediator some aggregate information of all bids —e.g., the average of all bids, which may be used to set the reserve price of the second auction.
DIRECTED GRAPHS. A directed graph—digraph for short— consists of a pair \((V, E)\), where \(V\) is a finite set and \(E\) a subset of \(V \times V\). We refer to \(V\) as the set of nodes, and to \(E\) as the set of edges. Whenever \((u, v) \in E\), we refer to \(u\) as a parent of \(v\), and to \(v\) as a child of \(u\). We refer to the number of parents of a node \(u\) as \(u\)'s in-degree, and to the number of children of \(u\) as \(u\)'s out-degree. A node of \(V\) is called a source if it has in-degree zero, a sink if it has out-degree zero, and an internal node otherwise.

A path is a sequence of nodes \(s_1, \ldots, s_k\) such that for all \(i < k\), \((s_i, s_{i+1}) \in E\). A digraph \((V, E)\) is acyclic if, for any path \(s_1, \ldots, s_k\) such that \(k > 1\), \(s_1 \neq s_k\). (Note that any non-empty acyclic digraph has at least one source and at least one sink.) In an acyclic digraph, the maxheight of a node \(u\), denoted by \(maxheight(u)\), is the maximum integer \(k\) for which there exists a path \(s_1, \ldots, s_k\) in which \(s_1\) is a source and \(s_k\) is \(u\).

For an acyclic digraph with \(n\) nodes, a function \(ord : V \to \{1, \ldots, n\}\) is a natural order if
1. for any source \(u\), internal node \(v\), and sink \(z\), \(ord(u) < ord(v) < ord(z)\); and
2. for any internal nodes \(u\) and \(v\), \(ord(u) < ord(v)\) whenever \(maxheight(u) < maxheight(v)\).

When a natural order \(ord\) is specified, by “node \(j\)” we mean the node \(u\) such that \(ord(u) = j\).

BOOLEAN CIRCUITS. A Boolean Circuit \(C\) consists of a quadruple \(((V, E), ord, a, Func)\) where:

- \((V, E)\) is an acyclic digraph such that every sink has maxheight \(\geq 3\) and
 - every source has out-degree one and every sink has in-degree one;
 - every internal node has in-degree 1 or 2 and out-degree 1 or 2; but
 - no node has in-degree 2 and out-degree 2.
- \(ord\) is a natural order for \(V\);
- \(a\) is a positive integer not exceeding the number of sources in \((V, E)\); and
- \(Func\) is a function mapping the internal nodes and the sources whose order is greater than \(a\) to the set of functions \{NOT, AND, DUPLICATE, COIN\} as follows:
 - if node \(j\) is a source, then \(Func(j) = COIN\);
 - if node \(j\) has in-degree 1 and out-degree 1, then \(Func(j) = NOT\);
 - if node \(j\) has in-degree 2 and out-degree 1, then \(Func(j) = AND\); and
 - if node \(j\) has in-degree 1 and out-degree 2, then \(Func(j) = DUPLICATE\).

We refer to the first \(a\) sources as input nodes, to all other sources and internal nodes as computation nodes, and to the sinks as output nodes.

GRAPHICAL REPRESENTATION OF BOOLEAN CIRCUITS. A Boolean circuit \(((V, E), ord, a, Func)\) can be represented graphically as follows: (1) each node \(u\) is represented by a “separate” circle, shrinking the circles of input and output nodes to a “dot”; (2) \(ord\) is represented by drawing the circle of node \(u\) “lower than or on the left of” the circle of node \(v\) whenever \(ord(u) < ord(v)\); (3) each edge \((u, v)\) is an arrow directed from the circle representing \(u\) to the circle representing \(v\); and (4) for each computation node \(j\), \(Func(j)\) appears inside the circle representing node \(j\). For brevity, we denote NOT by \(\neg\), AND by \(\land\), DUPLICATE by \(\lor\), and COIN by \(\&\). See Figure 1.

INTERPRETING BOOLEAN CIRCUITS AS FUNCTIONS. Let \(C = ((V, E), ord, a, Func)\) be a Boolean circuit with \(a\) input nodes, \(b\) output nodes, and \(c\) computation nodes. Then \(C\) can be interpreted as the finite function \(\mathcal{F}_C : \{0,1\}^a \to \{0,1\}^b\) mapping an input vector \(x = x_1 \ldots x_a\) to an output vector \(y = y_1 \ldots y_b\) as follows:

- For \(i = 1\) to \(a\), label the outgoing edge of the \(i\)th source with bit \(x_i\).
- For \(i = a + 1\) to \(a + c\) do:
 - if \(Func(i) = COIN\), then randomly choose a bit \(b\) and label \(i\)'s out-going edge by \(b\);
if $\text{Func}(i) = \text{NOT}$ and bit b labels i's incoming edge, label i's outgoing edge by $\neg b$;\(^2\)
if $\text{Func}(i) = \text{DUPLICATE}$ and b labels i's incoming edge, label i's outgoing edge by b;
if $\text{Func}(i) = \text{AND}$ and b_1, b_2 label i's incoming edges, label i's outgoing edge by $b_1 \land b_2$.

