Managing Expectations

Robert G. King, Yang K. Lu, and Ernesto Pasten

Department of Economics, Boston University

North America Summer Meeting
June 21, 2008
Motivation

- Management of expectations is central to monetary policy:
 - “If monetary policy is managing expectations, as the current doctrine has it…” Central Banking News, April 2006.
 - “Monetary policy works primarily through expectations”, Phillip Hildebrand, SNB vice chairman, 2006.

- Management of expectations is subtle since the credibility of low and stable inflation is
 - imperfect
 - endogenous
Five key notions

- **Long-term credibility**: likelihood that central bank is strong type that will ultimately produce low and stable inflation
Five key notions

- **Long-term credibility**: likelihood that central bank is strong type that will ultimately produce low and stable inflation
- **Short-term credibility**: likelihood that central bank will take strong-type actions in the near future;
Five key notions

- **Long-term credibility**: likelihood that central bank is strong type that will ultimately produce low and stable inflation

- **Short-term credibility**: likelihood that central bank will take strong-type actions in the near future;

- **Mimicking**: short-term credibility \(>\) long-term credibility since a weak central bank may take the same near-term actions as the strong type
Five key notions

- **Long-term credibility**: likelihood that central bank is strong type that will ultimately produce low and stable inflation
- **Short-term credibility**: likelihood that central bank will take strong-type actions in the near future;
- **Mimicking**: short-term credibility $> long-term credibility$ since a weak central bank may take the same near-term actions as the strong type
- **Announced inflation plans**: a strong central bank uses plans to manage inflation expectations as well as the evolution of its long-term credibility
Five key notions

- **Long-term credibility**: likelihood that central bank is strong type that will ultimately produce low and stable inflation
- **Short-term credibility**: likelihood that central bank will take strong-type actions in the near future;
- **Mimicking**: short-term credibility $>\$ long-term credibility since a weak central bank may take the same near-term actions as the strong type
- **Announced inflation plans**: a strong central bank uses plans to manage inflation expectations as well as the evolution of its long-term credibility
- **Imitation**: weak central banks will announce the same plans as strong central banks, so such plans will not always be executed
General idea

Subperiod structure

<table>
<thead>
<tr>
<th>start</th>
<th>middle</th>
<th>end</th>
</tr>
</thead>
<tbody>
<tr>
<td>plan p</td>
<td>expectations e</td>
<td>action π</td>
</tr>
</tbody>
</table>

• Central bank objective $w(\pi, e)$
General idea

Subperiod structure

<table>
<thead>
<tr>
<th>start</th>
<th>middle</th>
<th>end</th>
</tr>
</thead>
<tbody>
<tr>
<td>plan p</td>
<td>expectations e</td>
<td>action π</td>
</tr>
</tbody>
</table>

- Central bank objective $w(\pi, e)$
- Strong type: $\pi = p$ always
 Weak type: $\pi = p$ (mimicking) or $\pi = d$ (deviating)
General idea

Subperiod structure

<table>
<thead>
<tr>
<th>start</th>
<th>middle</th>
<th>end</th>
</tr>
</thead>
<tbody>
<tr>
<td>plan p</td>
<td>expectations e</td>
<td>action π</td>
</tr>
</tbody>
</table>

- Central bank objective $w(\pi, e)$
- Strong type: $\pi = p$ always
 - Weak type: $\pi = p$ (mimicking) or $\pi = d$ (deviating)
- State variable: long-term credibility (ρ) evolves as $\rho' = \kappa(\rho, p)$. **Bayesian learning.**
General idea

Subperiod structure

<table>
<thead>
<tr>
<th>start</th>
<th>middle</th>
<th>end</th>
</tr>
</thead>
<tbody>
<tr>
<td>plan p</td>
<td>expectations e</td>
<td>action π</td>
</tr>
</tbody>
</table>

- Central bank objective $w(\pi, e)$
- Strong type: $\pi = p$ always
 Weak type: $\pi = p$ (mimicking) or $\pi = d$ (deviating)
- State variable: long-term credibility (ρ) evolves as $\rho' = \kappa(\rho, p)$. **Bayesian learning**.
- Inflation expectations depend on plan (p) and long-term credibility (ρ): $e(\rho, p)$
General idea

