The Long and The Short of Asset Prices: Using Long-Run Consumption-Return Correlations to Test Asset Pricing Models

Jianfeng Yu

University of Minnesota

June 19, 2008
Motivation

- **External Habit-Formation Models:**
 - Key mechanism: Agents care about consumption above a certain "habit" level
 - The relative difference between consumption and habit level (surplus ratio) becomes a determinant of risk aversion
 - This produces time variation in the Sharpe ratio, expected returns, making returns volatile, and raising risk premium

- **Trend-Cycle Models:**
 - Common Theme: Small predictable consumption component
 - Production Based Model of Panageas and Yu (2005): Time varying presence of growth options over the medium run produces time varying risk premia
 - Common Implication: Expected returns depend on whether consumption is above or below its stochastic trend
Motivation

- **External Habit-Formation Models:**
 - Key mechanism: Agents care about consumption above a certain "habit" level
 - The relative difference between consumption and habit level (surplus ratio) becomes a determinant of risk aversion
 - This produces time variation in the Sharpe ratio, expected returns, making returns volatile, and raising risk premium

- **Trend-Cycle Models:**
 - Common Theme: Small predictable consumption component
 - Production Based Model of Panageas and Yu (2005): Time varying presence of growth options over the medium run produces time varying risk premia
 - Common Implication: Expected returns depend on whether consumption is above or below its stochastic trend
Motivation

External Habit-Formation Models:
- Key mechanism: Agents care about consumption above a certain "habit" level.
- The relative difference between consumption and habit level (surplus ratio) becomes a determinant of risk aversion.
- This produces time variation in the Sharpe ratio, expected returns, making returns volatile, and raising risk premium.

Trend-Cycle Models:
- Common Theme: Small predictable consumption component.
- Production Based Model of Panageas and Yu (2005): Time varying presence of growth options over the medium run produces time varying risk premia.
- Common Implication: Expected returns depend on whether consumption is above or below its stochastic trend.
Motivation

- **External Habit-Formation Models:**
 - Key mechanism: Agents care about consumption above a certain "habit" level
 - The relative difference between consumption and habit level (surplus ratio) becomes a determinant of risk aversion
 - This produces time variation in the Sharpe ratio, expected returns, making returns volatile, and raising risk premium

- **Trend-Cycle Models:**
 - Common Theme: Small predictable consumption component
 - Production Based Model of Panageas and Yu (2005): Time varying presence of growth options over the medium run produces time varying risk premia
 - Common Implication: Expected returns depend on whether consumption is above or below its stochastic trend
Motivation

- **External Habit-Formation Models:**
 - Key mechanism: Agents care about consumption above a certain "habit" level
 - The relative difference between consumption and habit level (surplus ratio) becomes a determinant of risk aversion
 - This produces time variation in the Sharpe ratio, expected returns, making returns volatile, and raising risk premium

- **Trend-Cycle Models:**
 - Common Theme: Small predictable consumption component
 - Production Based Model of Panageas and Yu (2005): Time varying presence of growth options over the medium run produces time varying risk premia
 - Common Implication: Expected returns depend on whether consumption is above or below its stochastic trend
Motivation

- **External Habit-Formation Models:**
 - Key mechanism: Agents care about consumption above a certain "habit" level
 - The relative difference between consumption and habit level (surplus ratio) becomes a determinant of risk aversion
 - This produces time variation in the Sharpe ratio, expected returns, making returns volatile, and raising risk premium

- **Trend-Cycle Models:**
 - Common Theme: Small predictable consumption component
 - Production Based Model of Panageas and Yu (2005): Time varying presence of growth options over the medium run produces time varying risk premia
 - Common Implication: Expected returns depend on whether consumption is above or below its stochastic trend
Motivation

External Habit-Formation Models:
- Key mechanism: Agents care about consumption above a certain "habit" level
- The relative difference between consumption and habit level (surplus ratio) becomes a determinant of risk aversion
- This produces time variation in the Sharpe ratio, expected returns, making returns volatile, and raising risk premium

Trend-Cycle Models:
- Common Theme: Small predictable consumption component
 - Production Based Model of Panageas and Yu (2005): Time varying presence of growth options over the medium run produces time varying risk premia
- Common Implication: Expected returns depend on whether consumption is above or below its stochastic trend
External Habit-Formation Models:
- Key mechanism: Agents care about consumption above a certain "habit" level
- The relative difference between consumption and habit level (surplus ratio) becomes a determinant of risk aversion
- This produces time variation in the Sharpe ratio, expected returns, making returns volatile, and raising risk premium

