Information and Liquidity

Benjamin Lester1 Andrew Postlewaite2 Randall Wright2

1Department of Economics
University of Western Ontario

2Department of Economics
University of Pennsylvania

June 21, 2008
Questions

1. How does the liquidity of an asset affect:
 - its price?
 - terms of trade/allocations in real transactions?

2. How are these results sensitive to monetary policy?
 - i.e. the rate of return on the most liquid asset: cash.
Questions

1. How does the liquidity of an asset affect:
 - its price?
 - terms of trade/allocation in real transactions?

2. How are these results sensitive to monetary policy?
 - i.e. the rate of return on the most liquid asset: cash.

3. Why/when is a dominated medium of exchange used?

4. Is this sensitive to monetary policy?
The Model: Key Features

- A medium of exchange is *essential* in some transactions.

- There exist multiple assets that differ with respect to:

 - promise to future payoffs.

 - probability of acceptance (*liquidity*) in these transactions.

 - first exogenous, then endogenous.
The Model: Key Features

- A medium of exchange is *essential* in some transactions.

- There exist multiple assets that differ with respect to:
 - promise to future payoffs.
 - probability of acceptance (*liquidity*) in these transactions.
 - first exogenous, then endogenous.
 - buyers can create counterfeit assets.
 - sellers can verify value of assets.
Findings

1. Assets used as medium of exchange: liquidity premium.

2. Inflation causes a decrease in the rate of return on assets.
 - Formalization of the Tobin effect.
 - The Fisher equation does not hold.
Findings

1. Assets used as medium of exchange: liquidity premium.

2. Inflation causes a decrease in the rate of return on assets.
 - Formalization of the Tobin effect.
 - The Fisher equation does not hold.

3. Use of dominated med. of exchange potentially explained by:
 - Coordination failure between buyers and sellers.

4. Inflation can increase liquidity of other assets.
 - E.g. dollarization in high inflation regimes.
The Model: Timing

- Period divided into two sub-periods [Lagos & Wright ('05)].

Decentralized Market (DM)	Centralized Market (CM)	(DM)

t | $t + 1$

Trade | Redeem assets, Work, Consume, Choose portfolio

Lester, Postlewaite, and Wright
UWO and Penn
Information and Liquidity
Assets

- Two perfectly divisible assets:

 1. Fiat money.

 - Supply: M.

 - Grows at rate γ: $\dot{M} = \gamma M$.

 - Price (in terms of CM good): ϕ.

 2. Claims to a real asset.

 - Fixed supply: A.

 - Yields constant dividend: δ.

 - Price (in terms of CM good): ψ.
Centralized Market (CM)

- Agents choice variables:
 1. \(x \equiv \text{general consumption good (numeraire)} \).
 2. \(h \equiv \text{hours of labor} \).
 3. \((\hat{m}, \hat{a}) \equiv \text{portfolio of cash / assets} \).
 - detail: agent with \(a \) assets may not bring all to DM.
 - \(\hat{a}_1 \) left in CM, \(\hat{a}_2 \) brought to DM.

- Agent’s CM wealth:
 \[y = \phi m + (\delta + \psi)(a_1 + a_2) \.]
Centralized Market Maximization Problem

- Maximization Problem

\[W(y) = \max_{x, h, \hat{m}, \hat{a}_1, \hat{a}_2} \{ U(x) - h + \beta V(\hat{m}, \hat{a}_1, \hat{a}_2) \} \]

\[\text{s.t. } x = h + y - \phi(\hat{m}) - \psi(\hat{a}_1 + \hat{a}_2) + (\gamma - 1)M \]

- First order conditions

\[x : U'(x) = 1 \]

\[\hat{m} : \phi \geq \beta V_1(\hat{m}, \hat{a}_1, \hat{a}_2), = \text{ if } \hat{m} > 0 \]

\[\hat{a}_1 : \psi \geq \beta V_2(\hat{m}, \hat{a}_1, \hat{a}_2), = \text{ if } \hat{a}_1 > 0 \]

\[\hat{a}_2 : \psi \geq \beta V_3(\hat{m}, \hat{a}_1, \hat{a}_2), = \text{ if } \hat{a}_2 > 0 \]
Decentralized Market (DM)

- Meetings are bilateral and anonymous.
 - a medium of exchange is essential.
- $q \equiv$ specialized consumption good.
- $\lambda \equiv$ arrival rate of opportunities to buy.
 - utility: $u(q)$.
- $\lambda \equiv$ arrival rate of opportunities to sell.
 - disutility: $-c(q)$.
Two Types of Meetings

- **Type 1:** measure \(1 - \rho\) of agents accept only \(m\).
 - Arrival rate \(\lambda_1 = (1 - \rho)\lambda\).
 - Buyers’ transferable wealth \(y_1 = \phi m\).