- For $i = 1$ to b, set y_i to be the bit labeling the incoming edge of (sink) node $a + c + i$.

We say that function \mathcal{F}_C is deterministic if Func does not map any computation node to COIN; and probabilistic otherwise.

Figure 1: Graphical representation of a Boolean circuit with two input nodes.

Figure 2: A computation of the Boolean circuit of Figure 1, on input 11 and coin toss 0.

BOOLEAN-CIRCUIT REPRESENTATION OF FINITE FUNCTIONS. A Boolean circuit representation of a finite function f is a Boolean circuit C such that $f = \mathcal{F}_C$. It is well known in complexity theory that a Boolean-circuit representation of f can be efficiently computed from any other standard representation of f.

B. CONSTRUCTING BALLOT-BOX COMPUTERS FOR ARBITRARY BOOLEAN CIRCUITS.

Intuitively, we construct a ballot-box computer for any Boolean circuit $C = ((V, E), \text{ord}, a, \text{Func})$ by simply “translating” C into a public ballot-box mediator \mathcal{P}_C. As we have seen above, the function \mathcal{F}_C “visits each computation node j according to ord, evaluates $\text{Func}(j)$ on the bits found on j’s incoming edges, and passes the outputs along j’s outgoing edges of (V, E).” Similarly, \mathcal{P}_C “visits each computation node j in the same order, and executes the corresponding ballot-box computer for $\text{Func}(j)$ on the input envelopes found on j’s incoming edges, and passes the output envelopes along j’s outgoing edges.” Technically, \mathcal{P}_C is a concatenation of (multiple copies of) NOT, AND, CLONE, and COIN, in proper order and with proper input addresses.

\(^2\)Note: because ord is a natural order for V, when it comes time to label node i’s outgoing edges, all of node i’s incoming edges have already been labeled.
The following algorithm P formalizes how circuit C is translated into the desired ballot-box computer P_C. Algorithm P uses ub_0 to refer to the identifier upper-bound of the initial global memory $gm^0 = (B^0, R^0, H^0)$ for P_C. (Recall that, when executed on gm^0, the action functions of P_C can deduce ub^0 from R^0.) Algorithm P constructs P as the concatenation of ballot-box computers, one for each computation node of C. If j is such a computational node, the corresponding public ballot-box mediator is denoted by P_j, and the variable w_j predicts the value of the identifier upper-bound at the start of the execution of P_j.

Algorithm P

Inputs: $C = ((V, E), ord, a, Func)$ —a Boolean Circuit with b output nodes and c computation nodes; $x = x_1, \ldots, x_a$ —an address such that each x_i has length 5.

1. Set $w_{a+1} = ub_0$.
2. For $i = 1$ to a, label the outgoing edge of the ith source with x_i.
3. For $i = a + 1$ to $a + c$, do:
 - if $Func(i) = COIN$, then set $P_i = COIN$; label i’s outgoing edge with $\sigma_i = 15 + w_i, \ldots, 19 + w_i$; and set $w_{i+1} = w_i + 19$;
 - if $Func(i) = NOT$ and σ labels i’s incoming edge then set $P_i = NOT_\sigma$; label i’s outgoing edge with $\sigma_i = 61 + w_i, \ldots, 65 + w_i$; and set $w_{i+1} = w_i + 65$;
 - if $Func(i) = AND$ and $(\sigma; \tau)$ label i’s incoming edges, then set $P_i = NDP_{\sigma, \tau}$; label i’s outgoing edge with $\sigma_i = 451 + w_i, \ldots, 455 + w_i$; set $w_{i+1} = w_i + 455$;
 - if $Func(i) = DUPLICATE$ and σ labels i’s incoming edge, then set $P_i = CLONE_\sigma$; label i’s outgoing edges with $\sigma_i = 61 + w_i, \ldots, 65 + w_i$ and $\tau_i = 66 + w_i, \ldots, 70 + w_i$; and set $w_{i+1} = w_i + 70$;
4. For $i = 1$ to b: if α labels the incoming edge of sink $a + c + i$, then set $y_i = \alpha - w_0$;
5. Set $P_C = P_{a+1} \circ \cdots \circ P_{a+c}$.

Outputs: P_C —a public ballot-box mediator; and $y = y_1, \ldots, y_b$ —an address (P_C’s output address).

Lemma 8: If $P(C, x) = (P_C, y)$, where $C = ((V, E), ord, a, Func)$ is a Boolean circuit and $x = x_1, \ldots, x_a$ an address such that each x_i has length 5, then public ballot-box mediator P_C is a ballot-box computer for F_C with input address x and output address y.