Trend-Cycle Models:
- Common Theme: Small predictable consumption component
- Production Based Model of Panageas and Yu (2005): Time varying presence of growth options over the medium run produces time varying risk premia
- Common Implication: Expected returns depend on whether consumption is above or below its stochastic trend
Motivation

- **External Habit-Formation Models:**
 - Key mechanism: Agents care about consumption above a certain “habit” level
 - The relative difference between consumption and habit level (surplus ratio) becomes a determinant of risk aversion
 - This produces time variation in the Sharpe ratio, expected returns, making returns volatile, and raising risk premium

- **Trend-Cycle Models:**
 - Common Theme: Small predictable consumption component
 - Production Based Model of Panageas and Yu (2005): Time varying presence of growth options over the medium run produces time varying risk premia
 - Common Implication: Expected returns depend on whether consumption is above or below its stochastic trend
Motivation

- External Habit-Formation Models:
 - Key mechanism: Agents care about consumption above a certain "habit" level
 - The relative difference between consumption and habit level (surplus ratio) becomes a determinant of risk aversion
 - This produces time variation in the Sharpe ratio, expected returns, making returns volatile, and raising risk premium

- Trend-Cycle Models:
 - Common Theme: Small predictable consumption component
 - Production Based Model of Panageas and Yu (2005): Time varying presence of growth options over the medium run produces time varying risk premia
 - Common Implication: Expected returns depend on whether consumption is above or below its stochastic trend
What this paper does

Key idea:

- Both models derive return implications from slow moving processes that are related to consumption (backward-looking surplus ratio /forward-looking expected consumption growth)
- The two models have different implications for long run and short run correlations between consumption and returns.
- Can use these differences to test the models
What this paper does

Key idea:

- Both models derive return implications from slow moving processes that are related to consumption (backward-looking surplus ratio / forward-looking expected consumption growth)
- The two models have different implications for long run and short run correlations between consumption and returns.
- Can use these differences to test the models
What this paper does

Key idea:

- Both models derive return implications from slow moving processes that are related to consumption (backward-looking surplus ratio /forward-looking expected consumption growth)
- The two models have different implications for long run and short run correlations between consumption and returns.
- Can use these differences to test the models
What this paper does

Key idea:

- Both models derive return implications from slow moving processes that are related to consumption (backward-looking surplus ratio / forward-looking expected consumption growth).
- The two models have different implications for long run and short run correlations between consumption and returns.
- Can use these differences to test the models.
What this paper does

Key idea:

- Both models derive return implications from slow moving processes that are related to consumption (backward-looking surplus ratio /forward-looking expected consumption growth)
- The two models have different implications for long run and short run correlations between consumption and returns.
- Can use these differences to test the models
Summary of Main Results

Stylized Facts in the data

- Short run correlations are lower than long run correlations between consumption and returns.
- Stock market returns "lead" rather than "lag" consumption growth.

Performance of the models

- External habit formation models have a difficult time matching the correlation over different horizons and the lead-lag relation between consumption growth and asset returns.
- By contrast, trend cycle models can match both the short run and the long run feature of the data.
Summary of Main Results

Stylized Facts in the data

- Short run correlations are lower than long run correlations between consumption and returns.
- Stock market returns "lead" rather than "lag" consumption growth.

Performance of the models

- External habit formation models have a difficult time matching the correlation over different horizons and the lead-lag relation between consumption growth and asset returns.
- By contrast, trend cycle models can match both the short run and the long run feature of the data.
Summary of Main Results

Stylized Facts in the data

- Short run correlations are lower than long run correlations between consumption and returns.
- Stock market returns "lead" rather than "lag" consumption growth.

Performance of the models

- External habit formation models have a difficult time matching the correlation over different horizons and the lead-lag relation between consumption growth and asset returns.
- By contrast, trend cycle models can match both the short run and the long run feature of the data.
Summary of Main Results

Stylized Facts in the data
- Short run correlations are lower than long run correlations between consumption and returns.
- Stock market returns "lead" rather than "lag" consumption growth.

