The Economics of Two-Sided Payment Card Markets: Pricing, Adoption and Usage

James McAndrews and Zhu Wang

Federal Reserve Bank of New York
Federal Reserve Bank of Kansas City

June 21, 2008
The Development of Payment Card Market

- Credit and debit cards become prominent form of payments
 - 38% US consumer expenditure
 - 75% households own credit cards; 6.3 cards per household
Credit and debit cards become prominent form of payments
 - 38% US consumer expenditure
 - 75% households own credit cards; 6.3 cards per household

Legal battles and regulations against the credit card networks
 - US: 50 pending cases; Credit Card Fair Fee Act 2008
 - Worldwide: EU, UK, Australia, Netherlands and etc.
The Development of Payment Card Market

- Credit and debit cards become prominent form of payments
 - 38% US consumer expenditure
 - 75% households own credit cards; 6.3 cards per household
- Legal battles and regulations against the credit card networks
 - US: 50 pending cases; Credit Card Fair Fee Act 2008
 - Worldwide: EU, UK, Australia, Netherlands and etc.
- The controversy of interchange fees
 - Fees charged to merchants for card payments
 - Totals $42 billion or $370 per US household (2007)
Card Payment System: An Illustration

Card Network

- Cardholder pays $p(1+f_c)$
- Merchant pays $p(1-f_m)$

Merchant

sells good at price p
The Literature

- Two-sided market theories
 - Fundamental externalities in card payment systems
 - Asymmetric pricing on the two-sides
 - Interchange fee: is it too high?
The Literature

- Two-sided market theories
 - Fundamental externalities in card payment systems
 - Asymmetric pricing on the two-sides
 - Interchange fee: is it too high?

- Some limitations
 - Unspecified convenience benefits from card usage
 - Fixed consumer demand invariant to payment choices
 - Imperfect competition among merchants
A New Two-sided Market Analysis

- Monetary benefits from the payment card usage
A New Two-sided Market Analysis

• Monetary benefits from the payment card usage
• Consumer demand for goods depends on payment choices
A New Two-sided Market Analysis

- Monetary benefits from the payment card usage
- Consumer demand for goods depends on payment choices
- Contestable market for merchants
A New Two-sided Market Analysis

- Monetary benefits from the payment card usage
- Consumer demand for goods depends on payment choices
- Contestable market for merchants
- Cross subsidy between card users and cash users
Supporting Evidence and New Findings

- The card adoption patterns of consumers and merchants
Supporting Evidence and New Findings

- The card adoption patterns of consumers and merchants
- Three types of merchants who accept cash, card or both
Supporting Evidence and New Findings

- The card adoption patterns of consumers and merchants
- Three types of merchants who accept cash, card or both
- Rising interchange fees at falling card costs
Supporting Evidence and New Findings

- The card adoption patterns of consumers and merchants
- Three types of merchants who accept cash, card or both
- Rising interchange fees at falling card costs
- The “two-sided market” effect and the “inflation” effect
Share of Transaction %

- Movie (Entertainment)
- Tickets (Entertainment)
- Fast food (Restaurant)
- Mid-price (Restaurant)
- High-price (Restaurant)
- Grocery (Stores)
- Dept. (Stores)

1996 vs 2001
Basic Elements of the Model

- Consumers
 - Cobb-Douglass preference, heterogenous income
Basic Elements of the Model

- Consumers
 - Cobb-Douglass preference, heterogenous income

- Merchants
 - contestable market, heterogenous size
Basic Elements of the Model

- Consumers
 - Cobb-Douglass preference, heterogenous income

- Merchants
 - contestable market, heterogenous size

- Card technology
 - high fixed cost of adoption, low variable cost of usage
Basic Elements of the Model

- Consumers
 - Cobb-Douglass preference, heterogenous income

- Merchants
 - contestable market, heterogenous size

- Card technology
 - high fixed cost of adoption, low variable cost of usage

- Card service provider
 - the monopoly network who maximizes profit
 - the social planner who maximizes consumer surplus
 - the policy maker who sets an interchange fee ceiling
Pre-card Market Equilibrium

