What Drives U.S. Housing Prices?

James A. Kahn

June 2008
Housing market boom-bust has prompted talk of “bubbles.” But what are fundamentals? What is the right benchmark?
Motivation

- Housing market boom-bust has prompted talk of “bubbles.” But what are fundamentals? What is the right benchmark?
- Could current financial crisis just be a reflection of a change in economic fundamentals? How far could prices fall?
Motivation

- Housing market boom-bust has prompted talk of “bubbles.” But what are fundamentals? What is the right benchmark?
- Could current financial crisis just be a reflection of a change in economic fundamentals? How far could prices fall?
- Link to productivity growth: Previous work indicates “regimes” with different mean growth rates
Motivation

- Housing market boom-bust has prompted talk of “bubbles.” But what are fundamentals? What is the right benchmark?
- Could current financial crisis just be a reflection of a change in economic fundamentals? How far could prices fall?
- Link to productivity growth: Previous work indicates “regimes” with different mean growth rates
 - Long-lasting regimes can give “bubbly” appearance to data
Motivation

- Housing market boom-bust has prompted talk of “bubbles.” But what are fundamentals? What is the right benchmark?
- Could current financial crisis just be a reflection of a change in economic fundamentals? How far could prices fall?
- Link to productivity growth: Previous work indicates “regimes” with different mean growth rates
 - Long-lasting regimes can give “bubbly” appearance to data
 - What does growth theory say—quantitatively—about the implications for home prices?
Motivation

- Housing market boom-bust has prompted talk of “bubbles.” But what are fundamentals? What is the right benchmark?
- Could current financial crisis just be a reflection of a change in economic fundamentals? How far could prices fall?
- Link to productivity growth: Previous work indicates “regimes” with different mean growth rates
 - Long-lasting regimes can give “bubbly” appearance to data
 - What does growth theory say—quantitatively—about the implications for home prices?
- Neoclassical approach:
Motivation

- Housing market boom-bust has prompted talk of “bubbles.” But what are fundamentals? What is the right benchmark?
- Could current financial crisis just be a reflection of a change in economic fundamentals? How far could prices fall?
- Link to productivity growth: Previous work indicates “regimes” with different mean growth rates
 - Long-lasting regimes can give “bubbly” appearance to data
 - What does growth theory say—quantitatively—about the implications for home prices?
- Neoclassical approach:
 - Ignore credit market frictions—especially at low frequency have more to do with rent vs. own decision than with primary variables of interest here
Motivation

- Housing market boom-bust has prompted talk of “bubbles.” But what are fundamentals? What is the right benchmark?
- Could current financial crisis just be a reflection of a change in economic fundamentals? How far could prices fall?
- Link to productivity growth: Previous work indicates “regimes” with different mean growth rates
 - Long-lasting regimes can give “bubbly” appearance to data
 - What does growth theory say—quantitatively—about the implications for home prices?

- Neoclassical approach:
 - Ignore credit market frictions—especially at low frequency have more to do with rent vs. own decision than with primary variables of interest here
 - Flexible prices, rational expectations vs. learning
From 1995:Q4-2007:Q1, the real quality-adjusted price of new homes appreciated over 33% (2.6 percent annually).
Background

- From 1995:Q4-2007:Q1, the real quality-adjusted price of new homes appreciated over 33% (2.6 percent annually).
- Since 2007:Q1, the price has declined nearly 8 percent.
From 1995:Q4-2007:Q1, the real quality-adjusted price of new homes appreciated over 33% (2.6 percent annually)

Since 2007:Q1, the price has declined nearly 8 percent

Similarly strong real appreciation took place in the 1960s and 1970s, followed by nearly 20 years of real depreciation.
From 1995:Q4-2007:Q1, the real quality-adjusted price of new homes appreciated over 33% (2.6 percent annually)

Since 2007:Q1, the price has declined nearly 8 percent

Similarly strong real appreciation took place in the 1960s and 1970s, followed by nearly 20 years of real depreciation.
From 1995:Q4-2007:Q1, the real quality-adjusted price of new homes appreciated over 33% (2.6 percent annually)

Since 2007:Q1, the price has declined nearly 8 percent

Similarly strong real appreciation took place in the 1960s and 1970s, followed by nearly 20 years of real depreciation.

Figure 1: Real Price of New Homes (Quality-Adjusted)

Note: logarithmic scale
Housing wealth has averaged 4.6 percent real growth since 1952.
Housing wealth has averaged 4.6 percent real growth since 1952.

This compares with...
Housing wealth has averaged 4.6 percent real growth since 1952.

This compares with

- 3.4 percent growth of private net worth excluding real estate
Housing wealth has averaged 4.6 percent real growth since 1952.

This compares with

- 3.4 percent growth of private net worth excluding real estate
- 3.5 percent growth of PCE
Housing wealth has averaged 4.6 percent real growth since 1952.

