The Inside Scoop:
Acceptance and Rejection at
the Journal of International Economics

I. Cherkashin, S. Demidova, S. Imai, K. Krishna

Presented by Ivan Cherkashin

North American Summer Meeting
of the Econometric Society

June 21, 2008
Motivation

- Publications important inside and outside academia
- Little work on the inner workings of journals
- Idiosyncratic existing research
Objectives

- What factors are correlated with the ability to publish in a journal

- Study streamlining of the publication process
 - Associated costs?

- Investigate efficiency of existing reviewing system by the example of JIE
 - Type I and Type II errors?
 - Editorial differences
Unique linked data set:
- Detailed author, timing, co-editor data, final publication and citation data

Original questions asked
- Two tier process & associated costs
- Type I and Type II errors
- Discrepancies in Standards?
The data

- Journal Data - obtained from JIE
- Authors Data - Vita based data, collected over internet
- Publication and Citation Data - CVs and Google Scholar Citation data
Journal Data

- Submission data
 - ALL submissions from 1995 to 2004. Total of 3032 submissions, 600 accepted
 - Decisions data: all final and intermediate decisions
 - Timing data: dates of all intermediate and final decisions

- Co-editor information
 - For each paper: name of co-editor in charge
 - 21 "main" co-editors

- Backlog: Number of accepted articles awaiting publication
 - Recursively calculated for each month
Vita based data

- Ph.D. completion year - "Ph.D. vintage"
 - Human capital indicator and Incentives proxy

- University Rank of attended graduate school
 - Kalaitzidakis (2003) world-wide ranking of the top 200 econ. schools

- Native language dummy

- Total number of papers and number of papers by groups (prior to submission):
 - Top general interest journals
 - Second tier general interest journals
 - Field journals (two groups)
 - "Network" journals
 - Journal of International Economics
The Fate of the Article

- Name of the Journal if article was finally published
- Journal rank (Kalaitzidakis, 2003)

Citation data

- Google Scholar citation data
- Available for both published and working papers!

If number of citations is:

- A perfect predictor for quality \implies other variables should be insignificant
- NOT a perfect predictor for quality \implies coefficient estimates should be lower and less significant
The simple model: probit

\[q_i = g(a_i, e_i) + \varepsilon_i \]

Article is published if \(q_i > Q \)

\(q_i \) - quality of the paper \(i \)
\(a_i \) - author’s abilities
\(e_i \) - efforts
\(\varepsilon_i \) - unobserved error ("an element of luck")

Proxies for abilities:
Author’s education, experience, employer type, performance (number of publications)

Proxies for incentives:
Professional age or "Ph.D. vintage"
Article is published if its quality is above threshold level:

\[Y_i = \begin{cases}
1, & \text{if } q_i = X_i \beta + \varepsilon_{1i} > 0, \\
0, & \text{if } q_i = X_i \beta + \varepsilon_{1i} < 0,
\end{cases} \]

CV is observed if:

\[
(Y_i, X_i, Z_i) = \begin{cases}
(Y_i, X_i, Z_i), & \text{if } Z_i \gamma + \varepsilon_{2i} > 0 \\
(Y_i, \text{Not observed}), & \text{if } Z_i \gamma + \varepsilon_{2i} < 0
\end{cases}
\]

Assumption on errors:

\[
\left(\varepsilon_{1i}, \varepsilon_{2i} \right) \sim N \left(\left(\begin{array}{c} 0 \\ 0 \end{array} \right), \left(\begin{array}{cc} \sigma_1^2 & \rho \sigma_1 \sigma_2 \\ \rho \sigma_1 \sigma_2 & \sigma_2^2 \end{array} \right) \right)
\]
The model

- Standard Heckman sample selection bias correction procedure can not be used

- The model is estimated using MLE instead

- Estimated coefficients change in the predicted direction

- Significant coefficients in the "truncation" equation
The Determinants of Acceptance