- A competitive merchant selling good α sets the cash price $p_{\alpha,c}$:

\[(1 - \tau_m)p_{\alpha,c} = c_{\alpha} \implies p_{\alpha,c} = \frac{c_{\alpha}}{1 - \tau_m}\]
Pre-card Market Equilibrium

- A competitive merchant selling good α sets the cash price $p_{\alpha,c}$:
 \[
 (1 - \tau_m)p_{\alpha,c} = c_\alpha \implies p_{\alpha,c} = \frac{c_\alpha}{1 - \tau_m}
 \]

- A consumer with income I purchases x_α units of good α:
 \[
 U = \text{Max} \int_\alpha x_\alpha \ln x_\alpha dG(\alpha) \quad \text{s.t.} \quad \int_\alpha (1 + \tau_c)p_{\alpha,c}x_\alpha,IdG(\alpha) = I
 \]
Pre-card Market Equilibrium

- A competitive merchant selling good α sets the cash price $p_{\alpha,c}$:
 \[(1 - \tau_m)p_{\alpha,c} = c_{\alpha} \quad \Rightarrow \quad p_{\alpha,c} = \frac{c_{\alpha}}{1 - \tau_m}\]

- A consumer with income I purchases x_α units of good α:
 \[U = \max \int_{\alpha}^{\bar{\alpha}} \alpha \ln x_\alpha dG(\alpha) \quad \text{s.t.} \quad \int_{\alpha}^{\bar{\alpha}} (1 + \tau_c)p_{\alpha,c}x_\alpha,IdG(\alpha) = I\]

- A consumer I's demand and spending on good α:
 \[x_{\alpha,I} = \frac{\alpha I}{(1 + \tau_c)p_{\alpha,c}E(\alpha)}, \quad p_{\alpha,c}x_{\alpha,I} = \frac{\alpha I}{(1 + \tau_c)E(\alpha)}\]
Pre-card Market Equilibrium

- A competitive merchant selling good α sets the cash price $p_{\alpha,c}$:

 $$(1 - \tau_m)p_{\alpha,c} = c_\alpha \implies p_{\alpha,c} = \frac{c_\alpha}{1 - \tau_m}$$

- A consumer with income I purchases x_α units of good α:

 $$U = \max \int_\alpha ^{\bar{\alpha}} \alpha \ln x_\alpha dG(\alpha) \quad s.t. \quad \int_\alpha ^{\bar{\alpha}} (1 + \tau_c)p_{\alpha,c}x_\alpha,IdG(\alpha) = I$$

- A consumer I’s demand and spending on good α:

 $$x_{\alpha,I} = \frac{\alpha I}{(1 + \tau_c)p_{\alpha,c}E(\alpha)}, \quad p_{\alpha,c}x_{\alpha,I} = \frac{\alpha I}{(1 + \tau_c)E(\alpha)}$$

- Total market demand and spending on good α:

 $$x_\alpha = \frac{\alpha E(I)}{(1 + \tau_c)p_{\alpha,c}E(\alpha)}, \quad p_{\alpha,c}x_\alpha = \frac{\alpha E(I)}{(1 + \tau_c)E(\alpha)}$$
Introducing the Payment Card

- The payment card service is provided by a monopoly network
Introducing the Payment Card

- The payment card service is provided by a monopoly network
- Merchants and consumers are each charged a fee f_m and f_c
Introducing the Payment Card

- The payment card service is provided by a monopoly network
- Merchants and consumers are each charged a fee f_m and f_c
- Card service costs for merchants and consumers are d_m and d_c
Introducing the Payment Card

- The payment card service is provided by a monopoly network.
- Merchants and consumers are each charged a fee f_m and f_c.
- Card service costs for merchants and consumers are d_m and d_c.
- Merchants and consumers pay an adoption cost k_m and k_c.
Card Adoption and Usage

- Merchants’ choice
Card Adoption and Usage

- Merchants’ choice
 - Large merchants \((\alpha \geq \alpha_1)\) accept cards and charge price \(p_{\alpha,d} \leq p_{\alpha,c}\)
Card Adoption and Usage