This compares with:

- 3.4 percent growth of private net worth excluding real estate
- 3.5 percent growth of PCE

Real estate was 27 percent of net worth in 1952, 39 percent in 2007.
Housing wealth has averaged 4.6 percent real growth since 1952. This compares with:

- 3.4 percent growth of private net worth excluding real estate
- 3.5 percent growth of PCE

Real estate was 27 percent of net worth in 1952, 39 percent in 2007.
Housing wealth has averaged 4.6 percent real growth since 1952.

This compares with

- 3.4 percent growth of private net worth excluding real estate
- 3.5 percent growth of PCE

Real estate was 27 percent of net worth in 1952, 39 percent in 2007.
International evidence?
International evidence?
International evidence?

Change in House Prices versus Change in Consumption

By Country

Mean Change in Consumption

Mean Change in House Prices
Related work

- Housing Prices and Growth

 - Davis and Heathcote (2005), Iacoviello and Neri (2006), Kiyotaki, Michaelides, and Nikolov (2005): Cobb-Douglass preferences, not consistent with trend facts, can't easily explain magnitudes

Learning about productivity growth

 - Edge, Laubach, Williams (2007): Use linear Kalman-Filter framework, rational expectations (no learning about parameters)

Cause and effect

 - Attanasio et al (2005) find that consumption of renters and homeowners respond similarly to changes in home prices
Related work

- **Housing Prices and Growth**
 - Davis and Heathcote (2005), Iacoviello and Neri (2006), Kiyotaki, Michaelides, and Nikolov (2005): Cobb-Douglass preferences, not consistent with trend facts, can’t easily explain magnitudes

Learning about productivity growth

- Edge, Laubach, Williams (2007): Use linear Kalman-Filter framework, rational expectations (no learning about parameters)

Cause and effect

- Attanasio et al (2005) find that consumption of renters and homeowners respond similarly to changes in home prices
Related work

- **Housing Prices and Growth**
 - Davis and Heathcote (2005), Iacoviello and Neri (2006), Kiyotaki, Michaelides, and Nikolov (2005): Cobb-Douglass preferences, not consistent with trend facts, can’t easily explain magnitudes
Related work

Housing Prices and Growth

- Davis and Heathcote (2005), Iacoviello and Neri (2006), Kiyotaki, Michaelides, and Nikolov (2005): Cobb-Douglass preferences, not consistent with trend facts, can’t easily explain magnitudes
Related work

- Housing Prices and Growth
 - Davis and Heathcote (2005), Iacoviello and Neri (2006), Kiyotaki, Michaelides, and Nikolov (2005): Cobb-Douglass preferences, not consistent with trend facts, can’t easily explain magnitudes

- Learning about productivity growth
Related work

- **Housing Prices and Growth**
 - Davis and Heathcote (2005), Iacoviello and Neri (2006), Kiyotaki, Michaelides, and Nikolov (2005): Cobb-Douglass preferences, not consistent with trend facts, can’t easily explain magnitudes

- **Learning about productivity growth**
 - Edge, Laubach, Williams (2007): Use linear Kalman-Filter framework, rational expectations (no learning about parameters)
Related work

- **Housing Prices and Growth**
 - Davis and Heathcote (2005), Iacoviello and Neri (2006), Kiyotaki, Michaelides, and Nikolov (2005): Cobb-Douglass preferences, not consistent with trend facts, can’t easily explain magnitudes

- **Learning about productivity growth**
 - Edge, Laubach, Williams (2007): Use linear Kalman-Filter framework, rational expectations (no learning about parameters)

- **Cause and effect**
Related work

Housing Prices and Growth

- Davis and Heathcote (2005), Iacoviello and Neri (2006), Kiyotaki, Michaelides, and Nikolov (2005): Cobb-Douglass preferences, not consistent with trend facts, can’t easily explain magnitudes

Learning about productivity growth

- Edge, Laubach, Williams (2007): Use linear Kalman-Filter framework, rational expectations (no learning about parameters)

Cause and effect

- Attanasio et al (2005) find that consumption of renters and homeowners respond similarly to changes in home prices
Two sectors

- “Manufacturing” \((m)\) produces

A Growth Model with Housing

Regime-switching specification for productivity growth in the \(m\) sector.

Implications

- Aggregate looks like standard stochastic growth model
- Relative price changes from relative productivity changes cause sectoral reallocation over time
- Calibrated model can account for much of the sustained deviations of the housing price index from trend
Two sectors

- “Manufacturing” \((m)\) produces
 - non-housing related goods and services
A Growth Model with Housing

Two sectors

- “Manufacturing” \((m)\) produces
 - non-housing related goods and services
 - capital (structures and durable goods).
Two sectors

- “Manufacturing” \((m)\) produces
 - non-housing related goods and services
 - capital (structures and durable goods).