<table>
<thead>
<tr>
<th>Variable (Predictor)</th>
<th>Model w/o citations</th>
<th>Model w citations</th>
</tr>
</thead>
<tbody>
<tr>
<td>PhD Vintage (dummies):</td>
<td></td>
<td></td>
</tr>
<tr>
<td>— No degree yet or in past 2 years</td>
<td>Pos, Signif</td>
<td>Pos, Signif</td>
</tr>
<tr>
<td>— PhD received 2 to 10 years ago</td>
<td>Pos, Signif</td>
<td>Pos, Signif</td>
</tr>
<tr>
<td>— PhD received > 10 years ago</td>
<td>Insignificant</td>
<td>Insignificant</td>
</tr>
<tr>
<td>Number of publications in:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>— General Interest, Field Journals</td>
<td>Pos, Signif / Insign</td>
<td>Pos, Signif / Insign</td>
</tr>
<tr>
<td>— Network Journals</td>
<td>Pos, Signif</td>
<td>Pos, Signif</td>
</tr>
<tr>
<td>— Number of publications in JIE</td>
<td>Pos, Signif</td>
<td>Pos, Signif</td>
</tr>
<tr>
<td>Language Dummy</td>
<td>Pos, Signif</td>
<td>Pos, Signif</td>
</tr>
<tr>
<td>Graduation University rank</td>
<td></td>
<td></td>
</tr>
<tr>
<td>— Top 30</td>
<td>Pos, Signif</td>
<td>Pos, Signif</td>
</tr>
<tr>
<td>— Lower ranked Universities</td>
<td>Pos, Signif / Insign</td>
<td>Pos, Signif / Insign</td>
</tr>
<tr>
<td>Co-editor dummy variables</td>
<td>Signif</td>
<td>Signif</td>
</tr>
<tr>
<td>Number of citations</td>
<td>Omitted</td>
<td>Pos, Signif</td>
</tr>
</tbody>
</table>
Streamlining and its Costs

The graph shows the percentage of submissions taken on the x-axis and the percentage correctly predicted on the y-axis. The lines represent different categories:

- Single-authored papers
- All papers
- Uniform

The graph illustrates how the percentage of submissions taken impacts the prediction accuracy for different categories of papers.
Evaluating Performance: Type I vs II errors

- Final publication data on 564 papers
- About 14% were finally published in better journals
- Kalaitzidakis (2003) classification

- Type I error evidence

<table>
<thead>
<tr>
<th>Rank of journal</th>
<th>Share (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Top 1-10 journal</td>
<td>1.6</td>
</tr>
<tr>
<td>Top 11-20 journal</td>
<td>8.3</td>
</tr>
<tr>
<td>Top 21-30 journal (Excluding JIE)</td>
<td>4.1</td>
</tr>
<tr>
<td>Top 31-40 journal</td>
<td>6.4</td>
</tr>
<tr>
<td>Top 41-50 journal</td>
<td>9.0</td>
</tr>
<tr>
<td>Top 50-100 journal</td>
<td>9.2</td>
</tr>
<tr>
<td>Other ranked journals</td>
<td>4.4</td>
</tr>
<tr>
<td>Non-ranked journals</td>
<td>56.9</td>
</tr>
</tbody>
</table>
Type I error size evidence:

Average citations per year for different groups of papers

<table>
<thead>
<tr>
<th></th>
<th>Citations per year</th>
<th>Max. citations per year</th>
</tr>
</thead>
<tbody>
<tr>
<td>Published in JIE</td>
<td>6.33</td>
<td>6.30</td>
</tr>
<tr>
<td>Rejected by JIE, but published in a higher ranked journal</td>
<td>3.71</td>
<td>3.20</td>
</tr>
<tr>
<td>Articles Published anywhere else</td>
<td>2.17</td>
<td>1.78</td>
</tr>
<tr>
<td>Articles NOT published anywhere</td>
<td>1.67</td>
<td>0.96</td>
</tr>
</tbody>
</table>
Type 2 Error

Beta = P(Acc | Citations p.y. <= X)

1995-2004
1995-2000
2001-2004

Number of citations per year
Editors are different in:

- Standards (S_i)
- Composition of papers that they receive (Q_i)
- Raw acceptance rates $A(S_i, Q_i)$

Decomposition:

\[
A(Q_j, S_j) - A(Q_0, S_0) = [A(Q_j, S_j) - A(Q_j, S_0)] + [A(Q_j, S_0) - A(Q_0, S_0)]
\]

Δ raw acceptance = Δ in standards + Δ in quality

Raw acceptance: up to 0.34 percentage points
Quality differences: up to 0.22 percentage points
Differences in standards: up to 0.30 percentage points
Patterns in heterogeneity in standards

Are co-editors receiving lower quality papers overly generous?