Performance of the models
- External habit formation models have a difficult time matching the correlation over different horizons and the lead-lag relation b/t consumption growth and asset returns.
 - By contrast, trend cycle models can match both the short run and the long run feature of the data.
Summary of Main Results

Stylized Facts in the data

- Short run correlations are lower than long run correlations between consumption and returns.
- Stock market returns "lead" rather than "lag" consumption growth.

Performance of the models

- External habit formation models have a difficult time matching the correlation over different horizons and the lead-lag relation b/t consumption growth and asset returns.
- By contrast, trend cycle models can match both the short run and the long run feature of the data.
Roadmap

- Stylized facts in the data, both time-domain analysis and the frequency domain analysis
 - Long-horizon implications for habit models
 - Long-horizon implications for trend-cycle models
 - Conclusions
Roadmap

- Stylized facts in the data, both time-domain analysis and the frequency domain analysis
- Long-horizon implications for habit models
- Long-horizon implications for trend-cycle models
- Conclusions
Roadmap

- Stylized facts in the data, both time-domain analysis and the frequency domain analysis
- Long-horizon implications for habit models
- Long-horizon implications for trend-cycle models
- Conclusions
Stylized facts in the data, both time-domain analysis and the frequency domain analysis
Long-horizon implications for habit models
Long-horizon implications for trend-cycle models
Conclusions
Correlation and Covariance Over Long Horizons: Data

Both cumulative correlation \(\text{corr} \left(\sum_{j=1}^{K} r_{t+j}, \sum_{j=1}^{K} g_{c,t+j} \right) \) and cumulative covariance \(\text{cov} \left(\sum_{j=1}^{K} r_{t+j}, \sum_{j=1}^{K} g_{c,t+j} \right) \) are increasing with horizon.
Correlation between consumption growth and asset returns:

- **High Frequency Correlation (with cycle b/t 0.5 and 3 years):** 0.114
- **Low Frequency Correlation (with cycle longer than 3 years):** 0.342

Granger’s Causality Test:

- **Consumption does NOT Granger-cause returns**
 \(p\text{-value} = 0.4482 \)
- **Asset returns DO Granger-cause consumption**
 \(p\text{-value} = 4.3770 \times 10^{-4} \)
Band-Pass Filter and Granger Causality Test: Data

Correlation between consumption growth and asset returns:

- High Frequency Correlation (with cycle b/t 0.5 and 3 years): 0.114
- Low Frequency Correlation (with cycle longer than 3 years): 0.342

Granger’s Causality Test:

- Consumption does NOT Granger-cause returns
 \((p\text{-value} = 0.4482) \)
- Asset returns DO Granger-cause consumption
 \((p\text{-value} = 4.3770 \times 10^{-4}) \)
Correlation between consumption growth and asset returns:

- High Frequency Correlation (with cycle b/t 0.5 and 3 years): 0.114
- Low Frequency Correlation (with cycle longer than 3 years): 0.342

Granger’s Causality Test:
- Consumption does NOT Granger-cause returns \((p\text{-value} = 0.4482)\)
- Asset returns DO Granger-cause consumption \((p\text{-value} = 4.3770 \times 10^{-4})\)
Correlation between consumption growth and asset returns:

- High Frequency Correlation (with cycle b/t 0.5 and 3 years): 0.114
- Low Frequency Correlation (with cycle longer than 3 years): 0.342

Granger’s Causality Test:

- Consumption does NOT Granger-cause returns (p-value = 0.4482)
- Asset returns DO Granger-cause consumption (p-value = 4.3770×10^{-4})
Coherency of Consumption and Returns: Quarterly Data

The Long and The Short of Asset Prices
Cospectrum of Consumption and Returns: Quarterly Data

Jianfeng Yu The Long and The Short of Asset Prices
Phase Spectrum of Consumption and Returns: Quarterly Data

Phase Spectrum

Phase (degrees)

frequency

Jianfeng Yu The Long and The Short of Asset Prices
External Habit-Formation: Model Setup

- Consumption growth

\[g_{c,t} = \mu_c + \epsilon_{c,t} \]

- The cointegrating constraint

\[d_t = \mu_{dc} + c_t + \delta_t \]
\[\delta_t = \rho \delta_{t-1} + \epsilon_{\delta,t}, \]
External Habit-Formation: Model Setup

- Consumption growth

\[g_{c,t} = \mu_c + \epsilon_{c,t} \]

- The cointegrating constraint

\[d_t = \mu_{dc} + c_t + \delta_t \]
\[\delta_t = \rho \delta_t - 1 + \epsilon_{\delta,t} \]
Model Setup

