Collective Rights Organizations and Upstream R&D Investment

Reiko Aoki Aaron Schiff

21 June 2008

Econometric Society North American Meeting
Outline

Introduction
 Issues
 What We Do

Model
 Framework
 Licensing Revenue Distribution and Antitrust Rules
 Assumptions

Equilibrium
 Ex-post (upstream innovation)
 Ex-ante: Upstream Innovation Model 1
 Ex-ante: Upstream Innovation Model 2

Conclusion
What is CRO?

- Collective Rights Organizations (CRO) (R. Merges, 1996)
What is CRO?

- Collective Rights Organizations (CRO) (R. Merges, 1996)
- Examples
 - Patent pools (MPEG, SARS Working Group, WiMAX)
 - ASCAP

Functions
- Centralized licensing of multiple intellectual property
- Overcome the royalty stacking (complementary IP) problem by collective licensing.
- Economies of scale in negotiations and royalty collection.
- Promotes downstream use (production, innovation) of multiple upstream IP
What is CRO?

- Collective Rights Organizations (CRO) (R. Merges, 1996)
- Examples
 - Patent pools (MPEG, SARS Working Group, WiMAX)
 - ASCAP
- Functions
What is CRO?

- Collective Rights Organizations (CRO) (R. Merges, 1996)
- Examples
 - Patent pools (MPEG, SARS Working Group, WiMAX)
 - ASCAP
- Functions
 - Centralized licensing of multiple intellectual property
 - Overcome the royalty stacking (complementary IP) problem by collective licensing.
 - Economies of scale in negotiations and royalty collection.
What is CRO?

- Collective Rights Organizations (CRO) (R. Merges, 1996)
- Examples
 - Patent pools (MPEG, SARS Working Group, WiMAX)
 - ASCAP
- Functions
 - Centralized licensing of multiple intellectual property
 - Overcome the royalty stacking (complementary IP) problem by collective licensing.
 - Economies of scale in negotiations and royalty collection.
 - Promotes **downstream use (production, innovation)** of multiple upstream IP
Focus of This Paper
Focus of This Paper

- Examine effects of CRO on **upstream** innovation
Focus of This Paper

- Examine effects of CRO on **upstream** innovation
- CRO of complementary intellectual property
Focus of This Paper

- Examine effects of CRO on **upstream innovation**
- CRO of complementary intellectual property
 - SARS vaccine research
 - Wireless technology
- Specifically, examine
Focus of This Paper

- Examine effects of CRO on **upstream innovation**
- CRO of complementary intellectual property
 - SARS vaccine research
 - Wireless technology
- Specifically, examine
 - Ex-post (upstream innovation) licensing
Focus of This Paper

- Examine effects of CRO on *upstream* innovation
- CRO of complementary intellectual property
 - SARS vaccine research
 - Wireless technology
- Specifically, examine
 - Ex-post (upstream innovation) licensing
 - Ex-ante incentives to invest in upstream research.
Focus of This Paper

- Examine effects of CRO on **upstream** innovation
- CRO of complementary intellectual property
 - SARS vaccine research
 - Wireless technology
- Specifically, examine
 - Ex-post (upstream innovation) licensing
 - Ex-ante incentives to invest in upstream research.
- Compare CRO licensing revenue (royalty) **distribution rules**.
Focus of This Paper

- Examine effects of CRO on **upstream** innovation
- CRO of complementary intellectual property
 - SARS vaccine research
 - Wireless technology
- Specifically, examine
 - Ex-post (upstream innovation) licensing
 - Ex-ante incentives to invest in upstream research.
- Compare CRO licensing revenue (royalty) **distribution rules**.
- Compare **antitrust rules**
Analysis - Factors to Consider

Licensing (CRO) is optimal ex-post (upstream innovation) given ex-post outcome (market structure).

Maximize joint profit.

Induce IP owners to join.

R&D incentive determined by ex-ante expected profit.

Ex-ante expected profit depends on ex-post profit and R&D technology (probability distribution over outcomes).

Ex-post optimal royalty distribution rule may not provide right incentive ex-ante.

Probability depends on number of firms investing (ex-ante market structure).

Some firms are competitors (substitute technology) and some are partners (complementary technology).
Analysis - Factors to Consider

- Licensing (CRO) is optimal **ex-post** (upstream innovation) given ex-post outcome (market structure)
 - Maximize joint profit
 - Induce IP owners to join

- Ex-ante expected profit depends on ex-post profit and R&D technology (probability distribution over outcomes)

- Ex-post optimal royalty distribution rule may not provide right incentive ex-ante

- Probability depends on number of firms investing (ex-ante market structure)

- Some firms are competitors (substitute technology) and some are partners (complementary technology)
Analysis - Factors to Consider

▶ Licensing (CRO) is optimal ex-post (upstream innovation) given ex-post outcome (market structure)
 ▶ Maximize joint profit
 ▶ Induce IP owners to join
▶ R&D incentive determined by ex-ante expected profit
Analysis - Factors to Consider

- Licensing (CRO) is optimal **ex-post** (upstream innovation) given ex-post outcome (market structure)
 - Maximize joint profit
 - Induce IP owners to join