Subperiod structure

<table>
<thead>
<tr>
<th>start</th>
<th>middle</th>
<th>end</th>
</tr>
</thead>
<tbody>
<tr>
<td>plan p</td>
<td>expectations e</td>
<td>action π</td>
</tr>
</tbody>
</table>

- Central bank objective $w(\pi, e)$
- Strong type: $\pi = p$ always
 Weak type: $\pi = p$ (mimicking) or $\pi = d$ (deviating)
- State variable: long-term credibility (ρ) evolves as $\rho' = \kappa(\rho, p)$. **Bayesian learning.**
- Inflation expectations depend on plan (p) and long-term credibility (ρ): $e(\rho, p)$
- Optimal management of expectations by strong type
 \[
 W(\rho) = \max_{p} \left\{ w(p, e) + bW(\rho') \right\} \\
 s.t. e = e(\rho, p) \text{ and } \rho' = \kappa(\rho, p)
 \]
Modeling expectations and credibility evolution

- Weak type has stochastic time discount factor $\beta \sim F(\cdot)$ with support $(0, b)$. i.i.d draw each period, private info.
Modeling expectations and credibility evolution

- Weak type has stochastic time discount factor $\beta \sim F(\cdot)$ with support $(0, b)$. i.i.d draw each period, private info.
- Weak type’s choose inflation action π: given p and e

\[
V(\rho, \beta) = \max_{\delta} \{ (1 - \delta) M + \delta D \}
\]

\[
M = w(p, e) + \beta E_{\beta} V(\rho', \beta)
\]

\[
D = \max_d [w(d, e) + \beta E_{\beta} V(0, \beta)]
\]
Modeling expectations and credibility evolution

- Weak type has stochastic time discount factor $\beta \sim F(\cdot)$ with support $(0, b)$. i.i.d draw each period, private info.
- Weak type’s choose inflation action π: given p and e

\[
V(\rho, \beta) = \max_{\delta} \{(1 - \delta)M + \delta D\}
\]

\[
M = w(p, e) + \beta E_{\beta} V(\rho', \beta)
\]

\[
D = \max_d [w(d, e) + \beta E_{\beta} V(0, \beta)]
\]

- Cutoff-strategy $\hat{\beta}$: determined by temptation $w(d, e) - w(p, e)$ and punishment $V(\rho', \beta) - V(0, \beta)$

\[
\delta = 1; \quad \pi = d(e) \quad \text{if } \beta \leq \hat{\beta}(p, e)
\]

\[
\delta = 0; \quad \pi = p \quad \text{if } \beta > \hat{\beta}(p, e)
\]
Modeling expectations and credibility evolution

- Weak type has stochastic time discount factor $\beta \sim F(\cdot)$ with support $(0, b)$. i.i.d draw each period, private info.
- Weak type’s choose inflation action π: given p and e

$$V(\rho, \beta) = \max_{\delta} \{(1 - \delta)M + \delta D\}$$
$$M = w(p, e) + \beta E_{\beta} V(\rho', \beta)$$
$$D = \max_{d} [w(d, e) + \beta E_{\beta} V(0, \beta)]$$

- Cutoff-strategy $\hat{\beta}$: determined by temptation $w(d, e) - w(p, e)$ and punishment $V(\rho', \beta) - V(0, \beta)$

$$\delta = 1; \quad \pi = d(e) \quad \text{if} \quad \beta \leq \hat{\beta}(p, e)$$
$$\delta = 0; \quad \pi = p \quad \text{if} \quad \beta > \hat{\beta}(p, e)$$

- The probability of weak type mimicking strong type’s action

$$m(p, e) = 1 - F\left(\hat{\beta}(p, e)\right)$$
Effects of inflation plan

- Rational expectation formation leads to the fixed point

\[e(\rho, p) = \psi(\rho, e, p) p + (1 - \psi(\rho, e, p)) d(e) \]

3 channels for plan (p) managing expectations:
Rational expectation formation leads to the fixed point

\[e(\rho, p) = \psi(\rho, e, p) p + (1 - \psi(\rho, e, p)) \cdot d(e) \]

3 channels for plan (p) managing expectations:
- Direct effect on e due to partial commitment
Effects of inflation plan

- Rational expectation formation leads to the fixed point

\[e(\rho, p) = \psi(\rho, e, p) p + (1 - \psi(\rho, e, p)) d(e) \]

