Unawareness and Strategic Announcements in Games with Uncertainty

Erkut Ozbay

University of Maryland
Motivation

How do decision makers form beliefs when they learn a contingency that did not cross their mind before?

How does the strategic nature of the information source affect this belief formation?
Motivation

Aware Broker vs. Unaware Investor (mutual fund)

- Investor: which mutual fund to buy

 Return of the fund depends on the realization of the contingencies

- Investor may be *unaware* of some of the contingencies

- Broker: *aware* of all the contingencies and how likely they are

- Aware Broker: Strategic Announcements

- Investor: (Belief Formation) *How to assign probability to the newly announced contingencies?*
Motivation

- Gambling
- Insurance
- Parents
- Government
- Commercials
- ...

...
Roadmap

- Model
- Solution Concept
- Refinement
- Examples: *We should not always everything to our children.*
- Discussion: *Zero probability vs. Unawareness*
Model

Two players: Announcer and Decision Maker (DM), indexed by 1 and 2

Ω: Finite set of moves of a chance player (contingencies)

π: True distribution of contingencies, $\pi(\omega) \neq 0$ for any $\omega \in \Omega$.
Model

Two players: Announcer and Decision Maker (DM), indexed by 1 and 2

Ω: Finite set of moves of a chance player (contingencies)

\(\pi \): True distribution of contingencies, \(\pi(\omega) \neq 0 \) for any \(\omega \in \Omega \).

Awareness Structure

- Announcer is aware of \(\Omega \) and believes \(\pi \).
- DM is aware of \(\Omega_o \subseteq \Omega \) and believes \(\pi(.|\Omega_o) \).
- Announcer is aware of DM’s limited awareness,
- DM is unaware of announcer’s superior awareness.

DM perceives that the announcer is only aware of \(\Omega_o \), and believes \(\pi(.|\Omega_o) \).
STRATEGIES:

The announcer does not observe the realization of nature before the announcement.

\[\mathcal{M} := 2^\Omega \setminus \Omega_o \] is the set of all strategies of the announcer

After an announcement, \(M \), the DM extends her awareness to \(\Omega_o \cup M \)

\(A \): Finite set of actions of the DM (\(A \) is the same set independent of the announcement).

Strategy of the DM: \(d : \mathcal{M} \rightarrow A \)

PAYOFFS:

payoff of player \(i \) is \(u_i : \Omega \times A \rightarrow \mathbb{R} \) for \(i = 1, 2 \).
Example 1

Let $\Omega = \{\omega_1, \omega_2\}$, $\Omega_o = \{\omega_1\}$, and $\pi(\omega_1) = \pi(\omega_2) = 0.5$.

The DM has two actions: left, and right. The payoffs are as follows:

<table>
<thead>
<tr>
<th>Contingencies</th>
<th>left</th>
<th>right</th>
</tr>
</thead>
<tbody>
<tr>
<td>ω_1</td>
<td>1, 0</td>
<td>0, 1</td>
</tr>
<tr>
<td>ω_2</td>
<td>1, 1</td>
<td>−2, −3</td>
</tr>
</tbody>
</table>
Example 1: cont.

Game that is initially understood by the DM.

\[\begin{array}{c}
\omega_1 \\
A \\
\varnothing \\
DM \\
L \\
R \\
1, 0 \\
0, 1
\end{array} \]
Example 1: cont.

Game that will be understood by the DM when \(\{\omega_2\} \) is announced.
Solution Concept

A solution concept imposes some conditions on an assessment,
\((M, d, F)\), which is a triplet containing strategies, \(M\) and \(d\), of each player and a belief function, \(F\).