- More lenient receive lower quality papers (rank corr -0.44)
- Higher quality corresponds to higher citations (rank corr 0.42)
- More lenient accept (reject) lower cited papers
Concluding Remarks

- Brings better understanding of inner working of journals
- Provides valuable information on a journal performance for editors, co-editors, referees and authors
- Highlights importance of introduction of internal evaluation system in journals
- Proposes way of streamlining of the evaluation process and evaluates its "costs"
General and network journals

"Top" General:
- Econometrica
- American Economic Review (excluding Papers & Proceedings)
- Quarterly Journal of Economics
- Journal of Political Economy
- Review of Economic Studies

"Good" General:
- Review of Economics and Statistics
- Journal of Monetary Economics
- Journal of Economic Theory
- International Economic Review
- European Economic Review
- Economic Journal

"Network" Journals:
- AER Papers and Proceedings
- Journal of Economics Perspectives
- Journal of Economic Literature
- Rochester Series
- Brooking Papers on Economic Activity
Field journals

Top Field I:
- Journal of Public Economics
- RAND Journal of Economics
- Scandinavian Journal of Economics
- Economic Letters
- Journal of Applied Economics
- Journal of Development Economics
- International Journal of Industrial Organization

Top Field II:
- Journal of Environmental Economics
- Economic Theory
- Econometric Theory
- Journal of Games and Economic Behavior
- Journal of Econometrics
- Journal of Human Resources
- Journal of Labor Economics
- Journal of Economic Dynamics and Control
Heterogeneity in standards

<table>
<thead>
<tr>
<th>co-editor</th>
<th>% Accepted (Sample)</th>
<th>Probit marginal effect</th>
<th>Quality difference</th>
<th>Citations per year Acc/Rej</th>
<th>Time to first decision</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.31</td>
<td>0.06</td>
<td>-0.13</td>
<td>4.6 / 2.0</td>
<td>187</td>
</tr>
<tr>
<td>2</td>
<td>0.28</td>
<td>-0.01</td>
<td>-0.08</td>
<td>5.8 / 2.0</td>
<td>115</td>
</tr>
<tr>
<td>3</td>
<td>0.49</td>
<td>0.18**</td>
<td>-0.07</td>
<td>6.8 / 1.7</td>
<td>124</td>
</tr>
<tr>
<td>4</td>
<td>0.26</td>
<td>-0.07</td>
<td>-0.04</td>
<td>4.7 / 2.0</td>
<td>127</td>
</tr>
<tr>
<td>5</td>
<td>0.38</td>
<td>0.23***</td>
<td>-0.22</td>
<td>5.3 / 1.4</td>
<td>156</td>
</tr>
<tr>
<td>6</td>
<td>0.37</td>
<td>—</td>
<td>—</td>
<td>11.4 / 3.2</td>
<td>80</td>
</tr>
<tr>
<td>7</td>
<td>0.32</td>
<td>0.05</td>
<td>-0.10</td>
<td>2.4 / 1.9</td>
<td>166</td>
</tr>
<tr>
<td>8</td>
<td>0.51</td>
<td>0.30***</td>
<td>-0.16</td>
<td>6.5 / 0.2</td>
<td>218</td>
</tr>
<tr>
<td>9</td>
<td>0.22</td>
<td>-0.01</td>
<td>-0.15</td>
<td>8.7 / 2.6</td>
<td>103</td>
</tr>
<tr>
<td>10</td>
<td>0.26</td>
<td>0.05</td>
<td>-0.16</td>
<td>3.4 / 1.0</td>
<td>191</td>
</tr>
<tr>
<td>11</td>
<td>0.32</td>
<td>-0.00</td>
<td>-0.05</td>
<td>6.6 / 0.8</td>
<td>101</td>
</tr>
<tr>
<td>12</td>
<td>0.30</td>
<td>0.00</td>
<td>-0.08</td>
<td>12.4 / 1.4</td>
<td>192</td>
</tr>
<tr>
<td>13</td>
<td>0.23</td>
<td>0.06</td>
<td>-0.20</td>
<td>2.7 / 2.4</td>
<td>128</td>
</tr>
<tr>
<td>14</td>
<td>0.20</td>
<td>0.07</td>
<td>-0.24</td>
<td>2.6 / 1.5</td>
<td>123</td>
</tr>
<tr>
<td>15</td>
<td>0.35</td>
<td>0.09</td>
<td>-0.11</td>
<td>9.4 / 1.8</td>
<td>117</td>
</tr>
<tr>
<td>16</td>
<td>0.23</td>
<td>0.07</td>
<td>-0.14</td>
<td>5.7 / 3.2</td>
<td>136</td>
</tr>
<tr>
<td>17</td>
<td>0.17</td>
<td>0.06</td>
<td>-0.20</td>
<td>3.7 / 0.7</td>
<td>107</td>
</tr>
<tr>
<td>18</td>
<td>0.17</td>
<td>-0.04</td>
<td>-0.16</td>
<td>9.0 / 3.6</td>
<td>187</td>
</tr>
<tr>
<td>19</td>
<td>0.18</td>
<td>-0.07</td>
<td>-0.13</td>
<td>14.9 / 2.6</td>
<td>180</td>
</tr>
<tr>
<td>20</td>
<td>0.40</td>
<td>0.19*</td>
<td>-0.17</td>
<td>5.7 / 0.7</td>
<td>122</td>
</tr>
<tr>
<td>21</td>
<td>0.41</td>
<td>0.03</td>
<td>0.01</td>
<td>7.8 / 2.1</td>
<td>128</td>
</tr>
</tbody>
</table>
The Determinants of Acceptance: Ph.D. school quality