3 channels for plan \((p)\) managing expectations:

- Direct effect on \(e\) due to partial commitment
- Magnitude of deviation: \(d(e)\) via the fixed point \(e(\rho, p)\)
Effects of inflation plan

- Rational expectation formation leads to the fixed point
 \[e(\rho, p) = \psi(\rho, e, p) p + (1 - \psi(\rho, e, p)) d(e) \]

3 channels for plan \((p)\) managing expectations:

- Direct effect on \(e\) due to partial commitment
- Magnitude of deviation: \(d(e)\) via the fixed point \(e(\rho, p)\)
- Likelihood of carrying out the plan: short-term credibility
 \[\psi(\rho, p) = \rho + (1 - \rho) m(p, e(\rho, p)) \]
Effects of inflation plan

- Rational expectation formation leads to the fixed point

\[e(\rho, p) = \psi(\rho, e, p) p + (1 - \psi(\rho, e, p)) d(e) \]

3 channels for plan \(p \) managing expectations:
- Direct effect on \(e \) due to partial commitment
- Magnitude of deviation: \(d(e) \) via the fixed point \(e(\rho, p) \)
- Likelihood of carrying out the plan: short-term credibility

\[\psi(\rho, p) = \rho + (1 - \rho) m(p, e(\rho, p)) \]

- Bayesian learning for long-term credibility evolution

\[\rho' = \kappa(\rho, p) = \rho / \psi(\rho, p) \]

long-term credibility grows fast when short-term credibility is low (hitting plan is then very informative)
Managing expectations with an inflation plan

- Aggressive inflation plan lowers mimicking probability m
Managing expectations with an inflation plan

- Aggressive inflation plan lowers mimicking probability \(m \)
- Endogenous mimicking makes plans less effective in lowering expected inflation \(e(\rho, p) \) since \(\psi \downarrow \)
Managing expectations with an inflation plan

- Aggressive inflation plan lowers mimicking probability m
- Endogenous mimicking makes plans less effective in lowering expected inflation $e(\rho, p)$ since $\psi \downarrow$
- More informative if carrying out such a plan: $\rho' = \kappa(\rho, p)$ grows faster
Managing expectations with an inflation plan

- Aggressive inflation plan lowers mimicking probability m
- Endogenous mimicking makes plans less effective in lowering expected inflation $e(\rho, p)$ since $\psi \downarrow$
- More informative if carrying out such a plan: $\rho' = \kappa(\rho, p)$ grows faster

Key trade-off of a more aggressive inflation plan:
larger welfare loss v.s. quicker credibility gain
Managing expectations with an inflation plan

- Aggressive inflation plan lowers mimicking probability m
- Endogenous mimicking makes plans less effective in lowering expected inflation $e(\rho, p)$ since $\psi \downarrow$
- More informative if carrying out such a plan: $\rho' = \kappa(\rho, p)$ grows faster
- **Key trade-off of a more aggressive inflation plan:**
 - larger welfare loss v.s. quicker credibility gain
- Long-term credibility ρ affects the trade-off via $\psi = \rho + (1 - \rho)m$
Managing expectations with an inflation plan

- Aggressive inflation plan lowers mimicking probability m
- Endogenous mimicking makes plans less effective in lowering expected inflation $e(\rho, p)$ since $\psi \downarrow$
- More informative if carrying out such a plan: $\rho' = \kappa(\rho, p)$ grows faster
- **Key trade-off of a more aggressive inflation plan:** larger welfare loss v.s. quicker credibility gain
- Long-term credibility ρ affects the trade-off via $\psi = \rho + (1 - \rho) m$
 - high ρ: less effect of changing m on $\psi \Rightarrow$ less welfare loss
Managing expectations with an inflation plan

- Aggressive inflation plan lowers mimicking probability m
- Endogenous mimicking makes plans less effective in lowering expected inflation $e(\rho, p)$ since $\psi \downarrow$
- More informative if carrying out such a plan: $\rho' = \kappa (\rho, p)$ grows faster
- **Key trade-off of a more aggressive inflation plan:** larger welfare loss v.s. quicker credibility gain
- Long-term credibility ρ affects the trade-off via $\psi = \rho + (1 - \rho) m$
 - high ρ: less effect of changing m on $\psi \Rightarrow$ less welfare loss
 - low ρ: decreasing p may even raise $e \Rightarrow$ substantial welfare loss
Dynamics: Oil price shock under low and high credibility

- Our approach makes it easy to add shocks.
Dynamics: Oil price shock under low and high credibility

- Our approach makes it easy to add shocks.

