Inflation risk premia in the US and the euro area

Peter Hördahl
Bank for International Settlements

Oreste Tristani
European Central Bank

19 June 2008

The opinions expressed are personal and should not be attributed to the Bank for International Settlements or the European Central Bank.
Motivation

- Nominal and real bond yields are often used by central banks to extract information of relevance for monetary policy.

- Break-even inflation rates used as an indicator of markets' inflation expectations / a measure of central bank credibility

- Break-even rates are a noisy measure due to the existence of premia; notably: inflation risk premia (but also zero-coupon effects, liquidity premia)

- How large are inflation premia in the US and the euro area? What are their properties/determinants?
Outline of the presentation

- Methodology
- Data and estimation method
- Results: inflation risk premia; raw vs. premium-adjusted break-even rates; properties and macro determinants
Methodology

• Inflation risk premium filtered from the overall term premium filtered from yields: plenty of measurement uncertainty

• Guidance from intuition/theory? Inflation risk premium should be proportional to inflation variability, hence positive and increasing in maturity

 – in theory a negative premium is possible; sign depends on covariance between inflation (real returns on bonds) and SDF (consumption)

 – recent empirical results point to mostly positive inflation premia, but the magnitude varies: + and sizeable in Buraschi and Jiltsov (2005) and Ang et al. (2006); small but + for long maturities in Durham (2006) and D’Amico et al. (2007). Euro evidence in Garcia and Werner (2008): small and ++.
Methodology

- Important to include relevant information: index-linked and macro data; survey data

- Consistency with macro dynamics: inflation expectations derived from a "structural," empirically plausible macro-model

- No-arbitrage restrictions added to the macro structure: the nominal and real term structures are modelled to be arbitrage-free and mutually consistent

→ Macro-based interpretations of term structure dynamics, including dynamic responses of yields, premia, and break-even inflation rates to structural shocks
The model: Macro

inflation: \[\pi_t = \bar{\pi} + \mu_\pi E_t \pi_{t+} + (1 - \mu_\pi) \delta_\pi \pi_{t-} + \delta_x x_t + \varepsilon^\pi_t \]

gap: \[x_t = \mu_x E_t x_{t+} + (1 - \mu_x) \zeta_x x_{t-} - \zeta_r (r_t - E_t [\pi_{t+1}]) + \varepsilon^x_t \]

short rate: \[r_t = \bar{r} + (1 - \rho) [\beta (E_t \pi_{t+12} - \pi^*_t) + \gamma x_t] + \rho r_{t-1} + \eta_t \]

target: \[\pi^*_t = \phi_{\pi^*} \pi^*_{t-1} + u^\pi_t \]
Key ingredients of the model: intuition

Macro: model

\[
\begin{bmatrix} X_{1,t+1} \\ E_t X_{2,t+1} \end{bmatrix} = H \begin{bmatrix} X_{1,t} \\ X_{2,t} \end{bmatrix} + K r_t + \xi_{t+1}
\]

\[r_t = -F \begin{bmatrix} X_{1,t} \\ X_{2,t} \end{bmatrix}\]

Macro: solution

\[X_{2,t} = C X_{1,t}\]

\[X_{1,t+1} = M X_{1,t} + \xi_{1,t+1}\]

Finance: assumption on stochastic discount factor \(\rightarrow\) nominal / real pricing kernels

\[Y_t = A + B X_{1,t}\]

\[Y^*_t = A^* + B^* X_{1,t}\]
The model: Market prices of risk

Market prices of risk determined empirically as affine functions of the states

\[\lambda_t = \lambda_0 + \lambda_1 \times States_t \]

We use

\[
\lambda_t = \begin{pmatrix} \lambda_{01} \\ \lambda_{02} \\ \lambda_{03} \\ \lambda_{04} \end{pmatrix} + \begin{pmatrix} \lambda_{11} & \lambda_{12} & \lambda_{13} & \lambda_{14} \\ \lambda_{21} & \lambda_{22} & \lambda_{23} & \lambda_{24} \\ \lambda_{31} & \lambda_{32} & \lambda_{33} & \lambda_{34} \\ \lambda_{41} & \lambda_{42} & \lambda_{43} & \lambda_{44} \end{pmatrix} \begin{pmatrix} \pi_t^* \\ r_t \\ \pi_t \\ x_t \end{pmatrix}
\]

