The Federal Reserve and the Cross Section of Stock Returns

Erica X.N. Li and Francisco Palomino

University of Michigan

Econometric Society Meeting, June 20, 2008
Question

How do monetary policy and price rigidities affect the equity premium and the cross section of stock returns?
Question

How do monetary policy and price rigidities affect the equity premium and the cross section of stock returns?

Motivation

- Real Business Cycle models with nominal rigidities successfully capture the dynamics of output, inflation and monetary policy.
- Do stocks hedge against inflation?
- What are the economic factors driving the cross section of returns?
Price Rigidities

Infrequent adjustments to prices of goods and services.

- Evidence (Bils and Klenow, 2004).
 Mean frequency of price changes: 4 - 6 months.
 Standard deviation of the frequency: 3 months.

<table>
<thead>
<tr>
<th>Good</th>
<th>Annual Frequency</th>
</tr>
</thead>
<tbody>
<tr>
<td>Newspapers</td>
<td>3.3</td>
</tr>
<tr>
<td>Paint and supplies</td>
<td>13.3</td>
</tr>
<tr>
<td>Truck rental</td>
<td>25.7</td>
</tr>
<tr>
<td>Fuel oil</td>
<td>52.5</td>
</tr>
</tbody>
</table>

- Potential sources (Blinder, Canetti, Lebow and Rudd, 1998).
 - Nature of costs
 - Demand
 - Contracts
 - Market interactions
 - Imperfect information
Findings

Theory
- Price rigidities increase the equity premium.
- Industries with low price rigidities earn higher expected returns than industries with high price rigidities.
- More responsive monetary policies reduce the effect of price rigidities on the equity premium and the cross section of returns.

Empirical
- Firms in industries with low price rigidities earn higher average returns than firms in industries with high price rigidities.
- The difference vanishes after 1980.
Empirical Evidence

Methodology:

- Assign a degree of price rigidity to the Fama - French industry portfolios based on Bils and Klenow, 2004.
- Form ten portfolios based on the degree of price rigidity.
- Form a zero-investment portfolio (rigidity portfolio) that longs firms with low rigidities and shorts firms with high rigidities.
- Regress the return of the rigidity portfolio on Carhart four factors.
<table>
<thead>
<tr>
<th>Industry Number</th>
<th>Industry</th>
<th>Number of Products</th>
<th>Avg. Freq.</th>
<th>STD of Freq.</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>Food Product</td>
<td>81</td>
<td>34.27</td>
<td>11.97</td>
</tr>
<tr>
<td>3</td>
<td>Candy and Soda</td>
<td>9</td>
<td>27.39</td>
<td>8.92</td>
</tr>
<tr>
<td>4</td>
<td>Beer and Liquor</td>
<td>4</td>
<td>17.43</td>
<td>3.19</td>
</tr>
<tr>
<td>5</td>
<td>Tobacco Product</td>
<td>3</td>
<td>20.07</td>
<td>2.92</td>
</tr>
<tr>
<td>6</td>
<td>Recreation</td>
<td>12</td>
<td>23.15</td>
<td>8.34</td>
</tr>
<tr>
<td>7</td>
<td>Entertainment</td>
<td>6</td>
<td>11.12</td>
<td>6.03</td>
</tr>
<tr>
<td>8</td>
<td>Printing and Publishing</td>
<td>7</td>
<td>9.53</td>
<td>4.65</td>
</tr>
<tr>
<td>9</td>
<td>Consumer Goods</td>
<td>54</td>
<td>19.54</td>
<td>6.48</td>
</tr>
<tr>
<td>10</td>
<td>Apparel</td>
<td>43</td>
<td>32.72</td>
<td>11.17</td>
</tr>
<tr>
<td>11</td>
<td>Healthcare</td>
<td>5</td>
<td>6.76</td>
<td>2.71</td>
</tr>
<tr>
<td>12</td>
<td>Medical Equipment</td>
<td>3</td>
<td>8.10</td>
<td>2.94</td>
</tr>
<tr>
<td>13</td>
<td>Pharmaceutical Products</td>
<td>3</td>
<td>14.77</td>
<td>1.76</td>
</tr>
<tr>
<td>14</td>
<td>Chemicals</td>
<td>3</td>
<td>19.43</td>
<td>10.62</td>
</tr>
<tr>
<td>16</td>
<td>Textiles</td>
<td>1</td>
<td>17.00</td>
<td>N/A</td>
</tr>
<tr>
<td>17</td>
<td>Construction Materials</td>
<td>8</td>
<td>12.40</td>
<td>4.47</td>
</tr>
<tr>
<td>21</td>
<td>Machinery</td>
<td>4</td>
<td>26.25</td>
<td>10.61</td>
</tr>
<tr>
<td>22</td>
<td>Electrical Equipment</td>
<td>1</td>
<td>19.40</td>
<td>N/A</td>
</tr>
<tr>
<td>23</td>
<td>Automobiles and Trucks</td>
<td>6</td>
<td>26.18</td>
<td>11.13</td>
</tr>
<tr>
<td>30</td>
<td>Petroleum and Natural Gas</td>
<td>8</td>
<td>56.45</td>
<td>20.81</td>
</tr>
<tr>
<td>31</td>
<td>Utilities</td>
<td>4</td>
<td>30.30</td>
<td>28.45</td>
</tr>
<tr>
<td>32</td>
<td>Communication</td>
<td>4</td>
<td>12.60</td>
<td>5.53</td>
</tr>
<tr>
<td>33</td>
<td>Personal Services</td>
<td>47</td>
<td>8.64</td>
<td>5.46</td>
</tr>
<tr>
<td>34</td>
<td>Business Services</td>
<td>1</td>
<td>10.00</td>
<td>N/A</td>
</tr>
<tr>
<td>35</td>
<td>Computer Hardware</td>
<td>4</td>
<td>18.90</td>
<td>13.02</td>
</tr>
<tr>
<td>36</td>
<td>Computer Software</td>
<td>1</td>
<td>16.50</td>
<td>N/A</td>
</tr>
<tr>
<td>37</td>
<td>Electric Equipment</td>
<td>2</td>
<td>13.45</td>
<td>6.15</td>
</tr>
<tr>
<td>39</td>
<td>Business Supplies</td>
<td>2</td>
<td>9.25</td>
<td>3.04</td>
</tr>
<tr>
<td>41</td>
<td>Transportation</td>
<td>11</td>
<td>21.05</td>
<td>22.84</td>
</tr>
<tr>
<td>44</td>
<td>Restaurants, Hotels, Motels</td>
<td>8</td>
<td>11.63</td>
<td>10.77</td>
</tr>
<tr>
<td>45</td>
<td>Banking</td>
<td>3</td>
<td>12.77</td>
<td>13.80</td>
</tr>
<tr>
<td>46</td>
<td>Insurance</td>
<td>2</td>
<td>12.50</td>
<td>4.24</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Portfolio</th>
<th>Value-weighted</th>
<th>Equal-weighted</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(\alpha)</td>
<td>(RMRF)</td>
</tr>
<tr>
<td>1(H)</td>
<td>0.33 1.07 0.24 0.06 -0.03</td>
<td>0.44 0.94 1.17 0.37 -0.08</td>
</tr>
<tr>
<td>10(L)</td>
<td>1.10 0.97 -0.34 -0.02 0.16</td>
<td>1.61 1.09 0.62 0.03 0.32</td>
</tr>
<tr>
<td>L-H</td>
<td>0.77 0.97 -0.58 -0.08 0.16</td>
<td>2.32 1.4 5.47 0.72 2.12</td>
</tr>
<tr>
<td></td>
<td>L-H</td>
<td>1.17</td>
</tr>
</tbody>
</table>

- \(\alpha \): Alpha
- \(RMRF \): Risk Premium
- \(SMB \): Size
- \(HML \): Value
- \(Momentum \): Momentum
Performance-Attribution Regressions for Portfolios with Different Price Rigidities (1980-2006)

Value-weighted

<table>
<thead>
<tr>
<th>Portfolio</th>
<th>α</th>
<th>RMRF</th>
<th>SMB</th>
<th>HML</th>
<th>Momentum</th>
</tr>
</thead>
<tbody>
<tr>
<td>1(H)</td>
<td>0.36</td>
<td>1.06</td>
<td>0.21</td>
<td>-0.1</td>
<td>-0.03</td>
</tr>
<tr>
<td></td>
<td>4.01</td>
<td>45.26</td>
<td>5.62</td>
<td>-2.37</td>
<td>-0.82</td>
</tr>
<tr>
<td>10(L)</td>
<td>0.4</td>
<td>0.87</td>
<td>-0.27</td>
<td>0.47</td>
<td>0.05</td>
</tr>
<tr>
<td></td>
<td>1.4</td>
<td>11.8</td>
<td>-2.29</td>
<td>3.5</td>
<td>0.44</td>
</tr>
<tr>
<td>L - H</td>
<td>0.04</td>
<td>-0.18</td>
<td>-0.48</td>
<td>0.57</td>
<td>0.07</td>
</tr>
<tr>
<td></td>
<td>0.12</td>
<td>-2.24</td>
<td>-3.65</td>
<td>3.81</td>
<td>0.62</td>
</tr>
</tbody>
</table>