- “Housing” \((h)\) uses capital, labor, and land to produce a flow of housing services
Two sectors

- “Manufacturing” \((m)\) produces
 - non-housing related goods and services
 - capital (structures and durable goods).

- “Housing” \((h)\) uses capital, labor, and land to produce a flow of housing services

Regime-switching specification for productivity growth in the \(m\) sector.

Implications

- Aggregate looks like standard stochastic growth model
- Relative price changes from relative productivity changes cause sectoral reallocation over time
- Calibrated model can account for much of the sustained deviations of the housing price index from trend
Two sectors

- “Manufacturing” (m) produces
 - non-housing related goods and services
 - capital (structures and durable goods).

- “Housing” (h) uses capital, labor, and land to produce a flow of housing services

- Regime-switching specification for productivity growth in the m sector.
A Growth Model with Housing

Two sectors

- “Manufacturing” \((m)\) produces
 - non-housing related goods and services
 - capital (structures and durable goods).
- “Housing” \((h)\) uses capital, labor, and land to produce a flow of housing services
- Regime-switching specification for productivity growth in the \(m\) sector.

Implications

- Aggregate looks like standard stochastic growth model
A Growth Model with Housing

Two sectors

- “Manufacturing” \((m)\) produces
 - non-housing related goods and services
 - capital (structures and durable goods).
- “Housing” \((h)\) uses capital, labor, and land to produce a flow of housing services
- Regime-switching specification for productivity growth in the \(m\) sector.

Implications

- Aggregate looks like standard stochastic growth model
- Relative price changes from relative productivity changes cause sectoral reallocation over time
A Growth Model with Housing

Two sectors

- “Manufacturing” (m) produces
 - non-housing related goods and services
 - capital (structures and durable goods).
- “Housing” (h) uses capital, labor, and land to produce a flow of housing services.
- Regime-switching specification for productivity growth in the m sector.

Implications

- Aggregate looks like standard stochastic growth model
- Relative price changes from relative productivity changes cause sectoral reallocation over time.
- Calibrated model can account for much of the sustained deviations of the housing price index from trend.
Labor force N_t growing exponentially at rate ν, allocated to m or h sectors.
Details and Notation

- Labor force N_t growing exponentially at rate ν, allocated to m or h sectors.
- Fixed total land \bar{L}, allocated to m or h sectors.
Details and Notation

- Labor force N_t growing exponentially at rate ν, allocated to m or h sectors.
- Fixed total land \bar{L}, allocated to m or h sectors.
- Aggregate housing services H_t (per capita h_t).
Details and Notation

- Labor force N_t growing exponentially at rate ν, allocated to m or h sectors.
- Fixed total land \bar{L}, allocated to m or h sectors.
- Aggregate housing services H_t (per capita h_t).
- Aggregate non-housing consumption C_t (per capita c_t).
Details and Notation

- Labor force N_t growing exponentially at rate ν, allocated to m or h sectors.
- Fixed total land \bar{L}, allocated to m or h sectors.
- Aggregate housing services H_t (per capita h_t).
- Aggregate non-housing consumption C_t (per capita c_t).
- $k_i \equiv K_i / N_i$, $\ell_i = L_i / N_i$, $n_i \equiv N_i / N$, ($i = m, h$), $k \equiv K / N$.
Planner’s problem

\[
\max E_0 \left\{ \sum_{t=0}^{\infty} (1 + \rho)^{-t} \ln \phi (c_t, h_t) \right\}
\]

where

\[
\phi (c_t, h_t) = \left[\omega_c c_t^{(\epsilon-1)/\epsilon} + \omega_h h_t^{(\epsilon-1)/\epsilon} \right]^{\epsilon/(\epsilon-1)}
\]
Planner’s problem

\[
\max \ E_0 \left\{ \sum_{t=0}^{\infty} (1 + \rho)^{-t} \ln \phi (c_t, h_t) \right\}
\]

where

\[
\phi (c_t, h_t) = \left[\omega_c c_t^{(\epsilon-1)/\epsilon} + \omega_h h_t^{(\epsilon-1)/\epsilon} \right]^{e/(e-1)}
\]

subject to resource constraints

\[
c_t + (1 + \nu) k_t - k_{t-1} (1 - \delta) = A_{mt} k_{mt}^\alpha \ell_{mt}^\beta n_{mt}
\]

\[
h_t = A_{ht} k_{ht}^\alpha \ell_{ht}^\beta n_{ht}
\]

\[
k_{mt} n_{mt} + k_{ht} n_{ht} = k_{t-1}
\]

\[
\ell_{mt} n_{mt} + \ell_{ht} n_{ht} = \ell_t
\]

\[
n_{mt} + n_{ht} = 1.
\]
Assume β_h is chosen one period ahead of time, but allocated within the period. First-order conditions imply

$$k_m = \alpha^\beta_h \beta_m k_h = \beta_m \beta_h^{1/\alpha^\beta_m},$$

If p_t is price of h in terms of c, then

$$p_t = A_m k^{\alpha^1_m} m_t = A_h k^{\alpha^1_h} h_t \left(\frac{A_m}{A_h} \right)^{\beta_m \beta_h}.$$
Planner’s problem (cont.)