- The agent’s problem

\[E_t \sum_{k=0}^{\infty} \delta^k \frac{(C_{t+k} - X_{t+k})^{1-\gamma} - 1}{1-\gamma} \]

- The log surplus ratio \(s_t = \log \left(\frac{C_t - X_t}{C_t} \right) \)

\[s_{t+1} = (1 - \phi) \bar{s} + \phi s_t + \lambda (s_t) \epsilon_{c, t+1} \]

- The sensitivity function \(\lambda (s) \)

\[\lambda (s_t) = \begin{cases}
\frac{1}{\bar{s}} \sqrt{1 - 2(s_t - \bar{s})} - 1, & s_t \leq s_{\text{max}} \\
0, & s_t \geq s_{\text{max}}
\end{cases} \]

with

\[s_{\text{max}} = \bar{s} + \frac{1}{2} \left(1 - \bar{s}^2 \right), \quad \bar{s} = \sigma_c \sqrt{\frac{\gamma}{1 - \phi}} \]
Model Setup

- The agent's problem
 \[E_t \sum_{k=0}^{\infty} \delta_k \frac{(C_{t+k} - X_{t+k})^{1-\gamma} - 1}{1 - \gamma} \]

- The log surplus ratio
 \[s_t = \log \left(\frac{C_t - X_t}{C_t} \right) \]
 \[s_{t+1} = (1 - \phi) \bar{s} + \phi s_t + \lambda(s_t) \epsilon_{c,t+1} \]

- The sensitivity function \(\lambda(s) \)
 \[\lambda(s_t) = \begin{cases}
 \frac{1}{\bar{s}} \sqrt{1 - 2(s_t - \bar{s})} - 1, & s_t \leq s_{\text{max}} \\
 0, & s_t \geq s_{\text{max}}
 \end{cases} \]

with
 \[s_{\text{max}} = \bar{s} + \frac{1}{2} (1 - \bar{s}^2), \quad \bar{s} = \sigma_c \sqrt{\frac{\gamma}{1 - \phi}} \]
Model Setup

- The agent’s problem
 \[E_t \sum_{k=0}^{\infty} \delta^k \left(\frac{(C_{t+k} - X_{t+k})^{1-\gamma} - 1}{1 - \gamma} \right) \]

- The log surplus ratio \(s_t = \log \left(\frac{C_t - X_t}{C_t} \right) \)
 \[s_{t+1} = (1 - \phi) \bar{s} + \phi s_t + \lambda(s_t) \epsilon_{c,t+1} \]

- The sensitivity function \(\lambda(s) \)
 \[\lambda(s_t) = \begin{cases} \frac{1}{\bar{s}} \sqrt{1 - 2(s_t - \bar{s})} - 1, & s_t \leq s_{\text{max}} \\ 0, & s_t \geq s_{\text{max}} \end{cases} \]

with
\[s_{\text{max}} = \bar{s} + \frac{1}{2} (1 - \bar{s}^2), \quad \bar{S} = \sigma_c \sqrt{\frac{\gamma}{1 - \phi}} \]
Log-linear Approximation

- Assume linear approximation on pd ratio

\[z_t \equiv \log(P_t/D_t) = a_0 + a_1 s_t + a_2 \delta_t \]

- The asset returns can be approximated by

\[r_{t+1} \approx \alpha - \beta_S \tilde{S}_{t+1} + u_{t+1} \]
\[\tilde{S}_t \approx \sum_{j=1}^{\infty} \phi^{j-1} g_{c,t-j} \]
\[u_{t+1} \equiv \tau \epsilon_{c,t+1} + [1 + a_2 \rho] \epsilon_{\delta,t+1} \]
\[\beta_S = \frac{a_1 (\rho \phi - 1)}{\tilde{S}} > 0 \quad \text{iff} \quad a_1 > 0 \]
Log-linear Approximation

- Assume linear approximation on pd ratio
 \[z_t \equiv \log(P_t/D_t) = a_0 + a_1 s_t + a_2 \delta_t \]

- The asset returns can be approximated by
 \[
 r_{t+1} \approx \alpha - \beta_S \tilde{S}_{t+1} + u_{t+1} \\
 \tilde{S}_t \approx \sum_{j=1}^{\infty} \phi^{j-1} g_{c,t-j} \\
 u_{t+1} \equiv \tau \epsilon_{c,t+1} + [1 + a_2 \rho] \epsilon_{\delta,t+1} \\
 \beta_S = \frac{a_1 (\rho \phi - 1)}{\tilde{S}} > 0 \quad \text{iff} \quad a_1 > 0
 \]
Increasing Cospectrum, Negative Low-Frequency Correlation

Proposition

- As long as the model produces countercyclical equity premium, more covariation between consumption and returns comes from high frequency components (i.e. the cospectrum is an increasing function of the frequency.)
- As long as the model produces a reasonable equity premium, the correlations between consumption growth and asset returns at low frequencies (or long horizons) are negative.