- Merchants’ choice
 - Large merchants \((\alpha \geq \alpha_1) \) accept cards and charge price \(p_{\alpha,d} \leq p_{\alpha,c} \)
 - Contestable market:
 \[
 p_{\alpha,d} x_{\alpha,d}^{\text{card}} = \frac{\alpha [E_{I>0} (I - k_c)]}{E(\alpha)(1 + f_c)}, \quad p_{\alpha,d} x_{\alpha,d}^{\text{cash}} = \frac{\alpha [E_{I<0} (I)]}{E(\alpha)(1 + \tau_c)},
 \]
 \[
 (1 - f_m)p_{\alpha,d} x_{\alpha,d}^{\text{card}} + (1 - \tau_m)p_{\alpha,d} x_{\alpha,d}^{\text{cash}} = c_{\alpha} x_{\alpha,d}^{\text{card}} + c_{\alpha} x_{\alpha,d}^{\text{cash}} + k_m.
 \]
Card Adoption and Usage

- **Merchants’ choice**

 - Large merchants ($\alpha \geq \alpha_1$) accept cards and charge price $p_{\alpha,d} \leq p_{\alpha,c}$

 - Contestable market:

 $$p_{\alpha,d}x_{\alpha,d}^{\text{card}} = \frac{\alpha[E_{I>0}(I-k_c)]}{E(\alpha)(1+f_c)}, \quad p_{\alpha,d}x_{\alpha,d}^{\text{cash}} = \frac{\alpha[E_{I<0}(I)]}{E(\alpha)(1+\tau_c)}$$

 $$(1-f_m)p_{\alpha,d}x_{\alpha,d}^{\text{card}} + (1-\tau_m)p_{\alpha,d}x_{\alpha,d}^{\text{cash}} = c_\alpha x_{\alpha,d}^{\text{card}} + c_\alpha x_{\alpha,d}^{\text{cash}} + k_m.$$

 - These pin down the price $p_{\alpha,d}$:

 $$p_{\alpha,d} = \frac{c_\alpha \frac{\alpha[E_{I>0}(I-k_c)]}{(1+f_c)} + c_\alpha \frac{\alpha[E_{I<0}(I)]}{(1+\tau_c)}}{(1-f_m)\frac{\alpha[E_{I>0}(I-k_c)]}{1+f_c} + (1-\tau_m)\frac{\alpha[E_{I<0}(I)]}{1+\tau_c} - k_mE(\alpha)}.$$
Card Adoption and Usage

- **Merchants’ choice**
 - Large merchants \((\alpha \geq \alpha_1)\) accept cards and charge price \(p_{\alpha,d} \leq p_{\alpha,c}\)
 - Contestable market:
 \[
 p_{\alpha,d}x^{\text{card}}_{\alpha,d} = \frac{\alpha[E_i > I_0 (I - k_c)]}{E(\alpha)(1 + f_c)}, \quad p_{\alpha,d}x^{\text{cash}}_{\alpha,d} = \frac{\alpha[E_i < I_0 (I)]}{E(\alpha)(1 + \tau_c)}.
 \]
 \[
 (1 - f_m)p_{\alpha,d}x^{\text{card}}_{\alpha,d} + (1 - \tau_m)p_{\alpha,d}x^{\text{cash}}_{\alpha,d} = c_{\alpha}x^{\text{card}}_{\alpha,d} + c_{\alpha}x^{\text{cash}}_{\alpha,d} + k_m.
 \]
 - These pin down the price \(p_{\alpha,d}\):
 \[
 p_{\alpha,d} = \frac{c_{\alpha} \frac{\alpha[E_i > I_0 (I - k_c)]}{(1 + f_c)} + c_{\alpha} \frac{\alpha[E_i < I_0 (I)]}{(1 + \tau_c)}}{(1 - f_m) \frac{\alpha[E_i > I_0 (I - k_c)]}{1 + f_c} + (1 - \tau_m) \frac{\alpha[E_i < I_0 (I)]}{1 + \tau_c} - k_mE(\alpha)}.
 \]
 - \(p_{\alpha,d} \leq p_{\alpha,c} = \frac{c_{\alpha}}{1 - \tau_m}\) implies
 \[
 \alpha_1 = \frac{E(\alpha)k_m}{[E_i > I_0 (I - k_c)](\frac{1 - f_m}{1 + f_c} - \frac{1 - \tau_m}{1 + f_c})}.
 \]
Card Adoption and Usage