- R&D incentive determined by **ex-ante expected profit**

- **Ex-ante expected profit** depends on **ex-post profit** and **R&D technology** (probability distribution over outcomes)
 - Ex-post optimal royalty distribution rule may not provide right incentive ex-ante
 - Probability depends on **number of firms** investing (ex-ante market structure)
 - Some firms are **competitors** (substitute technology) and some are **partners** (complementary technology)
Main Conclusions

In general, CROs stimulate upstream R&D incentive. But CROs may hurt the incentive of inventors with unique ability (ex-ante monopoly, firms ex-ante asymmetric). CROs dilute rent. CROs that distribute licensing revenue unequally among its members are less likely to lead to welfare loss. Unequal distribution helps form CRO. Ordering of profits by different CROs differs ex-ante and ex-post, and by firm (asymmetric) ⇒ likely to lead to disagreement regarding formation of CRO. CRO rules (revenue distribution, antitrust) should be determined taking into account R&D technology.
Main Conclusions

▶ In general, CROs stimulate upstream R&D incentive
Main Conclusions

- In general, CROs stimulate upstream R&D incentive
- But CROs may hurt incentive of inventor with unique ability (ex-ante monopoly, firms ex-ante asymmetric)
 - CRO dilutes rent
Main Conclusions

- In general, CROs stimulate upstream R&D incentive
- But CROs may hurt incentive of inventor with unique ability (ex-ante monopoly, firms ex-ante asymmetric)
 - CRO dilutes rent
- CRO that distributes licensing revenue unequally among its members is less likely to lead to welfare loss
 - Unequal distribution helps form CRO
Main Conclusions

- In general, CROs **stimulate upstream R&D incentive**
- But CROs may **hurt** incentive of inventor with **unique** ability (ex-ante monopoly, firms ex-ante asymmetric)
 - CRO dilutes rent
- CRO that distributes licensing revenue **unequally** among its members is **less likely** to lead to welfare **loss**
 - Unequal distribution helps form CRO
- Ordering of profits by different CROs **differ ex-ante and ex-post**, and by firm (asymmetric)
Main Conclusions

- In general, CROs stimulate upstream R&D incentive.
- But CROs may hurt incentive of inventor with unique ability (ex-ante monopoly, firms ex-ante asymmetric).
 - CRO dilutes rent.
- CRO that distributes licensing revenue unequally among its members is less likely to lead to welfare loss.
 - Unequal distribution helps form CRO.
- Ordering of profits by different CROs differ ex-ante and ex-post, and by firm (asymmetric) ⇒ likely to lead to disagreement regarding formation of CRO.
Main Conclusions

- In general, CROs **stimulate upstream R&D incentive**
- But CROs may **hurt** incentive of inventor with **unique** ability (ex-ante monopoly, firms ex-ante asymmetric)
 - CRO dilutes rent
- CRO that distributes licensing revenue **unequally** among its members is **less likely** to lead to welfare **loss**
 - Unequal distribution helps form CRO
- Ordering of profits by different CROs **differ ex-ante and ex-post**, and by firm (asymmetric) ⇒ likely to lead to disagreement regarding formation of CRO
- **CRO rules** (revenue distribution, antitrust) should be determined taking into account **R&D technology**
Framework

- New **downstream product** needs two complementary upstream innovations: A and B.
Framework

- New **downstream product** needs two complementary upstream innovations: A and B.
- Large number of competitive **upstream research firms**:
 - Each has capacity for one research ‘**project**’ at cost c
 - Specialized in development of A or B
 - Revenues only from licensing
- Each **project** either succeeds or fails (probabilistic).
New downstream product needs two complementary upstream innovations: A and B.

Large number of competitive upstream research firms:
- Each has capacity for one research ‘project’ at cost c
- Specialized in development of A or B
- Revenues only from licensing

Each project either succeeds or fails (probabilistic).

CRO
- Licenses on behalf of successful inventors.
- Objective is to maximize joint royalty revenues of its members.
Timing

- Innovation and licensing takes place in four stages:
Timing

Innovation and licensing takes place in four stages:

I. The antitrust rule is set and announced.
II. The CRO sets and announces a royalty redistribution rule consistent with the anti-trust rule.
Timing

- Innovation and licensing takes place in four stages:

 I. The antitrust rule is set and announced.
 II. The CRO sets and announces a royalty redistribution rule consistent with the anti-trust rule.
 III. Each research firm **decides to invest or not to invest** in an R&D project and those that invest invent a component according with given probability.
Innovation and licensing takes place in four stages:

I. The antitrust rule is set and announced.

II. The CRO sets and announces a royalty redistribution rule consistent with the anti-trust rule.

III. Each research firm decides to invest or not to invest in an R&D project and those that invest invent a component according with given probability.

IV. Successful inventors simultaneously decide to join or not to join the CRO or license independently, and then innovations are licensed by the CRO and/or any independent inventors and royalties are paid by licensees.
Licensing Revenue and Antitrust Rules

Two CRO royalty distribution rules

\[\pi = \text{total CRO licensing revenues} \]

Equal: With \(n \) members, each receives \(\frac{\pi}{n} \).