Proof. The correctness of P_C follows from the following facts. First, observe that if ub_0 is the identifier upper bound of the initial memory gm^0, proper for F_C and $x = x_1, \ldots, x_a$, then for each computation node j, w_j is the initial identifier upper-bound at the start of execution of P_j. Indeed, $w_{a+1} = ub_0$, and w_{a+j} is generated off-setting w_j by exactly the number of new identifiers created by any execution of its corresponding computer P_j. (Recall that NOT always increases ub by 65, AND by 455, $CLONE$ by 70, and $COIN$ by 19.) Second, P labels each edge with 5 distinct integers. Third, due to the correctness of NOT, AND, $CLONE$, and $COIN$ and the order in which P_C calls for their execution: (1) at the start of P_j’s execution, the label already assigned by P to each incoming edge of computation node j is guaranteed to be an envelope encoding of a bit; (2) upon termination of P_j, the label already assigned by P to each outgoing edge of j also is an envelope encoding of a bit; and finally (3) the “underlying” output bit is that (bits are those) of $Func(j)$ evaluated on the “underlying” input bit(s). Thus, an execution of P_C labels each edge in E with an envelope encoding of a bit so that the underlying bits of these encodings label (V, E) exactly as does a computation of F_C.

Privacy is easily established by noting that the following probabilistic algorithm $SIM-P_C$ is the required simulator for P_C.

\[
SIM-P_C
\]
Input: ub — an integer.

Set $ub^0 = ub$ and, for each $i = a + 1$ to $a + c$, define ub_i as in P.

(1) For $i = a + 1$ to $a + c$, run $SIM - P_i(ub_i)$.

Clean Operation trivially holds for P_C as it holds for each individual ballot-box computer P_f. Q.E.D.

C. Perfectly Implementing Any Normal-Form Mechanism with Private Outcomes

Our results generalize to normal-form mechanisms M that, given a profile of messages (m_1, \ldots, m_n), produce, not only a public outcome y, but also a private outcome y_i for each player i.

Intuitively, perfect implementations of such mechanisms can be obtained by a slight modification of our construction. First, consider the “public version” M' of M, that maps (m_1, \ldots, m_n) to a public outcome with $n + 1$ components: namely, (y, y_1, \ldots, y_n), and its perfect ballot-box implementation B constructed in Theorem 2. By Step 5, B produces $n + 1$ sequences of envelopes, whose contents respectively encode y, y_1, \ldots, y_n in a private and correct manner. Thus, to perfectly implement the original M, one only needs to modify Step 5 of B, so that (1) the public mediator opens only the envelopes of the first sequence (thus making y publicly computable), and (2) it lets player i “privately read” the envelopes encoding y_i, thus enabling him to privately learn y_i.

Let us now detail the changes to our definitions and construction necessary to formalize this intuition.

1. Definition 10 of a Normal-Form Mechanism is modified as follows:

 - The outcome set Y is now the Cartesian product of $n + 1$ subsets of Σ^*, $Y = Y_0 \times Y_1 \cdot \cdot \cdot Y_n$.

 Accordingly, a standard normal-form mechanism is a mechanism $M = (N, M, Y, g)$ such that $M_1 = \cdot \cdot \cdot = M_n = Y_0 = \cdot \cdot \cdot = Y_n = \{0, 1\}^L$ for some integer L.

2. The following class of ballot-box actions to be performed by a public mediator is added:

 $$(\text{SimHandOut}, L_1, \ldots, L_n)$$

 where $\forall i \in N$, $L_i \subset I_B$ and $\forall i \neq j$, $L_i \cap L_j = \emptyset$.

 “For each $i \in N$, simultaneously and privately hand out envelopes L_i to player i.”

 $B := B \setminus \{B_{L_1} \cup \cdot \cdot \cdot \cup B_{L_n}\}$; $H^1 := H^1 \circ \text{cont}_B(L_1), \ldots, H^n := H^n \circ \text{cont}_B(L_n)$; and $H^0 := H^0 \circ (\text{SimHandOut}, L_1, \ldots, L_n, ub)$.

3. The only change required to the notion of perfect implementation is adding the private inputs y^C to the set of arguments of the simulator SIM in Property 5 of Definition 12.

4. The mechanism and the proof of Theorem 2 are modified as follows. In Step 5 of the mechanism, in addition to publicly opening the envelopes containing public output, the public mediator also performs $(\text{SimHandOut}, L_1, \ldots, L_n)$ action, that is, privately distributes to each player i a sequence of envelopes L_i, who then privately reads the contents of L_i to obtain his own private output y_i. Note that the only addition to the public history H^0 is the record of (SimHandOut) action which is fixed and can be trivially simulated by SIM. The profile of private histories H^C now also contains the contents of envelopes L_i for each $i \in C$. But since these contents are guaranteed to be the S_5 encoding of y_i by correctness of P_y, they also can be trivially simulated by SIM.

REFERENCES