- **Type 2:** measure \(\rho\) of agents accept \(m\) and \(a\).
 - Arrival rate \(\lambda_2 = \rho\lambda\).
 - Buyers’ transferable wealth \(y_2 = \phi m + (\psi + \delta)a_2\).
Decentralized Market Maximization Problem

- **Bargaining:** Nash bargaining pins down
 - \(p_j = \) real value paid by buyer.
 - \(q_j = \) amount of good seller produces.

- **Value function:**
 \[
 V(m, a_1, a_2) = (1 - \lambda)W(y) + \lambda_1 [u(q_1) + W(y - p_1)]
 + \lambda_2 [u(q_2) + W(y - p_2)] + k,
 \]

- **Solving the model:**
 - differentiate and insert into FOC to get Euler eqns.
 - use bargaining solution to eliminate \(\phi \) and \(\psi \).
Equilibrium

- ∃! steady-state monetary equilibrium.
 - \(\hat{m} > 0 \) and \(\hat{a}_2 > 0 \).
 - two cases: \(\hat{a}_1 > 0 \) or \(\hat{a}_1 = 0 \).

- If \(A > \bar{A} \), \(\hat{a}_1 > 0 \) and \(\psi = \delta/r \).
 - asset price = fundamental value.

- If \(A < \bar{A} \), \(\hat{a}_1 = 0 \) and \(\psi > \delta/r \).
 - asset price = fundamental value + liquidity premium.
Monetary Policy and Liquidity when $A < \bar{A}$

- $R_m = \frac{\hat{\phi}}{\phi} = \frac{1}{\gamma} = \frac{(1 + r)}{(1 + i)}$.

- $R_a = \frac{(\hat{\psi} + \delta)}{\psi} = 1 + \frac{\delta}{\psi}$.

<table>
<thead>
<tr>
<th>χ</th>
<th>$\frac{\partial q_1}{\partial \chi}$</th>
<th>$\frac{\partial q_2}{\partial \chi}$</th>
<th>$\frac{\partial \phi}{\partial \chi}$</th>
<th>$\frac{\partial \psi}{\partial \chi}$</th>
<th>$\frac{\partial R_m}{\partial \chi}$</th>
<th>$\frac{\partial R_a}{\partial \chi}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>i</td>
<td>$-$</td>
<td>$-$</td>
<td>$-$</td>
<td>$+$</td>
<td>$-$</td>
<td>$-$</td>
</tr>
<tr>
<td>ρ</td>
<td>$-$</td>
<td>$?$</td>
<td>$-$</td>
<td>$+$</td>
<td>0</td>
<td>$-$</td>
</tr>
</tbody>
</table>

- Inflation effects asset prices/returns and consumption in DM.

- Fisher equation does not hold.
Endogenous Liquidity

- All agents can verify cash at no cost.

- To verify claim to assets requires investment:
 - cost of investment for agent $i \in [0, 1]$ is $\kappa(i)$ with $\kappa'(i) \geq 0$.
 - flow cost, paid in preceding CM.

- Fraction of agents that accept asset, ρ, equivalent to fraction of agents that invest in verification technology.
 - $\rho = \text{probability of a type 2 meeting.}$
Equilibrium with Endogenous Liquidity

- Given ρ, expected return from investment:

$$\Pi(\rho) = \beta \lambda \left\{ S[q_2(\rho)] - S[q_1(\rho)] \right\}.$$

where $S[q_j(\rho)]$ is seller’s surplus from type j meeting.

- Decision rule is trivial:

 - invest if $\Pi(\rho) \geq \kappa$, not otherwise.
Equilibrium with Endogenous Liquidity

- Define
 1. CDF \(F \equiv \kappa^{-1}(i) \).
 2. Mapping \(T(\rho) = F[\Pi(\rho)] \).

- Equilibrium is a fixed point \(T(\rho^*) = \rho^* \).
 - existence follows from Brouwer.
 - simple conditions guarantee \(\rho^* \in (0, 1) \).
 - easy and natural to get multiplicity.
 - some examples...
Possible Equilibria: One Medium of Exchange

Case 1: $\rho^* = 1$

Case 2: $\rho^* = 0$

Lester, Postlewaite, and Wright
UWO and Penn
Information and Liquidity
Possible Equilibria: Two Media of Exchange

Case 3: Unique Equilibrium

Case 4: Multiple Equilibria
Monetary Policy and Liquidity

- Regime 1: \(i = 5\% \), Regime 2: \(i = 10\% \).
Conclusion

- When assets bear liquidity premium, real rates depend on perfectly anticipated inflation.
 - Fisher equation does not hold.
- Inflation reduces return on assets and affects allocations.
- Willingness to accept assets depends on monetary policy.
 - Inflation makes alternative assets more acceptable.
- Applications: M vs. interest-bearing assets, dollars vs. pesos...