Unequal: If one component has a single inventor and the other component has \(n \geq 2 \) substitute inventors, the single inventor receives \(z \pi \) and the others receive \(\left(1 - z\right)\frac{\pi}{n} \) with \(z \in [0, 1] \). Otherwise, equal shares.

Strict antitrust rule: Licensing of substitutes is prohibited.
Licensing Revenue and Antitrust Rules

- Two CRO royalty distribution rules
 \(\pi = \text{total CRO licensing revenues} \)
 - **Equal:** With \(n \) members, each receives \(\pi/n \).
 - **Unequal:** If one component has a single inventor and the other component has \(n \geq 2 \) substitute inventors, the single inventor receives \(z\pi \) and the others receive \((1 - z)\pi/n \) with \(z \in [0, 1] \). Otherwise, equal shares.

- Strict antitrust rule: Licensing of substitutes is prohibited.
Licensing Revenue and Antitrust Rules

- Two CRO royalty distribution rules
 \(\pi = \text{total CRO licensing revenues} \)
 - **Equal**: With \(n \) members, each receives \(\pi/n \).
 - **Unequal**: If one component has a single inventor and the other component has \(n \geq 2 \) substitute inventors, the single inventor receives \(z\pi \) and the others receive \((1 - z)\pi/n \) with \(z \in [0, 1] \). Otherwise, equal shares.

- **Strict antitrust** rule: Licensing of substitutes is prohibited.
Model Summary

Component A

Component B

Research firms
Invest?
Projects
Success?
Inventions
Join clearinghouse?
Downstream licenses
Inventor’s profit
Assumptions

▶ Tragedy of Anticommons:
- $\pi_M \geq \pi_D$ and $W_0 \geq W_M \geq W_D$.
- π_M and W_M: Monopoly licensing profit and welfare.
- π_D and W_D: Duopoly licensing profit and welfare.
- W_0: Welfare when both components are licensed at a zero.

▶ $P(n, N)$: Probability that n substitute versions of a component are invented when N projects are undertaken for that component (probability of n success from N trials):
- $N \sum_{n=0}^{\infty} P(n, N) = 1$ and $\lim_{N \to \infty} P(n, N) = 0$.

Assumptions

- **Tragedy of Anticommons:**

 \[\pi_M \geq 2\pi_D \text{ and } W_0 \geq W_M \geq W_D. \]

- \(\pi_M \) and \(W_M \): Monopoly licensing profit and welfare.
- \(\pi_D \) and \(W_D \): Duopoly licensing profit and welfare.
- \(W_0 \): Welfare when both components are licensed at a zero
Assumptions

- **Tragedy of Anticommons:**
 \[\pi_M \geq 2\pi_D \text{ and } W_0 \geq W_M \geq W_D. \]

 - \(\pi_M\) and \(W_M\): Monopoly licensing profit and welfare.
 - \(\pi_D\) and \(W_D\): Duopoly licensing profit and welfare.
 - \(W_0\): Welfare when both components are licensed at a zero

- **\(P(n, N)\): Probability** that \(n\) substitute versions of a component are invented when \(N\) projects are undertaken for that component
Assumptions

- **Tragedy of Anticommons:**
 \[\pi_M \geq 2\pi_D \text{ and } W_0 \geq W_M \geq W_D. \]

- \(\pi_M \) and \(W_M \): Monopoly licensing profit and welfare.
- \(\pi_D \) and \(W_D \): Duopoly licensing profit and welfare.
- \(W_0 \): Welfare when both components are licensed at a zero

- **\(P(n, N) \): Probability** that \(n \) substitute versions of a component are invented when \(N \) projects are undertaken for that component (probability of \(n \) success from \(N \) trials):
 \[
 \sum_{n=0}^{N} P(n, N) = 1 \text{ and } \lim_{N \to \infty} P(n, N) = 0.
 \]
CRO Membership (ex-post)

Possible outcomes:

A and B (number of successful inventors of A and B):

Cases

Successful firms

\(n_A \) \(n_B \)

Case MM
1 1

Case MC:
1 (2 or more) 2 or more (1)

Case CC:
2 or more 2 or more

Who will join CRO?

Competitive component inventors (cases MC & CC) always join.

Case MM:
Both inventors join.

Avoid tragedy of anticommons.

Case MC:
Monopoly inventor will join an equal CRO if

\[
\pi_M / (n + 1) \geq \pi_D \quad (n \geq 2 \text{ is the number of inventors of the other component})
\]

Join an unequal CRO if

\[
z \pi_M \geq \pi_D.
\]

Case CC:
All inventors join.
CRO Membership (ex-post)

Possible outcomes: n_A and n_B (number of successful inventors of A and B):

<table>
<thead>
<tr>
<th>Cases \ Successful firms</th>
<th>n_A</th>
<th>n_B</th>
</tr>
</thead>
<tbody>
<tr>
<td>Case MM</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Case MC:</td>
<td>1 (2 or more)</td>
<td>2 or more (1)</td>
</tr>
<tr>
<td>Case CC:</td>
<td>2 or more</td>
<td>2 or more</td>
</tr>
</tbody>
</table>

Who will join CRO?