- Merchants’ choice

- Large merchants \((\alpha \geq \alpha_1)\) accept cards and charge price \(p_{\alpha,d} \leq p_{\alpha,c}\)

\[
\alpha_1 = \frac{E(\alpha)k_m}{[E_{I>0}(I-k_c)](\frac{1-f_m}{1+f_c} - \frac{1-\tau_m}{1+f_c})}
\]
Card Adoption and Usage

- Merchants’ choice

- Large merchants ($\alpha \geq \alpha_1$) accept cards and charge price $p_{\alpha,d} \leq p_{\alpha,c}$

$$\alpha_1 = \frac{E(\alpha)k_m}{[E_{I>I_0}(I-k_c)](\frac{1-f_m}{1+f_c} - \frac{1-\tau_m}{1+\tau_c})}$$

- Intermediate merchants ($\alpha_0 \leq \alpha < \alpha_1$) specialize. They either accept cards and charge $p_{\alpha,d}$, where $\frac{1+\tau_c}{1+f_c}p_{\alpha,c} \geq p_{\alpha,d} > p_{\alpha,c}$, or they do not accept cards and charge $p_{\alpha,c}$

$$\alpha_0 = \frac{E(\alpha)k_m}{[E_{I>I_0}(I-k_c)](\frac{1-f_m}{1+f_c} - \frac{1-\tau_m}{1+\tau_c})}$$
Card Adoption and Usage

- **Merchant's choice**
 - Large merchants ($\alpha \geq \alpha_1$) accept cards and charge price $p_{\alpha,d} \leq p_{\alpha,c}$

 $$\alpha_1 = \frac{E(\alpha)k_m}{[E_{I>0} (I - k_c)](\frac{1-f_m}{1+f_c} - \frac{1-\tau_m}{1+\tau_c})}$$

 - Intermediate merchants ($\alpha_0 \leq \alpha < \alpha_1$) specialize. They either accept cards and charge $p_{\alpha,d}$, where $\frac{1+\tau_c}{1+f_c} p_{\alpha,c} \geq p_{\alpha,d} > p_{\alpha,c}$, or they do not accept cards and charge $p_{\alpha,c}$

 $$\alpha_0 = \frac{E(\alpha)k_m}{[E_{I>0} (I - k_c)](\frac{1-f_m}{1+f_c} - \frac{1-\tau_m}{1+\tau_c})}$$

 - Small merchants ($\alpha < \alpha_0$) do not accept cards and charge $p_{\alpha,c}$
Card Adoption and Usage

- Consumers’ choice
Card Adoption and Usage

● Consumers’ choice

A consumer with income I compares utility between adopting card (V_d) or not (V_c)

$$V_d = \int_\alpha^{\alpha_0} \alpha \ln \left(\frac{\alpha(I - k_c)}{(1 + \tau_c)p_{\alpha,c}E(\alpha)} \right) dG(\alpha) + \int_{\alpha_0}^{\bar{\alpha}} \alpha \ln \left(\frac{\alpha(I - k_c)}{(1 + f_c)p_{\alpha,d}E(\alpha)} \right) dG(\alpha),$$

$$V_c = \int_\alpha^{\alpha_1} \alpha \ln \left(\frac{\alpha I}{(1 + \tau_c)p_{\alpha,c}E(\alpha)} \right) dG(\alpha) + \int_{\alpha_1}^{\bar{\alpha}} \alpha \ln \left(\frac{\alpha I}{(1 + \tau_c)p_{\alpha,d}E(\alpha)} \right) dG(\alpha)$$
Card Adoption and Usage

Consumers’ choice

A consumer with income I compares utility between adopting card (V_d) or not (V_c)

$$V_d = \int_{\bar{\alpha}}^{\alpha_0} \alpha \ln \frac{\alpha(I - k_c)}{(1 + \tau_c)p_{\alpha,c}E(\alpha)} dG(\alpha) + \int_{\alpha_0}^{\bar{\alpha}} \alpha \ln \frac{\alpha(I - k_c)}{(1 + f_c)p_{\alpha,d}E(\alpha)} dG(\alpha),$$

$$V_c = \int_{\bar{\alpha}}^{\alpha_1} \alpha \ln \frac{\alpha I}{(1 + \tau_c)p_{\alpha,c}E(\alpha)} dG(\alpha) + \int_{\alpha_1}^{\bar{\alpha}} \alpha \ln \frac{\alpha I}{(1 + \tau_c)p_{\alpha,d}E(\alpha)} dG(\alpha)$$