Definition

A **belief function**, \(F\), assigns to each announcement, \(M\), a probability distribution, \(F_M\), on the union of sets of contingencies that are announced and that are in the initial awareness of the DM, \(M \cup \Omega_o\).
Both the announcer and the DM evaluate any strategy by calculating their expected utilities. For any action, $a \in A$, and announcement, $M \in \mathcal{M}$, the expected utility of the announcer is defined as:

$$EU_1(a) := \sum_{\omega \in \Omega} u_1(\omega, a) \pi(\omega)$$

and the expected utility of the DM with respect to the probability distribution, F_M, is defined as

$$EU_2(M, a|F_M) := \sum_{\omega \in M \cup \Omega_0} u_2(\omega, a) F_M(\omega)$$
Definition

An assessment \((M^*, d^*, F)\) is \textbf{rational} if

\[
M^* \in \arg \max_{M \in \mathcal{M}} EU_1 (d^*(M));
\]

\[
d^*(M) \in \arg \max_{a \in A} EU_2 (M, a \mid F_M), \text{ for any } M \in \mathcal{M}.
\]
Definition

An assessment, \((M^*, d^*, F)\), is \textbf{justifiable} if \(\forall M \subseteq M^*\),

\[
\sum_{\omega \in M^* \cup \Omega_o} u_1(\omega, d^*(M^*)) F_{M^*}(\omega) \geq \sum_{\omega \in M^* \cup \Omega_o} u_1(\omega, d^*(M)) F_{M^*}(\omega)
\]
Definition

A belief function, F, has **full support** if $\forall M \in \mathcal{M}$, and $\forall \omega \in M \cup \Omega_o$, $F_M(\omega) \neq 0$.
Definition

A belief function, F, has **full support** if $\forall M \in \mathcal{M}$, and $\forall \omega \in M \cup \Omega_o$, $F_M(\omega) \neq 0$.

Definition

A belief function, F, **respects to the initial belief** if $\forall M \in \mathcal{M}$, and $\forall \omega \in \Omega_o$, $F_M(\omega|\Omega_o) = \pi(\omega|\Omega_o)$.
<table>
<thead>
<tr>
<th>Definition</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>An assessment, $(M^, d^, F^)$ is awareness equilibrium if it is rational, justifiable, and $F^$ has full support and respects to the initial belief.</td>
<td></td>
</tr>
</tbody>
</table>
Theorem 1

Awareness equilibrium always exists.
Proof of Theorem 1

Under no announcement, the DM holds her initial belief, $\pi(\cdot|\Omega_o)$, and set $d^*(\emptyset)$ as a maximal action for the announcer among the ones that maximize expected utility of the DM.

Define the belief function, F, such that for every announcement, $M \in \mathcal{M}$, F_M respects the initial belief and assigns a very small but non-zero probability to all contingencies in the announcement, M, to guarantee that the best response of the DM, $d^*(M)$, is one of the actions that maximizes expected utility of the DM under no announcement.

Since for any $M \in \mathcal{M}$, $d^*(\emptyset)$ is a maximal among all $d^*(M)$ for the announcer, $M^* = \emptyset$. The assessment, (\emptyset, d^*, F), is justifiable since $M^* = \emptyset$. ■
Is there a need for a refinement?

<table>
<thead>
<tr>
<th></th>
<th>Actions</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>left</td>
</tr>
<tr>
<td>ω_1</td>
<td>1, 1</td>
</tr>
<tr>
<td>ω_2</td>
<td>0, 0</td>
</tr>
</tbody>
</table>

Contingencies
Refinement

A probability distribution P on $M \cup \Omega_o$ is called a *reasonable probability distribution* that supports the action $a \in A$, after the announcement $M \in \mathcal{M}$, and $d^*: M \to A$ if

(i) $P(\omega) \neq 0$ for any $\omega \in M \cup \Omega_o$

(ii) $P(\omega) = \pi(\omega | \Omega_o)$ for any $\omega \in \Omega_o$

(iii) $\sum_{\omega \in M \cup \Omega_o} u_1(\omega, a)P(\omega) \geq \sum_{\omega \in M \cup \Omega_o} u_1(\omega, d^*(M'))P(\omega)$ for any $M' \subset M$