Equal-weighted

<table>
<thead>
<tr>
<th>Portfolio</th>
<th>α</th>
<th>RMRF</th>
<th>SMB</th>
<th>HML</th>
<th>Momentum</th>
</tr>
</thead>
<tbody>
<tr>
<td>1(H)</td>
<td>0.42</td>
<td>0.92</td>
<td>0.93</td>
<td>0.34</td>
<td>-0.07</td>
</tr>
<tr>
<td></td>
<td>3.42</td>
<td>28.37</td>
<td>18.14</td>
<td>5.82</td>
<td>-1.51</td>
</tr>
<tr>
<td>10(L)</td>
<td>0.45</td>
<td>0.85</td>
<td>0.51</td>
<td>0.6</td>
<td>0.14</td>
</tr>
<tr>
<td></td>
<td>1.19</td>
<td>8.63</td>
<td>3.24</td>
<td>3.36</td>
<td>0.99</td>
</tr>
<tr>
<td>L-H</td>
<td>0.02</td>
<td>-0.07</td>
<td>-0.43</td>
<td>0.26</td>
<td>0.2</td>
</tr>
<tr>
<td></td>
<td>0.07</td>
<td>-0.7</td>
<td>-2.77</td>
<td>1.47</td>
<td>1.52</td>
</tr>
</tbody>
</table>
Model - Assumptions

- CRRA preferences.
- Monopolistic competition and price rigidities in production.
- Two industries with different price rigidities, $I = \{H, L\}$.
- Monetary policy: nominal interest rate rule.
- Uncertainty: Policy shocks.
- No productivity shocks, no growth \Rightarrow flexible-price production is constant.
Model - Households

Preferences:

\[\mathbb{E} \left[\sum_{t=0}^{\infty} \beta^t \left(\frac{C_t^{1-\gamma}}{1-\gamma} - \frac{N_t^{1+\omega}}{1+\omega} \right) \right] \]

where

\[C_t = \left[\varphi^{1/\theta} C_{H,t}^{\theta^{-1}} + (1-\varphi)^{1/\theta} C_{L,t}^{\theta^{-1}} \right]^{\theta^{-1}}. \]

Pricing kernel:

\[M_{t,t+1} = \beta \left(\frac{C_{t+1}}{C_t} \right)^{-\gamma} = \beta \left(\frac{X_{t+1}}{X_t} \right)^{-\gamma}. \]

\(X_t \): output gap (deviations from “flexible-price” output).
\(\theta \): elasticity of substitution across goods.
Model - Production

Price is set equal to the sum of expected markup-adjusted marginal costs.

\[
\max_{P_{l,t(i)}} \mathbb{E}_t \left[\sum_{T=t}^{\infty} \alpha_I T^{-t} M^S_{t,T} \left(P_{l,t(i)} Y_{l,T|t(i)} - w_{l,T|t(i)} N_{l,T|t(i)} \right) \right].
\]

FOC:

\[
\pi_{l,t} = \kappa_I x_t + \frac{\kappa_I \varphi - I}{\zeta} p_{R,t} + \beta \mathbb{E}_t [\pi_{l,t+1}].
\]

\(\alpha_I\): probability of not adjusting prices in industry \(l\).
\(\pi_{l,t}\): inflation in industry \(l\).
\(p_{R,t}\): relative price between the two goods.
Policy rule:

$$i_t = \bar{i} + \nu_\pi \pi_t + \nu_x x_t + u_t.$$

Policy shocks:

$$u_t = \phi_u u_{t-1} + \sigma_u \epsilon_{u,t+1}.$$

i_t: nominal interest rate.
Model - Equilibrium

System:

\begin{align*}
e^{-i_t} &= \mathbb{E}_t [\exp(\log \beta - \gamma \Delta x_{t+1} - \pi_{t+1})] & \text{ (household),} \\
\pi_t &= \bar{\kappa} x_t + b_\varphi p_{R,t} + \beta \mathbb{E}_t [\pi_{t+1}] & \text{ (production),} \\
b_R p_{R,t} &= \bar{\kappa} x_t + p_{R,t-1} + \beta \mathbb{E}_t [p_{R,t+1}] & \text{ (production),} \\
i_t &= \bar{l} + \bar{\gamma}_\pi \pi_t + \bar{\gamma}_x x_t + u_t & \text{ (policy),} \\
u_t &= \phi_u u_{t-1} + \sigma_u \varepsilon_{u,t}. & \\
\end{align*}

Solution:

\begin{align*}
\pi_{l,t} &= \bar{\pi}_l + \pi_{l,p} p_{R,t-1} + \pi_{l,u} u_t. \\
x_{l,t} &= \bar{x}_l + x_{l,p} p_{R,t-1} + x_{l,u} u_t. \\
p_{R,t} &= \bar{\rho} + \rho_{p} p_{R,t-1} + \rho_{u} u_t. \\
\end{align*}
Model - Implication 1

Equilibrium with no price rigidities ($\alpha_H = \alpha_L = 0$).