- Competitive component inventors (cases MC & CC) always join.
- **Case MM:** Both inventors join.
- Avoid tragedy of anticommons.

- **Case MC:** Monopoly inventor will join an equal CRO if
 \[
 \pi_M / (n + 1) \geq \pi_D \quad (n \geq 2 \text{ is the number of inventors of the other component})
 \]
 Join an unequal CRO if
 \[
 z \pi_M \geq \pi_D.
 \]
- **Case CC:** All inventors join.
CRO Membership (ex-post)

Possible outcomes: n_A and n_B (number of successful inventors of A and B):

<table>
<thead>
<tr>
<th>Cases \ Successful firms</th>
<th>n_A</th>
<th>n_B</th>
</tr>
</thead>
<tbody>
<tr>
<td>Case MM</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Case MC:</td>
<td>1 (2 or more)</td>
<td>2 or more (1)</td>
</tr>
<tr>
<td>Case CC:</td>
<td>2 or more</td>
<td>2 or more</td>
</tr>
</tbody>
</table>

Who will join CRO?

- Competitive component inventors (cases MC & CC) always join.
- Case MM: Both inventors join.
- Avoid tragedy of anticommons.
- Case MC: Monopoly inventor will join an equal CRO if

 $\frac{\pi_M}{n + 1} \geq \frac{\pi_D}{n}$

 (where $n \geq 2$ is the number of inventors of the other component)

 Then join an unequal CRO if $\pi_M \geq \pi_D$.
- Case CC: All inventors join.
CRO Membership (ex-post)

Possible outcomes: n_A and n_B (number of successful inventors of A and B):

<table>
<thead>
<tr>
<th>Cases \ Successful firms</th>
<th>n_A</th>
<th>n_B</th>
</tr>
</thead>
<tbody>
<tr>
<td>Case MM</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Case MC:</td>
<td>1 (2 or more)</td>
<td>2 or more (1)</td>
</tr>
<tr>
<td>Case CC:</td>
<td>2 or more</td>
<td>2 or more</td>
</tr>
</tbody>
</table>

Who will join CRO?

- Competitive component inventors (cases MC & CC) always join.
CRO Membership (ex-post)

- Possible outcomes: n_A and n_B (number of successful inventors of A and B):

<table>
<thead>
<tr>
<th>Cases \ Successful firms</th>
<th>n_A</th>
<th>n_B</th>
</tr>
</thead>
<tbody>
<tr>
<td>Case MM</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Case MC:</td>
<td>1 (2 or more)</td>
<td>2 or more (1)</td>
</tr>
<tr>
<td>Case CC:</td>
<td>2 or more</td>
<td>2 or more</td>
</tr>
</tbody>
</table>

- Who will join CRO?
 - Competitive component inventors (cases MC & CC) always join.
 - **Case MM**: Both inventors join.
 - Avoid tragedy of anticommons.
CRO Membership (ex-post)

- Possible outcomes: \(n_A \) and \(n_B \) (number of successful inventors of A and B):

<table>
<thead>
<tr>
<th>Cases \ Successful firms</th>
<th>(n_A)</th>
<th>(n_B)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Case MM</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Case MC: 1 (2 or more)</td>
<td>2 or more (1)</td>
<td></td>
</tr>
<tr>
<td>Case CC: 2 or more</td>
<td>2 or more</td>
<td></td>
</tr>
</tbody>
</table>

- Who will join CRO?
 - Competitive component inventors (cases MC & CC) always join.
 - **Case MM**: Both inventors join.
 - **Avoid tragedy of anticommons**.
 - **Case MC**: Monopoly inventor will
 - Join an equal CRO if \(\pi_M / (n + 1) \geq \pi_D \) (\(n \geq 2 \) is the number of inventors of the other component)
CRO Membership (ex-post)

- Possible outcomes: \(n_A \) and \(n_B \) (number of successful inventors of A and B):

<table>
<thead>
<tr>
<th>Cases \ Successful firms</th>
<th>(n_A)</th>
<th>(n_B)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Case MM</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Case MC:</td>
<td>1 (2 or more)</td>
<td>2 or more (1)</td>
</tr>
<tr>
<td>Case CC:</td>
<td>2 or more</td>
<td>2 or more</td>
</tr>
</tbody>
</table>

- Who will join CRO?
 - Competitive component inventors (cases MC & CC) always join.
 - **Case MM**: Both inventors join.
 - Avoid tragedy of anticommons.
 - **Case MC**: Monopoly inventor will
 - Join an equal CRO if \(\pi_M / (n + 1) \geq \pi_D \) (\(n \geq 2 \) is the number of inventors of the other component)
 - Join an unequal CRO if \(z \pi_M \geq \pi_D \).
CRO Membership (ex-post)

Possible outcomes: \(n_A \) and \(n_B \) (number of successful inventors of A and B):

<table>
<thead>
<tr>
<th>Cases \ Successful firms</th>
<th>(n_A)</th>
<th>(n_B)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Case MM</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Case MC:</td>
<td>1 (2 or more)</td>
<td>2 or more (1)</td>
</tr>
<tr>
<td>Case CC:</td>
<td>2 or more</td>
<td>2 or more</td>
</tr>
</tbody>
</table>

Who will join CRO?