Both implications are the opposite of the data.
Increasing Cospectrum, Negative Low-Frequency Correlation

Proposition

- As long as the model produces countercyclical equity premium, more covariation between consumption and returns comes from high frequency components (i.e. the cospectrum is an increasing function of the frequency.)
- As long as the model produces a reasonable equity premium, the correlations between consumption growth and asset returns at low frequencies (or long horizons) are negative.

Both implications are the opposite of the data.
Increasing Cospectrum, Negative Low-Frequency Correlation

Proposition

- **As long as the model produces countercyclical equity premium, more covariation between consumption and returns comes from high frequency components (i.e. the cospectrum is an increasing function of the frequency.)**

- **As long as the model produces a reasonable equity premium, the correlations between consumption growth and asset returns at low frequencies (or long horizons) are negative.**

Both implications are the opposite of the data.
Increasing Cospectrum, Negative Low-Frequency Correlation

Proposition

- As long as the model produces countercyclical equity premium, more covariation between consumption and returns comes from high frequency components (i.e. the cospectrum is an increasing function of the frequency.)

- As long as the model produces a reasonable equity premium, the correlations between consumption growth and asset returns at low frequencies (or long horizons) are negative.

Both implications are the opposite of the data.
Parameter Choices

<table>
<thead>
<tr>
<th>Statistics</th>
<th>Variable</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean consumption growth (%)</td>
<td>g_c</td>
<td>1.89</td>
</tr>
<tr>
<td>Std. of consumption growth (%)</td>
<td>σ_c</td>
<td>1.22</td>
</tr>
<tr>
<td>Log risk-free rate (%)</td>
<td>r^f</td>
<td>0.94</td>
</tr>
<tr>
<td>Persistence coefficient in habit</td>
<td>ϕ</td>
<td>0.87</td>
</tr>
<tr>
<td>Persistence coefficient in δ_t</td>
<td>ρ_δ</td>
<td>0.89</td>
</tr>
<tr>
<td>Std. of the innovation in δ_t</td>
<td>σ_δ</td>
<td>0.112</td>
</tr>
<tr>
<td>Risk aversion coefficient</td>
<td>γ</td>
<td>2</td>
</tr>
<tr>
<td>Correlation b/t innovations in c_t and δ_t</td>
<td>$\rho_{c,\delta}$</td>
<td>-0.1</td>
</tr>
<tr>
<td>Subjective discount factor</td>
<td>δ</td>
<td>0.89</td>
</tr>
</tbody>
</table>

All the quantities are annualized.
Summary Statistics

<table>
<thead>
<tr>
<th>Statistics</th>
<th>Model</th>
<th>Postwar Sample</th>
<th>Long Sample</th>
</tr>
</thead>
<tbody>
<tr>
<td>$E(g_c)$</td>
<td>1.90</td>
<td>1.89</td>
<td>1.72</td>
</tr>
<tr>
<td>$\sigma(g_c)$</td>
<td>1.22</td>
<td>1.22</td>
<td>3.32</td>
</tr>
<tr>
<td>$E(r^f)$</td>
<td>0.94</td>
<td>0.94</td>
<td>2.92</td>
</tr>
<tr>
<td>$E(r - r^f)$</td>
<td>6.71</td>
<td>6.69</td>
<td>3.90</td>
</tr>
<tr>
<td>$\sigma(r - r^f)$</td>
<td>15.34</td>
<td>15.7</td>
<td>18.0</td>
</tr>
<tr>
<td>$\exp[E(p - d)]$</td>
<td>18.30</td>
<td>24.7</td>
<td>21.1</td>
</tr>
<tr>
<td>$\sigma(p - d)$</td>
<td>0.31</td>
<td>0.26</td>
<td>0.27</td>
</tr>
<tr>
<td>$AC_1(p - d)$</td>
<td>0.84</td>
<td>0.87</td>
<td>0.78</td>
</tr>
</tbody>
</table>