- Assume $\beta_h \geq \beta_m$
- k is chosen one period ahead of time, but allocated within the period
Assume $\beta_h \geq \beta_m$

k is chosen one period ahead of time, but allocated within the period

First-order conditions imply
Planner’s problem (cont.)

- Assume $\beta_h \geq \beta_m$
- k is chosen one period ahead of time, but allocated within the period
- First-order conditions imply
Assume $\beta_h \geq \beta_m$

k is chosen one period ahead of time, but allocated within the period

First-order conditions imply

$$\frac{k_m}{k_h} = \frac{1 - \alpha - \beta_h}{1 - \alpha - \beta_m}$$

$$\frac{\ell_m}{\ell_h} = \frac{\beta_m}{\beta_h} \frac{1 - \alpha - \beta_h}{1 - \alpha - \beta_m}$$

If p_t is price of h in terms of c, then
Planner’s problem (cont.)

- Assume $\beta_h \geq \beta_m$
- k is chosen one period ahead of time, but allocated within the period
- First-order conditions imply

\[
\begin{align*}
\frac{k_m}{k_h} &= \frac{1 - \alpha - \beta_h}{1 - \alpha - \beta_m} \\
\frac{\ell_m}{\ell_h} &= \frac{\beta_m (1 - \alpha - \beta_h)}{\beta_h (1 - \alpha - \beta_m)}
\end{align*}
\]

- If p_t is price of h in terms of c, then
Assume $\beta_h \geq \beta_m$

k is chosen one period ahead of time, but allocated within the period

First-order conditions imply

\[
\begin{align*}
\frac{k_m}{k_h} &= \frac{1 - \alpha - \beta_h}{1 - \alpha - \beta_m} \\
\frac{\ell_m}{\ell_h} &= \frac{\beta_m}{\beta_h} \frac{1 - \alpha - \beta_h}{1 - \alpha - \beta_m},
\end{align*}
\]

If p_t is price of h in terms of c, then

\[
p_t = \frac{A_m k_{mt}^{\alpha - 1} \ell_{mt}^{\beta_m}}{A_h k_{ht}^{\alpha - 1} \ell_{ht}^{\beta_h}} \propto \left(\frac{A_{mt}}{A_{ht}} \right) \ell_{ht}^{-(\beta_h - \beta_m)}
\]
Dynamic Euler equation is

\[
\lambda_{mt} (1 + \nu) (1 + \rho) = E_t \left\{ \lambda_{mt+1} \left[A_{mt+1} \alpha k_{mt+1}^{\alpha-1} \ell_{mt+1}^{\beta_m} + 1 - \delta \right] \right\}
\]
Balanced Aggregate Growth under Certainty

- Dynamic Euler equation is

\[
\lambda_{mt} (1 + \nu) (1 + \rho) = E_t \left\{ \lambda_{mt+1} \left[A_{mt+1} \alpha k_{mt+1}^{\alpha-1} \ell_{mt+1}^\beta + 1 - \delta \right] \right\}
\]

- Let \(x \equiv c + ph \). Can show that \(\lambda_m = x^{-1} \), so \(\lambda_{mt} / \lambda_{mt-1} = x_{t-1} / x_t \).
Balanced Aggregate Growth under Certainty

- Dynamic Euler equation is

\[
\lambda_{mt} (1 + \nu) (1 + \rho) = E_t \left\{ \lambda_{mt+1} \left[A_{mt+1} \alpha k_{mt+1}^{\alpha-1} \ell_{mt+1}^{\beta_m} + 1 - \delta \right] \right\}
\]

- Let \(x \equiv c + ph \). Can show that \(\lambda_m = x^{-1} \), so \(\lambda_{mt} / \lambda_{mt-1} = x_{t-1} / x_t \).

- **Balanced Growth**: Equilibrium path under certainty in which if \(A_m \) and \(A_h \) grow at constant rates
Dynamic Euler equation is

$$\lambda_{mt} (1 + \nu) (1 + \rho) = E_t \left\{ \lambda_{mt+1} \left[A_{mt+1} \alpha k_{mt+1}^{\alpha - 1} \ell_{mt+1}^{\beta m} + 1 - \delta \right] \right\}$$

Let $x \equiv c + ph$. Can show that $\lambda_m = x^{-1}$, so $\lambda_{mt}/\lambda_{mt-1} = x_{t-1}/x_t$.