- Competitive component inventors (cases MC & CC) always join.
 - **Case MM**: Both inventors join.
 - Avoid tragedy of anticommons.
 - **Case MC**: Monopoly inventor will
 - Join *an equal* CRO if \(\pi_M / (n + 1) \geq \pi_D \) (\(n \geq 2 \) is the number of inventors of the other component)
 - Join *an unequal* CRO if \(z\pi_M \geq \pi_D \).
 - **Case CC**: All inventors join.
Ex-post Profits

<table>
<thead>
<tr>
<th>CRO Type</th>
<th>Profit π_{MM}</th>
<th>Profit π_{M}</th>
<th>Profit π_{MC}</th>
<th>Profit π_{C}</th>
<th>Profit π_{CC}</th>
</tr>
</thead>
<tbody>
<tr>
<td>None</td>
<td>π_D</td>
<td>π_M</td>
<td>0</td>
<td>0</td>
<td>π_D</td>
</tr>
<tr>
<td>Equal</td>
<td>$\frac{\pi_M}{2}$</td>
<td>π_D</td>
<td>$\frac{\pi_M}{n}$</td>
<td>π_M</td>
<td>$\frac{\pi_M}{(n_A + n_B)}$</td>
</tr>
<tr>
<td>Unequal</td>
<td>$\frac{\pi_M}{2}$</td>
<td>$z\pi_M$</td>
<td>$\frac{\pi_M}{n}$</td>
<td>π_M</td>
<td>$\frac{\pi_M}{(n_A + n_B)}$</td>
</tr>
<tr>
<td>Strict</td>
<td>$\frac{\pi_M}{2}$</td>
<td>$\frac{\pi_M}{2}$</td>
<td>$\frac{\pi_M}{2}$</td>
<td>$\frac{\pi_M}{2}$</td>
<td>$\frac{\pi_M}{2}$</td>
</tr>
</tbody>
</table>
Ex-post Profits

- Assumption: In case MC, monopoly inventor does not join an equal CRO but does join an unequal CRO.
Assumption: In case MC, monopoly inventor does not join an equal CRO but does join an unequal CRO.

Ex-post equilibrium payoffs of successful inventors (Gains, Losses):

<table>
<thead>
<tr>
<th>CRO Type \ Profit</th>
<th>π_{MM}</th>
<th>π_{MC}^M</th>
<th>$\pi_{MC}^C (n)$</th>
<th>$\pi_{CC} (n_A, n_B)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>None</td>
<td>π_D</td>
<td>π_M</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Equal</td>
<td>$\pi_M/2$</td>
<td>π_D</td>
<td>π_D/n</td>
<td>$\pi_M/ (n_A + n_B)$</td>
</tr>
<tr>
<td>Unequal</td>
<td>$\pi_M/2$</td>
<td>$z\pi_M$</td>
<td>$(1 - z) \pi_M/n$</td>
<td>$\pi_M/ (n_A + n_B)$</td>
</tr>
<tr>
<td>Strict</td>
<td>$\pi_M/2$</td>
<td>$\pi_M/2$</td>
<td>$\frac{1}{n} \pi_M/2$</td>
<td>$\frac{1}{n_i} \pi_M/2; i = A, B$</td>
</tr>
</tbody>
</table>
Ex-post Welfare

- Ex-post equilibrium welfare: (Gains, Losses)

<table>
<thead>
<tr>
<th>CRO Type \ Welfare</th>
<th>W_{MM}</th>
<th>W_{MC}</th>
<th>W_{CC}</th>
</tr>
</thead>
<tbody>
<tr>
<td>None</td>
<td>W_D</td>
<td>W_M</td>
<td>W_0</td>
</tr>
<tr>
<td>Equal</td>
<td>W_M</td>
<td>W_D</td>
<td>W_M</td>
</tr>
<tr>
<td>Unequal</td>
<td>W_M</td>
<td>W_M</td>
<td>W_M</td>
</tr>
<tr>
<td>Strict</td>
<td>W_M</td>
<td>W_M</td>
<td>W_M</td>
</tr>
</tbody>
</table>
Upstream Innovation

- Ex-ante profit depends on ex-post profit and distribution of outcomes
- We consider two different models
Upstream Innovation

- Ex-ante profit depends on ex-post profit and distribution of outcomes
- We consider two different models
 - Model 1: There are $N > 1$ firms that can invest in component A. $N > 1$ firms that can invest in B.
 - Symmetric
 - Ex-ante competitive for both components.
Upstream Innovation

- Ex-ante profit depends on ex-post profit and distribution of outcomes
- We consider two different models
- Model 1: There are \(N > 1 \) firms that can invest in component A. \(N > 1 \) firms that can invest in B.
 - Symmetric
 - Ex-ante competitive for both components.
- Model 2: There is only one firm that invests in component A. \(N > 1 \) firms that can invest in B.
 - Asymmetric
 - Ex-ante monopoly for innovation of component A. Competitive for component B.
Model 1 of Upstream Innovation

- **Model 1**: All projects have the same chance of developing a component or developing nothing.

- **Symmetric**: N projects are undertaken for each component (ex-ante competitive)
Model 1 of Upstream Innovation

- **Model 1**: All projects have the same chance of developing a component or developing nothing.