Each row of \(\lambda_t \) determines the price of risk associated with each of the states; these vary over time with the level of the states.
The inflation risk premium

The short-rate inflation premium can be written as

\[r_t = r_t^* + E_t [\pi_{t+1}] + prem_{\pi,t}^1 + \frac{1}{2} \Sigma_{\pi} \Sigma_{\pi}' \]

where

\[prem_{\pi,t}^1 = -\Sigma_{\pi} (\lambda_0 + \lambda_1 X_{1,t}) \]
\[\Sigma_{\pi} \equiv C_{\pi} \Sigma \quad \text{“amount of risk”} \]
\[\lambda_t = \lambda_0 + \lambda_1 X_{1,t} \quad \text{“price of risk”} \]
Estimation

• Bayesian Maximum Likelihood using Kalman Filter; we exploit prior information on structural economic relationships.

• Real yields enter the likelihood function late in the sample (US - 2003; euro area - 2004); reduces initial liquidity problems.

• Survey data information (inflation and short-term interest rate) explicitly included in the estimation.

• Estimation using simulated annealing to reduce risk of local maxima.
Data - US sample: January 1990 — April 2008

- Macro data: y-o-y inflation, output gap (log-GDP in deviations from CBO estimate of potential; ARIMA forecast/interpolation)

- Nominal yields: 1-, 3-, 6-, 12-m, 3-, 5-, 10-y zero-coupon rates (Fed Board)

- Real yields: 3-, 5-, 7-, and 10-y zero-coupon rates extracted from US TIPS (as of 2003)

- Survey data: 3-m rate and inflation in 2/4 quarters and next 10 years (SPF)
Data - euro sample: January 1999 – April 2008

- Macro data: y-o-y inflation, output gap (log-GDP in deviations from a quadratic trend, as in CGG98; ARIMA forecast/interpolation)

- Nominal yields: 1-, 3-, 6-, 12-m, 3-, 5-, 10-y zero-coupon rates extracted from German bond prices and EUR money market rates

- Real yields: 3-, 5-, 7-, and 10-y zero-coupon rates extracted from French and German HICP-linked bonds

- Survey data: 3-m rate in 3/12 months (Consensus); inflation 1, 2, 5 years ahead (SPF)
Results: Inflation and estimated inflation target - US
Inflation and estimated inflation target: euro area
Term structure of average risk premia: US
Term structure of average risk premia: euro area
Estimated 10-year US premia

- -- nominal premium
- --- inflation premium
US 10-year break-even inflation rates and survey inflation forecasts
Euro area 10-year break-even inflation rates and survey inflation forecasts
Estimated US 10-year inflation risk premium and output gap
Estimated US 10-year inflation risk premium and inflation
Estimated euro 10-year inflation risk premium and output gap

![Graph showing estimated euro 10-year inflation risk premium and output gap from 2000 to 2009. The solid line represents the 10-year inflation premium, and the dashed line represents the output gap (rescaled).]
Estimated euro 10-year inflation risk premium and inflation
Responses to an output gap shock: US

- 2y break-even rate to gap
- 10y break-even rate to gap
- 2y expected inflation to gap
- 10y expected inflation to gap
- 2y inflation premium to gap
- 10y inflation premium to gap
Responses to an inflation shock: US
Responses to an output gap shock: euro area
Responses to an inflation shock: euro area

By break-even rate to inflation

10y break-even rate to inflation

By expected inflation to inflation

10y expected inflation to inflation

By inflation premium to inflation

10y inflation premium to inflation
Conclusions

- Using a macro-finance model for real and nominal term structure dynamics, we provide estimates of the size and dynamics of inflation risk premia in the US and the euro area.
- Our framework allows us to obtain macro interpretations of term structure and premia dynamics.
- Inflation risk premia are positive and relatively small on average; they vary over time, mostly in response to output gap and inflation changes.
- Break-even inflation rates are therefore a noisy measure of inflation expectations, but, at least in the US, much of their variation seem to be due to changes in expected inflation.
Extra slides
Figure 1a: US nominal zero-coupon yields
Figure 1b: Euro area nominal zero-coupon yields
Figure 2a: US real zero-coupon yields
Figure 2b: Euro area real zero-coupon yields
Figure 3a: US zero-coupon break-even inflation rates
Figure 3b: Euro area zero-coupon break-even inflation rates