Balanced Growth: Equilibrium path under certainty in which if A_m and A_h grow at constant rates

x and k also grow at a constant rate
Balanced Aggregate Growth under Certainty

- Dynamic Euler equation is

\[\lambda_{mt} (1 + \nu) (1 + \rho) = E_t \left\{ \lambda_{mt+1} \left[A_{mt+1} \alpha k_{mt+1}^{\alpha - 1} \ell_{mt+1}^{\beta_m} + 1 - \delta \right] \right\} \]

- Let \(x \equiv c + ph \). Can show that \(\lambda_m = x^{-1} \), so \(\lambda_{mt}/\lambda_{mt-1} = x_{t-1}/x_t \).

Balanced Growth: Equilibrium path under certainty in which if \(A_m \) and \(A_h \) grow at constant rates

1. \(x \) and \(k \) also grow at a constant rate
2. the interest rate is constant
Aggregate balanced growth (cont.)

- Aggregate growth rate (in terms of m sector output):
 \[g = \left[(1 + \gamma_m) (1 + \nu)^{-\beta_m} \right]^{1/(1-\alpha)} - 1 \]
Aggregate balanced growth (cont.)

- Aggregate growth rate (in terms of m sector output):
 \[
g = \left[(1 + \gamma_m) (1 + \nu)^{-\beta_m} \right]^{1/(1-\alpha)} - 1
\]

- Dynamics:
Aggregate balanced growth (cont.)

- Aggregate growth rate (in terms of m sector output):
 $$g = \left[(1 + \gamma_m) (1 + \nu)^{-\beta_m} \right]^{1/(1-\alpha)} - 1$$

- Dynamics:
Aggregate balanced growth (cont.)

- Aggregate growth rate (in terms of m sector output):
 \[g = \left[(1 + \gamma_m) \left(1 + \nu \right)^{-\beta_m} \right]^{1/(1-\alpha)} - 1 \]

- Dynamics:
 \[(1 + \nu) (1 + g) \frac{\hat{k}_t}{\hat{k}_{t-1}} = \left(\frac{\hat{k}_{t-1}}{1 + g} \right)^{\alpha-1} \]
 \[- \left(1 + g \right) \frac{\hat{x}_t}{\hat{k}_{t-1}} + 1 - \delta \]
 \[\left(\frac{\hat{x}_{t+1}}{\hat{x}_t} \right) (1 + \nu) (1 + \rho) (1 + g) = \alpha \left(\frac{\hat{k}_{t-1}}{1 + g} \right)^{\alpha-1} + 1 - \delta \]

- This is just the neoclassical growth model.
Unbalanced Sectoral Growth

- The sectoral variables $p, n_m, n_h, \ell_m, \ell_h, \tilde{k}_m, \tilde{k}_h, c,$ and h are nonlinear functions of the aggregate state variables.
Unbalanced Sectoral Growth

- The sectoral variables p, n_m, n_h, ℓ_m, ℓ_h, \tilde{k}_m, \tilde{k}_h, c, and h are nonlinear functions of the aggregate state variables.

- Sectoral growth is unbalanced: sectoral variables do not grow at constant rates (except in knife-edge cases $\epsilon = 1$ or $\gamma_m = \gamma_h - (\beta_h - \beta_m)\nu$).
Unbalanced Sectoral Growth

- The sectoral variables $p, n_m, n_h, \ell_m, \ell_h, \tilde{k}_m, \tilde{k}_h, c,$ and h are nonlinear functions of the aggregate state variables.

- Sectoral growth is unbalanced: sectoral variables do not grow at constant rates (except in knife-edge cases $\epsilon = 1$ or $\gamma_m = \gamma_h - (\beta_h - \beta_m) \nu$).

- **Benchmark assumptions:** $\epsilon < 1$, $\gamma_m > \gamma_h - (\beta_h - \beta_m) \nu$. Get n_h growing, n_m shrinking ("Baumol’s disease")—in practice extremely slowly.
Rental price of land q_t in terms of c
 Rental price of land q_t in terms of c

 Asset price of land:

$$V_t = q_t + E_t \{ \Phi_{t+1} V_{t+1} \} = E_t \left\{ \sum_{s=t}^{\infty} \Phi_{s-t} q_s \right\}$$
Price of Land

- Rental price of land q_t in terms of c
- Asset price of land:

$$V_t = q_t + E_t \{ \Phi_{t+1} V_{t+1} \} = E_t \left\{ \sum_{s=t}^{\infty} \Phi_{s-t}^s q_s \right\}$$
Price of Land