- **Symmetric**: N projects are undertaken for each component (ex-ante competitive)

- **Ex-ante expected profit** of a research firm:

\[
\pi(N) = \frac{1}{N} P(1, N)^2 \pi_{MM} \\
+ \frac{1}{N} P(1, N) \sum_{n=2}^{N} P(n, N) \left[\pi_{MC}^M + n\pi_{MC}^C(n) \right] \\
+ \sum_{m=2}^{N} \sum_{n=2}^{N} \frac{m}{N} P(m, N) P(n, N) \pi_{CC}(m, n) - c
\]
Model 1: Probability of Different Outcomes

- Formation of CRO can involve both ex-post gains and losses for research firms.

Binomial, success prob. = 0.5

![Graph showing probability distribution for different outcomes](image-url)
Model 1 Result: Ex-ante Expected Profit (Given N)

- Ex-ante, the **expected gains always outweigh any losses**.
Model 1 Result: Ex-ante Expected Profit (Given N)

- Ex-ante, the expected gains always outweigh any losses.
- CRO increases incentive to invest in upstream R&D.
Model 1 Result: Ex-ante Expected Profit (Given N)

- Ex-ante, the **expected gains always outweigh any losses**.
- CRO increases incentive to invest in upstream R&D.
- Strict antitrust restriction (SC) does equally well as un-equal CRO (UC).
Model 1 Result: Ex-ante Expected Profit (Given \(N \))

- Ex-ante, the **expected gains always outweigh any losses**.
- CRO increases incentive to invest in upstream R&D.
- Strict antitrust restriction (SC) does equally well as un-equal CRO (UC)
- CRO also benefits inventors with substitute inventions.
Model 1 Result: Ex-ante Expected Profit (Given N)

- Ex-ante, the **expected gains always outweigh any losses**.
- CRO increases incentive to invest in upstream R&D.
- Strict antitrust restriction (SC) does equally well as un-equal CRO (UC)
- CRO also benefits inventors with substitute inventions.
- However, it may reduce the ex-post profits of sole inventors of a component.
Model 1: Ex-ante Expected Welfare (Given N)

- Introducing a CRO also involves ex-post **welfare** gains and losses.
Model 1: Ex-ante Expected Welfare (Given N)

- Introducing a CRO also involves ex-post welfare gains and losses.
- Expected welfare:

$$W(N) = P(1, N)^2 W_{MM} + 2P(1, N) \sum_{n=2}^{N} P(n, N) W_{MC}$$

$$+ \sum_{m=2}^{N} \sum_{n=2}^{N} P(m, N) P(n, N) W_{CC} - 2Nc$$
Model 1 Result: Ex-ante Expected Welfare (Given N)

$\begin{align*}
\text{Given } N, \text{ expected welfare with an unequal CRO (or a strict CRO) is always higher than that with an equal CRO:} \\
W_{UC}(N) &= W_{SC}(N) \geq W_{EC}(N) \quad \text{for all } N \geq 1. \\
\text{When } N \text{ is large, case CC likely and } W_0 \text{ achieved.} \\
\text{When } N \text{ is small, case MM likely and CRO beneficial.} \\
\text{Expected welfare with no CRO is highest when } N \text{ is large but lowest when } N \text{ is small:} \\
&(i) \quad W_{UC}(N) = W_{SC}(N) \geq W_{EC}(N) \geq W_{NC}(N) \quad \text{for small } N, \\
&(ii) \quad W_{NC}(N) \geq W_{UC}(N) = W_{SC}(N) \geq W_{EC}(N) \quad \text{for large } N.
\end{align*}$
Given N, expected welfare with an **unequal CRO** (or a strict CRO) is always higher than that with an **equal CRO**:

- $W^{UC}(N) = W^{SC}(N) \geq W^{EC}(N)$ for all $N \geq 1$.
Model 1 Result: Ex-ante Expected Welfare (Given N)

- Given N, expected welfare with an unequal CRO (or a strict CRO) is always higher than that with an equal CRO:
 - $W^{UC} (N) = W^{SC} (N) \geq W^{EC} (N)$ for all $N \geq 1$.
- When N is large, case CC likely and W_0 achieved.
- When N is small, case MM likely and CRO beneficial.
- Expected welfare with no CRO is highest when N is large but lowest when N is small:
 (i) $W^{UC} (N) = W^{SC} (N) \geq W^{EC} (N) \geq W^{NC} (N)$ for small N,
 (ii) $W^{NC} (N) \geq W^{UC} (N) = W^{SC} (N) \geq W^{EC} (N)$ for large N.
Binomial Model Simulation of Upstream R&D Investment (Determination of N)

Linear demand for licenses: $Q = 100 - \rho$ gives parameter values:

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>π_M</td>
<td>4</td>
</tr>
<tr>
<td>π_D</td>
<td>9</td>
</tr>
<tr>
<td>W_0</td>
<td>50</td>
</tr>
<tr>
<td>W_M</td>
<td>75</td>
</tr>
<tr>
<td>W_D</td>
<td>2</td>
</tr>
<tr>
<td>250</td>
<td>9</td>
</tr>
</tbody>
</table>

Assume $P(n, N)$ is binomial; σ is success prob. of each project.