The threshold income level I_0 for card adoption

$$I \geq I_0 = \frac{(1 + \tau_c)E_{\alpha > \alpha_0}(\alpha)/E(\alpha)k_c}{(1 + f_c)E_{\alpha > \alpha_0}(\alpha)/E(\alpha) - \exp(\int_{\alpha_0}^{\alpha_1} \alpha \ln(p_{\alpha,d}/p_{\alpha,c}) dG(\alpha)/E(\alpha))}$$
Monopoly Network vs. Social Planner

- The monopoly network maximizes network profit subject to merchants and consumers’ card adoption

\[
\max_{f_c, f_m} \frac{E_{\alpha > \alpha_0}(\alpha) E_{I > I_0}(I - k_c)}{E(\alpha)(1 + f_c)} (f_c + f_m - d_m - d_c)
\]
Monopoly Network vs. Social Planner

- The monopoly network maximizes network profit subject to merchants and consumers’ card adoption

\[
\max_{f_c, f_m} E_{\alpha > \alpha_0} (\alpha) E_{I > I_0} (I - k_c) \\ E(\alpha) (1 + f_c) (f_c + f_m - d_m - d_c)
\]

- The social planner maximizes consumer surplus subject to merchants and consumers’ card adoption

\[
\max_{f_c, f_m} \int \bar{I} (U_{I,d} - U_{I,c}) dF(I)
\]
Short-run (Transitional) Dynamics

- Two-sided market interactions

\[\alpha_0 = \frac{E(\alpha) k_m}{[E_{I>I_0}(I - k_c)](\frac{1-f_m}{1+f_c} - \frac{1-\tau_m}{1+\tau_c})} \]

\[I_0 = \frac{(1+\tau_c) E_{\alpha > \alpha_0}(\alpha)/E(\alpha) k_c}{(1+\tau_c) E(\alpha) - \exp \left(\int_{\alpha_0}^{\alpha_1} \frac{\alpha}{E(\alpha)} \ln \left(\frac{(1-\tau_m)\alpha}{(1-f_m)\alpha-(1+f_c)\alpha_0 (\frac{1-f_m}{1+f_c} - \frac{1-\tau_m}{1+\tau_c})} \right) \, dG(\alpha) \right)} \]
Short-run (Transitional) Dynamics

- Two-sided market interactions

\[\alpha_0 = \frac{E(\alpha)k_m}{[E_{I>I_0}(I-k_c)](\frac{1-f_m}{1+f_c} - \frac{1-\tau_m}{1+\tau_c})} \]

\[I_0 = \frac{\left(\frac{1+\tau_c}{1+f_c}\right)E_{\alpha > \alpha_0}(\alpha)/E(\alpha)k_c}{\left(\frac{1+\tau_c}{1+f_c}\right)\frac{E_{\alpha > \alpha_0}(\alpha)}{E(\alpha)} - \exp\left(\int_{\alpha_0}^{\alpha_1} \frac{\alpha}{E(\alpha)} \ln\left(\frac{(1-\tau_m)\alpha}{(1-f_m)\alpha - (1+f_c)\alpha_0 \left(\frac{1-f_m}{1+f_c} - \frac{1-\tau_m}{1+\tau_c}\right)}\right) dG(\alpha)\right)} \]

- Assume \(\alpha \in [0, 1] \) is uniformly distributed, and \(I \in [0, \infty) \) is exponentially distributed.
Long-run Dynamics

- Long-run dynamics are characterized by the time path of the high-adoption equilibrium
Long-run Dynamics

- Long-run dynamics are characterized by the time path of the high-adoption equilibrium
- Driving forces:
 - Declining card usage costs $d_m + d_c$
 - Declining card adoption costs k_c and k_m
 - Rising consumer income $E(I)$
Simulation Parameterization

- Under the monopoly network
Simulation Parameterization

- Under the monopoly network
- Under the social planner
Simulation Parameterization