- Rental price of land q_t in terms of c
- Asset price of land:

$$V_t = q_t + E_t \left\{ \Phi_{t+1} V_{t+1} \right\} = E_t \left\{ \sum_{s=t}^{\infty} \Phi_{s-t} q_s \right\}$$

where

$$\Phi_{t+1} = \frac{x_t}{x_{t+1} (1 + \nu) (1 + \rho)}$$

- On the balanced growth path we have

$$\Phi^{-1} = (1 + g) (1 + \rho) (1 + \nu)$$
Price of Land

- Rental price of land q_t in terms of c
- Asset price of land:

$$V_t = q_t + E_t \left\{ \Phi_{t+1} V_{t+1} \right\} = E_t \left\{ \sum_{s=t}^{\infty} \Phi_s^{s-t} q_s \right\}$$

where

$$\Phi_{t+1} = \frac{x_t}{x_{t+1} (1 + \nu) (1 + \rho)}$$

- On the balanced growth path we have

$$\Phi^{-1} = (1 + g) (1 + \rho) (1 + \nu)$$

- Benchmark assumptions imply growth rate of V_t exceeds growth rate of income, though asymptotically approaches it.
Price of Land

- Rental price of land q_t in terms of c
- Asset price of land:

$$V_t = q_t + E_t \{ \Phi_{t+1} V_{t+1} \} = E_t \left\{ \sum_{s=t}^{\infty} \Phi_{s-t} q_s \right\}$$

where

$$\Phi_{t+1} = \frac{x_t}{x_{t+1} (1 + \nu) (1 + \rho)}$$

- On the balanced growth path we have

$$\Phi^{-1} = (1 + g) (1 + \rho) (1 + \nu)$$

- Benchmark assumptions imply growth rate of V_t exceeds growth rate of income, though asymptotically approaches it.
- Price of house is fixed-weight value of $K_h + V_t L_h$
Stochastic Growth

Stochastic Growth

Stochastic Growth

![Graph showing high-growth regime probabilities over time.](image)

Calculations based on Kahn-Rich (2007)
Stochastic Growth

- Fast-forward to 2008
Stochastic Growth

- Fast-forward to 2008

Calculations based on Kahn and Rich (2007)
Stochastic Growth

Fast-forward to 2008

![Graph showing high-growth regime probabilities over time]

High-Growth Regime Probabilities

Calculations based on Kahn and Rich (2007)
Simplified process for tractable model: Suppose that the growth rate of A_h is fixed at γ_h, but:

$$A_{mt}/A_{mt-1} = (1 + \tilde{\gamma}_m) \eta_t/\eta_{t-1}$$
Simplified process for tractable model: Suppose that the growth rate of A_h is fixed at γ_h, but:

$$\frac{A_{mt}}{A_{mt-1}} = (1 + \tilde{\gamma}_m) \frac{\eta_t}{\eta_{t-1}}$$
Simplified process for tractable model: Suppose that the growth rate of A_h is fixed at γ_h, but:

$$\frac{A_{mt}}{A_{mt-1}} = (1 + \tilde{\gamma}_{mt}) \frac{\eta_t}{\eta_{t-1}}$$

where

$$\tilde{\gamma}_{mt} = \begin{cases}
\gamma_m^1 & \text{if } \zeta_t = 1 \\
\gamma_m^0 & \zeta_t = 0
\end{cases}$$

η_t is a transitory disturbance

ζ_t is a state variable with Markov transition matrix

$$\Theta = \begin{bmatrix}
\theta_1 & 1 - \theta_0 \\
1 - \theta_1 & \theta_0
\end{bmatrix}.$$
Calibration

- Aggregate parameters take on standard values for quarterly data:
 \[\alpha = 0.33, \nu = 0.025, \delta = 0.02, \rho = 0.01 \]
Calibration

- Aggregate parameters take on standard values for quarterly data:
 \(\alpha = 0.33, \nu = 0.025, \delta = 0.02, \rho = 0.01 \)
- We set \(\beta_h = 0.5 \) and \(\beta_m = 0.05 \).
Calibration

- Aggregate parameters take on standard values for quarterly data:
 \(\alpha = 0.33, \nu = 0.025, \delta = 0.02, \rho = 0.01 \)
- We set \(\beta_h = 0.5 \) and \(\beta_m = 0.05 \).
- Since housing services represent about 20 percent of overall consumer expenditures, we set \(\omega_h = 0.2, \omega_c = 0.8 \).
From Kahn-Rich:

\[
4 \left(\gamma_1^m - \beta_m \nu \right) / (1 - \alpha) = 0.029,
\]
\[
4 \left(\gamma_0^m - \beta_m \nu \right) / (1 - \alpha) = 0.013
\]
\[
\theta_1 = 0.990
\]
\[
\theta_0 = 0.983.
\]
From Kahn-Rich:

\[
4 \left(\gamma_m^1 - \beta_m \nu \right) / (1 - \alpha) = 0.029, \\
4 \left(\gamma_m^0 - \beta_m \nu \right) / (1 - \alpha) = 0.013 \\
\theta_1 = 0.990 \\
\theta_0 = 0.983.
\]

Implies expected durations of 20 to 25 years
Evidence on ϵ

- First order condition for relative expenditures is

\[
\omega_c \omega_h \epsilon_t = p_t \ln p_t h_t c_t = a + (1 - \epsilon_t) p_t
\]