Other parameters: z, c (model 1), c_A and c_B (model 2).

Given parameter values, use numerical search to find equilibrium value of N under each CRO type.

Equilibrium condition: Highest N where $\pi(N) \geq 0$ and $\pi(N+1) < 0$.

70 / 97
Binomial Model Simulation of Upstream R&D Investment (Determination of N)

- Linear demand for licenses: $Q = 100 - \rho$ gives parameter values:

<table>
<thead>
<tr>
<th>Parameter</th>
<th>π_M</th>
<th>π_D</th>
<th>W_0</th>
<th>W_M</th>
<th>W_D</th>
</tr>
</thead>
<tbody>
<tr>
<td>Value</td>
<td>$\frac{100}{4}$</td>
<td>$\frac{100}{9}$</td>
<td>50</td>
<td>$\frac{75}{2}$</td>
<td>$\frac{250}{9}$</td>
</tr>
</tbody>
</table>

- Assume $P(n, N)$ is binomial; σ is success prob. of each project.
Binomial Model Simulation of Upstream R&D Investment (Determination of N)

- Linear demand for licenses: $Q = 100 - \rho$ gives parameter values:

<table>
<thead>
<tr>
<th>Parameter</th>
<th>π_M</th>
<th>π_D</th>
<th>W_0</th>
<th>W_M</th>
<th>W_D</th>
</tr>
</thead>
<tbody>
<tr>
<td>Value</td>
<td>$\frac{100}{4}$</td>
<td>$\frac{100}{9}$</td>
<td>50</td>
<td>$\frac{75}{2}$</td>
<td>$\frac{250}{9}$</td>
</tr>
</tbody>
</table>

- Assume $P(n, N)$ is binomial; σ is success prob. of each project.
- Other parameters: z, c (model 1), c_A and c_B (model 2).
- Given parameter values, use numerical search to find equilibrium value of N under each CRO type.
Binomial Model Simulation of Upstream R&D Investment (Determination of N)

- Linear demand for licenses: $Q = 100 - \rho$ gives parameter values:

<table>
<thead>
<tr>
<th>Parameter</th>
<th>π_M</th>
<th>π_D</th>
<th>W_0</th>
<th>W_M</th>
<th>W_D</th>
</tr>
</thead>
<tbody>
<tr>
<td>Value</td>
<td>$\frac{100}{4}$</td>
<td>$\frac{100}{9}$</td>
<td>50</td>
<td>$\frac{75}{2}$</td>
<td>$\frac{250}{9}$</td>
</tr>
</tbody>
</table>

- Assume $P(n, N)$ is binomial; σ is success prob. of each project.

- Other parameters: z, c (model 1), c_A and c_B (model 2).

- Given parameter values, use numerical search to find equilibrium value of N under each CRO type.
 - Equilibrium condition: Highest N where $\pi(N) \geq 0$ and $\pi(N + 1) < 0$.
Equilibrium Investment and Ex-ante Profit and Welfare by Simulation

- Single simulation of model 1, for \(c = 2.5 \) and \(\sigma = 0.7 \) (symmetry makes value of \(z \) irrelevant):

- CRO stimulates investment
Equilibrium Investment and Ex-ante Profit and Welfare by Simulation

- Single simulation of model 1, for $c = 2.5$ and $\sigma = 0.7$ (symmetry makes value of z irrelevant):

- CRO stimulates investment but may reduce welfare.
Model 1 Equilibrium Expected Welfare

- Simulated CRO equilibrium expected welfare performance across parameter values:

![Graph showing simulated CRO equilibrium expected welfare performance across parameter values with different colors representing different conditions: None, Equal, Equal or Unequal, and Unequal. The graph has axes labeled sigma and c, with color keys indicating the conditions.]
Model 2 of Upstream Innovation

- Model 2: **One** research firm (firm A) has the **unique ability** to develop component A for certain at a cost of c_A; Development of component B is as before.

- **Asymmetric**
 - Component A is ex-ante **monopoly**
 - Component B is ex-ante **competitive**, N firms

- Case CC is no longer possible.
Model 2 of Upstream Innovation

- Model 2: One research firm (firm A) has the unique ability to develop component A for certain at a cost of c_A; Development of component B is as before.

- **Asymmetric**
 - Component A is ex-ante monopoly
 - Component B is ex-ante competitive, N firms

- Case CC is no longer possible.

- Firm profits when N projects undertaken for component B:

\[
\pi_A (N) = P(1, N) \pi_{MM} + \sum_{n=2}^{N} P(n, N) \pi_{MC}^M - c_A
\]

\[
\pi_B (N) = \frac{1}{N} P(1, N) \pi_{MM} + \sum_{n=2}^{N} \frac{n}{N} P(n, N) \pi_{MC}^C (n) - c_B
\]
Model 2 Results: Ex-ante Expected Profits and Welfare (Given N)

- Firm A prefers no CRO when N is large and an unequal CRO when N is small:
 (i) $\pi_A^{NC} (N) \geq \pi_A^{UC} (N) \geq \pi_A^{EC} (N)$ for large N
 (ii) $\pi_A^{UC} (N) \geq \pi_A^{EC} (N) \geq \pi_A^{NC} (N)$ for small N.