Annualized Quantities
Long-Horizon Correlations

Habit Model 1
Habit Model 2
Habit Model 3
Data

Quarters
Correlations

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
1 2 3 4 5 6 7 8
Spectra For the Model and Data

The Histogram of Differences Between Low- and High-Frequency Correlations

Data

Jianfeng Yu The Long and The Short of Asset Prices
Consumption Dynamics

- Consumption growth follows ARMA(2,2):

\[
g_{c,t} - \mu_c = \rho_{c,1} (g_{c,t-1} - \mu_c) + \rho_{c,2} (g_{c,t-2} - \mu_c) + \epsilon_{c,t} + \theta_{c,1}\epsilon_{c,t-1} + \theta_{c,2}\epsilon_{c,t-2}
\]

where \(\epsilon_{c,t} \sim WN(0, \sigma^2_c) \).

- Equivalent to trend-cycle representation for log consumption:

\[
c_t = T_t + x_t
\]
\[
T_t = T_{t-1} + \mu + \xi_t
\]
\[
x_t = \rho_{x,1}x_{t-1} + \rho_{x,2}x_{t-2} + \epsilon_{x,t}
\]
Consumption Dynamics

- Consumption growth follows ARMA(2,2):

\[g_{c,t} - \mu_c = \rho_{c,1} (g_{c,t-1} - \mu_c) + \rho_{c,2} (g_{c,t-2} - \mu_c) + \epsilon_{c,t} \]

\[+ \theta_{c,1} \epsilon_{c,t-1} + \theta_{c,2} \epsilon_{c,t-2} \]

where \(\epsilon_{c,t} \sim WN (0, \sigma_c^2) \).

- Equivalent to trend-cycle representation for log consumption:

\[c_t = T_t + x_t \]

\[T_t = T_{t-1} + \mu + \xi_t \]

\[x_t = \rho_{x,1} x_{t-1} + \rho_{x,2} x_{t-2} + \epsilon_{x,t} \]
Consumption Dynamics: Estimation From Quarterly Data

<table>
<thead>
<tr>
<th>Model</th>
<th>μ_c</th>
<th>$\rho_{c,1}$</th>
<th>$\rho_{c,2}$</th>
<th>$\theta_{c,1}$</th>
<th>$\theta_{c,2}$</th>
<th>σ_c</th>
</tr>
</thead>
<tbody>
<tr>
<td>Estimate</td>
<td>0.006</td>
<td>1.304</td>
<td>-0.554</td>
<td>-1.029</td>
<td>0.436</td>
<td>0.004</td>
</tr>
<tr>
<td>Standard Error</td>
<td>0.001</td>
<td>0.376</td>
<td>0.239</td>
<td>0.366</td>
<td>0.149</td>
<td>2 \cdot 10^{-4}</td>
</tr>
<tr>
<td>Trend + AR(2)</td>
<td>μ_c</td>
<td>$\rho_{x,1}$</td>
<td>$\rho_{x,2}$</td>
<td>σ_{ϵ_x}</td>
<td>σ_ξ</td>
<td>$\rho_{\epsilon_x,\xi}$</td>
</tr>
<tr>
<td>Implied Value</td>
<td>0.006</td>
<td>1.304</td>
<td>-0.554</td>
<td>0.005</td>
<td>0.007</td>
<td>-0.957</td>
</tr>
</tbody>
</table>
Reduced Form of Trend-Cycle Model

- Consumption and dividend dynamics

\[c_t = T_t + x_t \]
\[T_t = T_{t-1} + \mu + \xi_t \]
\[x_t = \rho_{x,1}x_{t-1} + \rho_{x,2}x_{t-2} + \epsilon_{x,t} \]
\[\delta_t = d_t - c_t - \mu_{dc} = \rho\delta \delta_{t-1} + \epsilon_{\delta,t} \]

- Expected return

\[E_{t-1}(r_t) = -\beta_C x_{t-1}, \quad \text{where} \quad \beta_C > 0 \]

- Realized returns:

\[r_t \approx -\beta_C x_{t-1} + u_t \]
\[u_t = \epsilon_{\delta,t}\bar{\psi} + \epsilon_{x,t} \cdot (\rho^* - \beta_C \rho \bar{\rho}) + \xi_t \]
Reduced Form of Trend-Cycle Model