Suggests looking at relationship between expenditure share and relative price for evidence about ϵ.
Evidence on ϵ

- First order condition for relative expenditures is
Evidence on ϵ

- First order condition for relative expenditures is

$$\left(\frac{\omega_c}{\omega_h}\right)^\epsilon \frac{p_t h_t}{c_t} = p_t^{1-\epsilon}$$

$$\ln\left(\frac{p_t h_t}{c_t}\right) = a + (1 - \epsilon) p_t$$

- Suggests looking at relationship between expenditure share and relative price for evidence about ϵ
Macro Evidence on ϵ

- Aggregate behavior might suggest $\epsilon < 1$, but identification is an issue.
Match CEX micro (household) data with regional price indexes for consumption and housing services
Micro Evidence on ϵ

- Match CEX micro (household) data with regional price indexes for consumption and housing services
- For household i at date t in region j:

\[
\ln \left(\frac{p_{jt} h_{it}}{(x_{it} - p_{jt} h_{it})} \right) = a_j + b \ln x_{it} + (1 - \epsilon) \ln p_{jt} + z_{it}' \theta + u_{itj}.
\]

- a_j is a constant region-specific factor
- z_{it} are demographic controls
- x_{it} is likely to be measured with error, instrument with race, education
Micro Evidence on ϵ

- Match CEX micro (household) data with regional price indexes for consumption and housing services

- For household i at date t in region j:

 $$\ln \left[\frac{p_{jt}h_{it}}{x_{it} - p_{jt}h_{it}} \right] = a_j + b \ln x_{it} + (1 - \epsilon) \ln p_{jt} + z_{it}' \theta + u_{itj}.$$

 - a_j is a constant region-specific factor, z_{it} are demographic controls (age, household size, etc.)
Micro Evidence on ϵ

- Match CEX micro (household) data with regional price indexes for consumption and housing services.
- For household i at date t in region j:
 \[
 \ln \left[\frac{p_{jt} h_{it}}{(x_{it} - p_{jt} h_{it})} \right] = a_j + b \ln x_{it} + (1 - \epsilon) \ln p_{jt} + z_{it}' \theta + u_{itj}.
 \]
 - a_j is a constant region-specific factor, z_{it} are demographic controls (age, household size, etc.)
 - x_{it} is likely to be measured with error, instrument with race, education...
Micro Evidence on ϵ

Table 1: Parameter Estimates from CEX Household Data

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Estimate</th>
<th>SE</th>
<th>SE</th>
<th>SE</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\hat{\epsilon}$</td>
<td>0.134</td>
<td>(0.042)</td>
<td>(0.046)</td>
<td>(0.052)</td>
</tr>
<tr>
<td>\hat{b}</td>
<td>-0.743</td>
<td>(0.003)</td>
<td>(0.009)</td>
<td>-</td>
</tr>
<tr>
<td>Instruments for x</td>
<td>N</td>
<td>Y</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>R^2</td>
<td>0.575</td>
<td>0.464</td>
<td>0.317</td>
<td></td>
</tr>
</tbody>
</table>

Consistent with Flavin-Nakagawa (2004), who find $\epsilon = 0.15$. We’ll (conservatively) set $\epsilon = 0.3$, also consider $\epsilon = 0.9$.
Simulations

- Start out in low-growth regime, at $t = 12$ switch to high-growth; no transitory shocks

![Figure 7: Housing Price Response to Low-to-High Growth Regime Switch](image-url)
Simulations

- Start out in low-growth regime, at $t = 12$ switch to high-growth; no transitory shocks
Simulations

- Start out in low-growth regime, at $t = 12$ switch to high-growth; no transitory shocks

Figure 7: Housing Price Response to Low-to-High Growth Regime Switch

$\varepsilon = 0.3$

$\varepsilon = 0.9$

$\ln(\text{HPrice})$
Simulations

- Under perfect information

Figure 12: Model Simulation of Housing Prices

Get boom-bust-boom-bust pattern, but miss timing, amplitude
Simulations

- Under perfect information

Data Model with Perfect Information

Figure 12: Model Simulation of Housing Prices

Get boom-bust-boom-bust pattern, but miss timing, amplitude
Simulations

- Under perfect information

![Figure 12: Model Simulation of Housing Prices](image)

- Get boom-bust-boom-bust pattern, but miss timing, amplitude
- Recall estimated regime probabilities under “rational expectations”

High-Growth Regime Probabilities

Calculations based on Kahn and Rich (2007)
Recall estimated regime probabilities under “rational expectations”

- Even non-smoothed probabilities are based on full-sample parameter estimates

Calculations based on Kahn and Rich (2007)
Not plausible to think people understood productivity slowdown so soon after it began
Learning

- Not plausible to think people understood productivity slowdown so soon after it began
Learning