- For any given N, a component B firm is always better off under either an equal or unequal CRO compared to no CRO. Such a firm is better off under an unequal CRO compared to an equal CRO if $z \leq 1 - \pi_D / \pi_M$.

CRO’s effect differ by firm and by ex-ante and ex-post.
CRO’s effect differ by firm and by ex-ante and ex-post.
CROs
- **increase** the incentives of competitive research firms to invest,
- but may **reduce** the incentive of firms with unique abilities.
CRO’s effect differ by firm and by ex-ante and ex-post. CROs
 increase the incentives of competitive research firms to invest,
 but may reduce the incentive of firms with unique abilities.
 Ex-post, firm A prefers a high value of z under an unequal CRO, but this reduces the payoff of component B firms.
Upstream R&D Incentives with a Unique Ability Firm

- CRO’s effect differ by firm and by ex-ante and ex-post.
- CROs
 - increase the incentives of competitive research firms to invest,
 - but may reduce the incentive of firms with unique abilities.
- Ex-post, firm A prefers a high value of z under an unequal CRO, but this reduces the payoff of component B firms.
- Ex-ante, firm A may want to choose a lower value of z to give incentive to B firms to invest.
Equilibrium Investment, Ex-ante Profit and Ex-ante Welfare by Simulation

Single simulation of model 2, for $c_A = 8$, $c_B = 1.3$, $\sigma = 0.5$ and $z = 0.75$.
Single simulation of model 2, for $c_A = 8$, $c_B = 1.3$, $\sigma = 0.5$ and $z = 0.75$:
Effect of Technology by Simulation

Effect of changing z in an unequal CRO on equilibrium expected profits of firm A and expected welfare:

Level of z affects equilibrium investment level of component B firms. CRO licensing revenue distribution policies need to be related to the innovation environment.
Effect of Technology by Simulation

- Effect of changing z in an unequal CRO on equilibrium expected profits of firm A and expected welfare:

- Level of z affects equilibrium investment level of component B firms.
Effect of Technology by Simulation

▶ Effect of changing z in an unequal CRO on equilibrium expected profits of firm A and expected welfare:

- Level of z affects equilibrium investment level of component B firms.
- CRO licensing revenue distribution policies need to be related to the innovation environment.
Effect of Sharing Rule by Simulation

Simulated CRO equilibrium expected welfare performance across parameter values ($c_A = 5$):

- High z makes unequal CRO generate similar outcomes to no CRO, but the CRO performs better when both components have a single successful inventor.

- However, an equal CRO may outperform an unequal CRO with high z as the equal CRO gives greater incentives to component B firms to invest.
Simulated CRO equilibrium expected welfare performance across parameter values (fixed $c_A = 5$):

High z makes **unequal CRO** generate **similar** outcomes to **no CRO**, but the CRO performs better when both components have a single successful inventor.
Effect of Sharing Rule by Simulation

- Simulated CRO equilibrium expected welfare performance across parameter values (fixed $c_A = 5$):

 ![Graphs showing CRO performance across different z values.]

 - High z makes **unequal CRO** generate **similar** outcomes to **no CRO**, but the CRO performs better when both components have a single successful inventor.

 - However, an **equal CRO** may **outperform an unequal CRO** with high z as the equal CRO gives greater incentives to component B firms to invest.
Conclusions

▶ CRO can generate both ex-post and ex-ante gains and losses to welfare and profits of research firms.

▶ CRO generally stimulate investment in upstream R&D except possibly by inventors who have unique abilities.

▶ Unequal CRO redistribution is less likely to lead to welfare losses.

▶ Likely conflict between existing and potential inventors regarding CRO support.

▶ CRO design and royalty distribution rule needs to reflect conditions of the innovation environment.
Conclusions

- CRO can generate both ex-post and ex-ante gains and losses to welfare and profits of research firms.
Conclusions

- CRO can generate both ex-post and ex-ante gains and losses to welfare and profits of research firms.
- CRO generally stimulate investment in upstream R&D except possibly by inventors who have unique abilities.
Conclusions

- CRO can generate both ex-post and ex-ante gains and losses to welfare and profits of research firms.
- CRO generally stimulate investment in upstream R&D except possibly by inventors who have unique abilities.
- Unequal CRO redistribution is less likely to lead to welfare losses.
Conclusions

- CRO can generate both ex-post and ex-ante gains and losses to welfare and profits of research firms.
- CRO generally stimulate investment in upstream R&D except possibly by inventors who have unique abilities.
- Unequal CRO redistribution is less likely to lead to welfare losses.
- Likely conflict between existing and potential inventors regarding CRO support.
Conclusions

- CRO can generate both ex-post and ex-ante gains and losses to welfare and profits of research firms.
- CRO generally stimulate investment in upstream R&D except possibly by inventors who have unique abilities.
- Unequal CRO redistribution is less likely to lead to welfare losses.
- Likely conflict between existing and potential inventors regarding CRO support.
- CRO design and royalty distribution rule needs to reflect conditions of the innovation environment.