- There is no equity premium in the absence of price rigidities.

\[\mathbb{E}_t[r_{H,t+1}^S] = \mathbb{E}_t[r_{L,t+1}^S] = r_t = -\log \beta. \]

r_t : risk-free rate.
Model - Implication 2

Equilibrium with homogeneous price rigidities ($\alpha_H = \alpha_L \neq 0$).

- The equity premium increases as the price rigidity increases ($\kappa \to 0$).
- The equity premium declines as the policy response to inflation increases ($\iota_\pi \uparrow$).
Model - Implication 2

Equilibrium with homogeneous price rigidities ($\alpha_H = \alpha_L \neq 0$).

- The equity premium increases as the price rigidity increases ($\kappa \rightarrow 0$).
- The equity premium declines as the policy response to inflation increases ($i_{\pi} \uparrow$).

Comparative statics:
Equilibrium with homogeneous price rigidities ($\alpha_H = \alpha_L \neq 0$).

- The equity premium increases as the price rigidity increases ($\kappa \to 0$).
- The equity premium declines as the policy response to inflation increases ($\iota_\pi \uparrow$).

Particular case ($\phi_u = 0$, $\iota_x = 0$).

- Price of risk:
 $$\lambda = \frac{\gamma}{\gamma + \kappa \iota_\pi} \sigma_u.$$
Model - Implication 3

Equilibrium with heterogeneous price rigidities \((\alpha_H > \alpha_L)\)

- Industries with low rigidities earn higher expected returns than industries with high rigidities.
- The difference in expected returns across industries decreases as the policy response to inflation increases.
Model - Implication 3

Excess stock returns:

\[\mathbb{E}_t [r_{L,t+1}^S - r_{H,t+1}^S] = -\text{cov}_t (\log M_{t,t+1}, r_{L,t+1}^S - r_{H,t+1}^S) > 0 \]

\[-\log M_{t,t+1} = -\log \beta + \gamma \Delta x_{t+1} \]
Model - Implication 3

Excess stock returns:

\[\mathbb{E}_t[r_{L,t+1}^S - r_{H,t+1}^S] = -\text{cov}_t(\log M_{t,t+1}, r_{L,t+1}^S - r_{H,t+1}^S) > 0 \]

\[-\log M_{t,t+1} = -\log \beta + \gamma \Delta x_{t+1} \]

Impulse Responses:
Model - Implication 3

Claim on profits (S) = Claim on Output (C) - Claim on labor income (N).

$$\mathbb{E}_t[r^S_{L,t+1} - r^S_{H,t+1}] > 0 \iff \mathbb{E}_t[r^C_{H,t+1} - r^C_{L,t+1}] < \mathbb{E}_t[r^N_{H,t+1} - r^N_{L,t+1}].$$
Model - Implication 3

Claim on profits \((S)\) = Claim on Output \(\text{(C)}\) - Claim on labor income \((N)\).

\[
\mathbb{E}_t[r_{L,t+1}^S - r_{H,t+1}^S] > 0 \iff \mathbb{E}_t[r_{H,t+1}^C - r_{L,t+1}^C] < \mathbb{E}_t[r_{H,t+1}^N - r_{L,t+1}^N].
\]

Impulse Responses:
Model - Implication 3

A more inflation-responsive policy reduces distortions in output and labor and the difference in distortions across industries.

⇒ There are lower differences in expected returns across industries.

Comparative statics:
Model - Relative Price

Expected returns conditional on the relative price

\[p_{R,t} = p_{H,t} - p_{L,t}. \]
Conclusions

- Policy shocks affect real activity and profits in the same direction generating an equity premium.

- Investors demand an additional compensation for holding stocks of firms with low rigidities.
 - Profits of firms with high rigidities are less risky because they are “hedged” by distortions in labor income.
 - Markups of firms with low rigidities are more sensitive to policy shocks.

- The difference in returns across industries is lower for more inflation-responsive policies.
Future Work

- Analysis of markup shocks and capital.
- Relative prices as a pricing factor due to price rigidities.
- Quantitative implications (recursive preferences).
- Robustness test of the difference in returns.