Number of submissions by the rank of grad. school attended:

<table>
<thead>
<tr>
<th>Graduation Year</th>
<th>Submissions #</th>
<th>Submissions %</th>
<th>Accepted</th>
<th>Acc. / Submis.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Top 20</td>
<td>1186</td>
<td>57%</td>
<td>374</td>
<td>31.5%</td>
</tr>
<tr>
<td>Top 50</td>
<td>1436</td>
<td>70%</td>
<td>444</td>
<td>30.9%</td>
</tr>
<tr>
<td>Top 200</td>
<td>1851</td>
<td>90%</td>
<td>513</td>
<td>27.7%</td>
</tr>
<tr>
<td>Sample</td>
<td>2051</td>
<td>100%</td>
<td>519</td>
<td>25.3%</td>
</tr>
<tr>
<td>"Population"</td>
<td>3032</td>
<td>—</td>
<td>600</td>
<td>19.8%</td>
</tr>
</tbody>
</table>

Probit / Truncated probit model estimates:

- Graduates of Top 10 - Top 30 - significantly higher probability of acceptance
- Graduates of non-ranked universities - lower probability
- Results hold even with citation variable included
The model: Maximum Likelihood function

Log-likelihood function

$log(L) = \sum_{i=1}^{N} Y_i \log(1 - g(\beta, \gamma, \rho)) + \sum_{i=1}^{N} (1 - Y_i) \log(g(\beta, \gamma, \rho)).$

where

$g(\beta, \gamma, \rho) = \frac{\Phi(-X\beta) - G(-X\beta, -Z\gamma)}{\Phi(Z\gamma)}.$

$\Phi(\cdot)$ - CDF of standard normal distribution
$G(\cdot)$ - CDF of bivariate standard normal distribution
ρ — correlation between error terms
The Bias:

![Graph showing biased estimates and complete sample estimates with missing data points (truncation).]
Possible explanations for observed relative acceptance rate stability:

- **Self Selection of authors:**
 - Higher utility from acceptance
 - Overestimated probability of acceptance

- Hope for quality feedback from JIE referees
Composition of submissions:

<table>
<thead>
<tr>
<th>Year</th>
<th>US Univ</th>
<th>CAN Univ</th>
<th>UK Univ</th>
<th>EU Univ Excl.UK</th>
<th>Organizations</th>
</tr>
</thead>
<tbody>
<tr>
<td>1995</td>
<td>55</td>
<td>6</td>
<td>8</td>
<td>10</td>
<td>11</td>
</tr>
<tr>
<td>1996</td>
<td>52</td>
<td>9</td>
<td>8</td>
<td>15</td>
<td>6</td>
</tr>
<tr>
<td>1997</td>
<td>46</td>
<td>7</td>
<td>10</td>
<td>18</td>
<td>7</td>
</tr>
<tr>
<td>1998</td>
<td>44</td>
<td>9</td>
<td>8</td>
<td>16</td>
<td>8</td>
</tr>
<tr>
<td>1999</td>
<td>47</td>
<td>6</td>
<td>6</td>
<td>16</td>
<td>14</td>
</tr>
<tr>
<td>2000</td>
<td>45</td>
<td>7</td>
<td>9</td>
<td>25</td>
<td>11</td>
</tr>
<tr>
<td>2001</td>
<td>51</td>
<td>4</td>
<td>7</td>
<td>25</td>
<td>5</td>
</tr>
<tr>
<td>2002</td>
<td>44</td>
<td>5</td>
<td>11</td>
<td>18</td>
<td>12</td>
</tr>
<tr>
<td>2003</td>
<td>39</td>
<td>4</td>
<td>7</td>
<td>22</td>
<td>15</td>
</tr>
<tr>
<td>2004</td>
<td>39</td>
<td>5</td>
<td>7</td>
<td>28</td>
<td>8</td>
</tr>
</tbody>
</table>

- Decrease of the US economics departments share of submissions
- Corresponding increase in the share of European economic schools
Figure: Number of citations per year (CDF)