- Not plausible to think people understood productivity slowdown so soon after it began.
Simulations

- Using simulated real-time probabilities in the 70s
Simulations

- Using simulated real-time probabilities in the 70s
Simulations

- Using simulated real-time probabilities in the 70s

Figure 14a: Model Simulation of Housing Prices with Learning

- Model with learning does better in both timing and amplitude
Simulations

- Residential investment

Figure 13: Low Frequency Residential Investment

Based on fitting a quartic trend to detrended ln(investment)
The model explains large bubble-like swings in prices and real activity in the housing sector.
Conclusions

- The model explains large bubble-like swings in prices and real activity in the housing sector
 - Actual prices appear to lag predicted

- Prices overshot in 1970s (monetary policy?) but boom in 1997-2005 is in line with model prediction
- Actual investment exhibits somewhat less amplitude than model predicts
- Plausible learning mechanism helps to account for timing and amplitude of peaks and troughs
- More work to be done on additional kinds of shocks (generating independent interest rate movements), labor supply, demographics, adjustment costs, more realistic (putty-clay) treatment of land in technology
Conclusions

- The model explains large bubble-like swings in prices and real activity in the housing sector
 - Actual prices appear to lag predicted
 - Prices overshot in 1970s (monetary policy?) but boom in 1997-2005 is in line with model prediction

- Actual investment exhibits somewhat less amplitude than model predicts

- Plausible learning mechanism helps to account for timing and amplitude of peaks and troughs

- More work to be done on additional kinds of shocks (generating independent interest rate movements) labor supply, demographics, adjustment costs, more realistic (putty-clay) treatment of land in technology
Conclusions

- The model explains large bubble-like swings in prices and real activity in the housing sector
 - Actual prices appear to lag predicted
 - Prices overshot in 1970s (monetary policy?) but boom in 1997-2005 is in line with model prediction
 - Actual investment exhibits somewhat less amplitude than model predicts

- Plausible learning mechanism helps to account for timing and amplitude of peaks and troughs
- More work to be done on additional kinds of shocks (generating independent interest rate movements)
 - Labor supply, demographics
 - Adjustment costs, more realistic (putty-clay) treatment of land in technology
Conclusions

- The model explains large bubble-like swings in prices and real activity in the housing sector
 - Actual prices appear to lag predicted
 - Prices overshot in 1970s (monetary policy?) but boom in 1997-2005 is in line with model prediction
 - Actual investment exhibits somewhat less amplitude than model predicts
- Plausible learning mechanism helps to account for timing and amplitude of peaks and troughs
Conclusions

- The model explains large bubble-like swings in prices and real activity in the housing sector
 - Actual prices appear to lag predicted
 - Prices overshot in 1970s (monetary policy?) but boom in 1997-2005 is in line with model prediction
 - Actual investment exhibits somewhat less amplitude than model predicts
- Plausible learning mechanism helps to account for timing and amplitude of peaks and troughs
- More work to be done on additional kinds of shocks (generating independent interest rate movements), labor supply, demographics, adjustment costs, more realistic (putty-clay) treatment of land in technology
Conclusions

- The model explains large bubble-like swings in prices and real activity in the housing sector
 - Actual prices appear to lag predicted
 - Prices overshot in 1970s (monetary policy?) but boom in 1997-2005 is in line with model prediction
 - Actual investment exhibits somewhat less amplitude than model predicts
- Plausible learning mechanism helps to account for timing and amplitude of peaks and troughs
- More work to be done on
 - additional kinds of shocks (generating independent interest rate movements)
Conclusions

- The model explains large bubble-like swings in prices and real activity in the housing sector
 - Actual prices appear to lag predicted
 - Prices overshot in 1970s (monetary policy?) but boom in 1997-2005 is in line with model prediction
 - Actual investment exhibits somewhat less amplitude than model predicts
- Plausible learning mechanism helps to account for timing and amplitude of peaks and troughs
- More work to be done on
 - additional kinds of shocks (generating independent interest rate movements)
 - labor supply, demographics
Conclusions

- The model explains large bubble-like swings in prices and real activity in the housing sector
 - Actual prices appear to lag predicted
 - Prices overshot in 1970s (monetary policy?) but boom in 1997-2005 is in line with model prediction
 - Actual investment exhibits somewhat less amplitude than model predicts
- Plausible learning mechanism helps to account for timing and amplitude of peaks and troughs
- More work to be done on
 - additional kinds of shocks (generating independent interest rate movements)
 - labor supply, demographics
 - adjustment costs, more realistic (putty-clay) treatment of land in \(h \) technology
Reference Charts

- Home price indexes

![Alternative Home Price Indexes]

- Census (constant quality)
- Shiller S&P (repeat sales)
- OFHEO
Reference Charts

- Real interest rates

![Graph of "Real" 10-Year Treasury Rates]