(iv) $a \in \arg\max_{a' \in A} EU_2(M, a'|P)$

Let $\varphi(M, a|d^*)$ is the collection of P satisfying (i) – (iv)
Definition

An awareness equilibrium, \((M^*, d^*, F^*)\) satisfies **reasoning refinement** if

for any non-empty \(M \in \mathcal{M}\) and \(a \in A \setminus \bigcup_{M' \subset M} \{d^*(M')\}\) such that \(\varphi(M, a|d^*) \neq \emptyset, F_M^* \in \varphi(M, d^*(M)|d^*)\).
Theorem 2

Awareness equilibrium that satisfies reasoning refinement always exists.
Proof of Theorem 2

Under no announcement, the DM holds her initial belief, $\pi(.|\Omega_o)$ and set $d^*(\emptyset)$, be a maximal action for the announcer among the ones that maximize expected utility of the DM.

Let F be the belief function constructed in the proof of Theorem 1. Construct F^* and d^* inductively:

For $n \in \mathbb{N}$, let for any $M' \in \mathcal{M}$ s.t. $|M'| < n$, $d^*(M')$ and $F^*_{M'}$ be constructed. Construct F^*_M and $d^*(M)$ for $|M| = n$:

If there is an action $a \in A$, that would not have been played after any announcement that is a proper subset of M and if there is a reasonable probability distribution, P, on $M \cup \Omega_o$, supporting the action a after the announcement M, then set $F^*_M = P$ and $d^*(M) = a$.

Otherwise, set $F^*_M = F_M$, and $d^*(M)$ as one of the actions that maximizes expected utility of the DM under no announcement (same as in the proof of Theorem 1).

Given the decision function, d^*, the announcer announces M^* that maximizes his expected utility. ■
In order to change one’s action, shall we tell everything?

Example 2
Let $\Omega = \{\omega_1, \omega_2, \omega_3\}$ with $\pi(\omega_1) = 0.1$, $\pi(\omega_2) = 0.8$, $\pi(\omega_3) = 0.1$ and $\Omega_o = \{\omega_1\}$.

<table>
<thead>
<tr>
<th>Actions</th>
<th>left</th>
<th>middle</th>
<th>right</th>
</tr>
</thead>
<tbody>
<tr>
<td>ω_1</td>
<td>3, 3</td>
<td>0, 0</td>
<td>2, 2</td>
</tr>
</tbody>
</table>

| Contingencies | ω_2 | 0, 0 | 7, 7 | 2, 2 |

| ω_3 | 2, 2 | 0, 0 | 2, 2 |

“middle” is the best.

$d(\emptyset) = left$
$d(\omega_2) = middle$
$d(\omega_3) = left$
$d(\omega) = right$
Discussion

Cheap Talk with Zero Probabilities

Alternative Model: No unawareness but assigning zero probability

DM initially believes $P(\Omega \setminus \Omega_o) = 0$

Announcer knows the true distribution and Cheap Talk (Crawford and Sobel, 1982)

But degenerate belief so no updating! Talk is not informative.
Let $\Omega = \{\omega_1, \omega_2\}$, $\Omega_o = \{\omega_1\}$, and $\pi(\omega_1) = \pi(\omega_2) = 0.5$.

The DM has two actions: left, and right. The payoffs are as follows:

<table>
<thead>
<tr>
<th>Contingencies</th>
<th>left</th>
<th>right</th>
</tr>
</thead>
<tbody>
<tr>
<td>ω_1</td>
<td>..</td>
<td>1</td>
</tr>
<tr>
<td>ω_2</td>
<td>..</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>2</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Actions</th>
<th>left</th>
<th>right</th>
</tr>
</thead>
<tbody>
<tr>
<td>left</td>
<td></td>
<td></td>
</tr>
<tr>
<td>right</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>left</th>
<th>right</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.5</td>
<td>0.5</td>
</tr>
</tbody>
</table>
Some Final Thoughts

 In US, condom sales rose from 240 million annually in 1986 to 299 million in 1988. The greatest increase occurred in 1987 after the Surgeon General’s report on AIDS was released.

- Insurance Markets (Filiz Ozbay 2008)

- Financial Markets