- A good example, of current interest, is an oil price shock:

 \[x = \alpha(\pi - e) - \varepsilon x^* \]

 with \(x = \alpha(\pi - e) \) being PC and shocks \(x^* \) occurring with probability \(q \)
Dynamics: Oil price shock under low and high credibility

- Our approach makes it easy to add shocks.
- A good example, of current interest, is an oil price shock:

 \[x = \alpha(\pi - e) - \varepsilon x^* \]

 with \(x = \alpha(\pi - e) \) being PC and shocks \(x^* \) occurring with probability \(q \)

- Shocks induce the weak type to expropriate the credibility capital and inflation expectations reflect this.
Dynamics: Oil price shock under low and high credibility

- Our approach makes it easy to add shocks.
- A good example, of current interest, is an oil price shock:

\[x = \alpha (\pi - e) - \epsilon x^* \]

with \(x = \alpha (\pi - e) \) being PC and shocks \(x^* \) occurring with probability \(q \)
- Shocks induce the weak type to expropriate the credibility capital and inflation expectations reflect this.
- Large effects on excepted inflation at low levels of long-term credibility \(\rho \) (70s)
Dynamics: Oil price shock under low and high credibility

- Our approach makes it easy to add shocks.
- A good example, of current interest, is an oil price shock:

$$x = \alpha(\pi - e) - \varepsilon x^*$$

with $x = \alpha(\pi - e)$ being PC and shocks x^* occurring with probability q

- Shocks induce the weak type to expropriate the credibility capital and inflation expectations reflect this.
- Large effects on expected inflation at low levels of long-term credibility ρ (70s)
- "Excess" output losses due to inflation management at intermediate levels of credibility ρ (Volker)
Dynamics: Oil price shock under low and high credibility

- Our approach makes it easy to add shocks.
- A good example, of current interest, is an oil price shock:

\[x = \alpha(\pi - e) - \varepsilon x^* \]

with \(x = \alpha(\pi - e) \) being PC and shocks \(x^* \) occurring with probability \(q \)

- Shocks induce the weak type to expropriate the credibility capital and inflation expectations reflect this.

- Large effects on expected inflation at low levels of long-term credibility \(\rho \) (70s)

- "Excess" output losses due to inflation management at intermediate levels of credibility \(\rho \) (Volker)

- Small output losses and expectations effects at high levels of credibility \(\rho \) (now)
Conclusion and research overview

- A smooth macro model in which
 - inflation plan affects inflation expectations with influence depending on credibility
 - optimal policy takes this influence into account
- Recursive equilibrium that can be used to study transition dynamics (e.g., disinflation)
- A straightforward extension to management of expectations in presence of shocks:
 - Application to energy price shocks with various levels of credibility
- This presentation has abstracted from signalling game issues. But we show that our optimal inflation plan is the unique equilibrium surviving a particular refinement (Mailath et al.) which imposes strongly coherent out-of-equilibrium beliefs.
Figure 6: Equilibrium policy functions (case 4 parameters). Solid line is deterministic reference model; dashed-dotted line is stochastic model with shock occurring, while dashed line is when no shock occurs.
Figure 4: Transition dynamics from low initial credibility ($\gamma = .2$) with quasilinear utility (case 3 parameters).
Figure 5: Equilibrium reactions to inflation plan p in full dynamic model (case 4 parameters).
Why not mixed strategy?

- The weak type randomizes between two strategies: mimicking and deviating

\[\pi = \begin{cases}
 p & \text{with prob } m \\
 d & \text{with prob } 1 - m
\end{cases} \]

- \(m \) is set such that it implies an expected inflation \(e(m) \) making \(M = D \)

- Suppose exogenous reward for deviation: \(D + \epsilon \)

- To keep the mixed strategy: \(M \) also need to increase.

- But it requires the expected inflation to decrease \(\Rightarrow m \) increases when the rewards of deviation increases!

- This counter-intuitive comparative static is not present using the stochastic discount factor approach.