- Under the monopoly network
- Under the social planner
- Under the policy of interchange ceiling ($f_m \leq 0.03$)
Simulation Parameterization

- Under the monopoly network
- Under the social planner
- Under the policy of interchange ceiling \((f_m \leq 0.03)\)

Parameterization

<table>
<thead>
<tr>
<th>Case</th>
<th>(k_m)</th>
<th>(k_c)</th>
<th>(E(I))</th>
<th>(\tau_m)</th>
<th>(\tau_c)</th>
<th>(d_m+d_c)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Case 1</td>
<td>160</td>
<td>160</td>
<td>10,000</td>
<td>0.05</td>
<td>0.05</td>
<td>(0, 0.05)</td>
</tr>
<tr>
<td>Case 2</td>
<td>120</td>
<td>200</td>
<td>10,000</td>
<td>0.05</td>
<td>0.05</td>
<td>(0, 0.05)</td>
</tr>
<tr>
<td>Case 3</td>
<td>128</td>
<td>128</td>
<td>10,000</td>
<td>0.05</td>
<td>0.05</td>
<td>(0, 0.05)</td>
</tr>
<tr>
<td>Case 4</td>
<td>160</td>
<td>160</td>
<td>12,500</td>
<td>0.05</td>
<td>0.05</td>
<td>(0, 0.05)</td>
</tr>
</tbody>
</table>
Figure A5: Monopoly Outcome vs. Social Optimum (Case 1)
Figure A5: Monopoly Outcome vs. Social Optimum (Case 1)
Figure A6: Monopoly Outcome with and without An Interchange Fee Ceiling (Case 1)
Figure A6: Monopoly Outcome with and without An Interchange Fee Ceiling (Case 1)
The Findings

- Monopoly outcome is very different from social optimum
The Findings

- Monopoly outcome is very different from social optimum
 - The card network maximizes the profit
 - it cares only about the card users but not the cash users
 - lowering card fees to consumers help inflate the value of card transactions, so the network prefers high interchange fees
 - The social planner maximizes the consumer surplus
 - it cares about both card users and cash users
 - lowering card fees to merchants help increase consumers’ real purchase, so the social planner prefers low interchange fees

Imposing an interchange ceiling may improve consumer welfare
The Findings

- Monopoly outcome is very different from social optimum

 - The card network maximizes the profit
 - it cares only about the card users but not the cash users
 - lowering card fees to consumers help inflate the value of card transactions, so the network prefers high interchange fees

 - The social planner maximizes the consumer surplus
 - it cares about both card users and cash users
 - lowering card fees to merchants help increase consumers’ real purchase, so the social planner prefers low interchange fees
The Findings

- Monopoly outcome is very different from social optimum
 - The card network maximizes the profit
 - it cares only about the card users but not the cash users
 - lowering card fees to consumers help inflate the value of card transactions, so the network prefers high interchange fees
 - The social planner maximizes the consumer surplus
 - it cares about both card users and cash users
 - lowering card fees to merchants help increase consumers’ real purchase, so the social planner prefers low interchange fees
- Imposing an interchange ceiling may improve consumer welfare
Conclusion

The paper provides a new theory for two-sided payment card markets with better micro-foundations
- Monetary benefits from the payment card usage
- Consumer demand is affected by payment choices
- Contestable markets for merchants
Conclusion

- The paper provides a new theory for two-sided payment card markets with better micro-foundations
 - Monetary benefits from the payment card usage
 - Consumer demand is affected by payment choices
 - Contestable markets for merchants

- The paper derives card adoption and usage patterns that are consistent with empirical evidence
 - Rich consumers and large merchant adopt cards earlier
 - Three types of merchants who accept cash, card or both
Conclusion

- The paper provides a new theory for two-sided payment card markets with better micro-foundations
 - Monetary benefits from the payment card usage
 - Consumer demand is affected by payment choices
 - Contestable markets for merchants

- The paper derives card adoption and usage patterns that are consistent with empirical evidence
 - Rich consumers and large merchant adopt cards earlier
 - Three types of merchants who accept cash, card or both

- The paper offers new insights on payment card pricing
 - The decline of card service costs is consistent with increasing interchange fees
 - The card network has the incentive to inflate the nominal value of card transactions
 - Interchange ceiling may improve consumer welfare