- Consumption and dividend dynamics

\[c_t = T_t + x_t \]
\[T_t = T_{t-1} + \mu + \xi_t \]
\[x_t = \rho_x,1 x_{t-1} + \rho_x,2 x_{t-2} + \epsilon_x,t \]
\[\delta_t \equiv d_t - c_t - \mu dc = \rho \delta \delta_{t-1} + \epsilon\delta_t \]

- Expected return

\[E_{t-1} (r_t) = -\beta_C x_{t-1}, \quad \text{where} \quad \beta_C > 0 \]

- Realized returns:

\[r_t \approx -\beta_C x_{t-1} + u_t \]
\[u_t = \epsilon_{\delta,t} \bar{\psi} + \epsilon_x,t \cdot (\rho^* - \beta_C \rho \bar{\rho}) + \xi_t \]
Reduced Form of Trend-Cycle Model

- Consumption and dividend dynamics

\[c_t = T_t + x_t \]
\[T_t = T_{t-1} + \mu + \xi_t \]
\[x_t = \rho x_{t-1} + \rho x_{t-2} + \epsilon_x, t \]
\[\delta_t \equiv d_t - c_t - \mu dc = \rho \delta \delta_{t-1} + \epsilon_{\delta, t} \]

- Expected return

\[E_{t-1} (r_t) = -\beta_C x_{t-1}, \quad \text{where } \beta_C > 0 \]

- Realized returns:

\[r_t \approx -\beta_C x_{t-1} + u_t \]
\[u_t = \epsilon_{\delta, t} \psi + \epsilon_x, t \cdot (\rho^* - \beta C \rho \bar{p}) + \xi_t \]
The parameter values $\beta_C = 2$, $\rho_{u,\xi} = 0$ and $\rho_{u,\xi} = 0$.

Jianfeng Yu The Long and The Short of Asset Prices
The parameter values $\beta_C = 2$, $\rho_{u,\xi} = 0.2$ and $\rho_{u,\epsilon_x} = -0.2$.
The parameter values $\beta_C = 2$, $\rho_{u,\xi} = 0.5$ and $\rho_{u,\epsilon_x} = -0.5$.
The parameter values $\beta_C = 5$, $\rho_{u,\xi} = 0$ and $\rho_{u,\epsilon_x} = 0$.

Coherency

Cospectrum

Phase Spectrum
Habit-Formation Models: ARMA(2,2) Consumption Growth
Band-Pass Filter Analysis of Different Models

Correlations:

<table>
<thead>
<tr>
<th></th>
<th>C-C</th>
<th>IID</th>
<th>ARMA</th>
<th>B-Y</th>
<th>P-Y</th>
<th>data</th>
</tr>
</thead>
<tbody>
<tr>
<td>Low-Freq. Corr.</td>
<td>0.65</td>
<td>0.78</td>
<td>0.72</td>
<td>0.15</td>
<td>0.61</td>
<td>0.34</td>
</tr>
<tr>
<td>High-Freq. Corr.</td>
<td>0.75</td>
<td>0.89</td>
<td>0.81</td>
<td>-0.04</td>
<td>0.25</td>
<td>0.11</td>
</tr>
<tr>
<td>95% Diff. from M.C.</td>
<td>0.02</td>
<td>0.02</td>
<td>0.04</td>
<td>0.34</td>
<td>0.50</td>
<td>0.23</td>
</tr>
</tbody>
</table>
Conclusion

- Develop a new test to evaluate two types of leading asset pricing models.
 - External Habit-Formation Models:
 - does not match the correlation over different horizons and the lead-lag relation b/t consumption growth and asset returns
 - Long-Run Risk and Trend-Cycle Models:
 - can match the short-run and long-run features of the data
Conclusion

- Develop a new test to evaluate two types of leading asset pricing models.
- External Habit-Formation Models:
 - does not match the correlation over different horizons and the lead-lag relation b/t consumption growth and asset returns
- Long-Run Risk and Trend-Cycle Models:
 - can match the short-run and long-run features of the data
Conclusion

- Develop a new test to evaluate two types of leading asset pricing models.
- External Habit-Formation Models:
 - does not match the correlation over different horizons and the lead-lag relation b/t consumption growth and asset returns
- Long-Run Risk and Trend-Cycle Models:
 - can match the short-run and long-run features of the data