The Shifting Shape of Risk: Endogenous Market Failure for Insurance

Thomas G. Koch

June 2008
Two Trends

- Medical Insurance has become more expensive
- Price increases: 5-6% per year
Two Trends

- Medical Insurance has become more expensive
- Price increases: 5-6% per year
- Fewer people have it
- 1996: over 81%
- 2004: under 79%
Objectives

- Posit a model of endogenous uninsurance
- Asymmetric information and Adverse Selection with Price Competition
- Changes in uninsurance due to changes in distribution of risk
Results

- Symmetric changes (e.g., price of care) dominate predicted rates of uninsurance
- Asymmetric changes (e.g., new treatments) have small effects
Aggregating Risk

For an agent of type $\lambda_i \in \Lambda$

$$Pr(mx_i < X|\lambda_i)$$
The unconditional distribution of realized risk is then

\[Pr(mx_i < X) = \int \Pr(mx_i < X | \lambda_i) dG(\lambda_i) \]
Distribution, G, of risk types matters

- If asymmetric information . . .
- How much risk sharing across types
Type $\lambda_i \in \Lambda$ facing exponentially distributed risk

$$Pr(mx_i < X|\lambda_i) = 1 - e^{-\lambda_i X}$$
Specifying Risk

Type \(\lambda_i \in \Lambda \) facing exponentially distributed risk

\[
Pr(mx_i < X | \lambda_i) = 1 - e^{-\lambda_i X}
\]

Types distributed Gamma\((\alpha, \beta)\)

\[
Pr(mx_i < X) = \int_{\Lambda} \left(1 - e^{\lambda X}\right) \frac{\lambda^\alpha e^{-\lambda/\beta}}{\beta^{\alpha+1} \Gamma(\alpha + 1)} d\lambda
\]
Specifying Risk

Type $\lambda_i \in \Lambda$ facing exponentially distributed risk

$$Pr(mx_i < X|\lambda_i) = 1 - e^{-\lambda_i X}$$

Types distributed $\text{Gamma}(\alpha, \beta)$

$$Pr(mx_i < X) = \int_{\Lambda} (1 - e^{\lambda X}) \frac{\lambda^\alpha e^{-\lambda/\beta}}{\beta^{\alpha+1} \Gamma(\alpha + 1)} d\lambda$$

... the unconditional distribution of realized risk is

$$Pr(mx_i < X) = 1 - \frac{1}{(\beta X + 1)^{\alpha+1}}$$
Density of Medical Charges

Data
Density
Empirical PDF
Gamma–mix Pareto Fit
The Shifting Shape of Risk?

- Look at cross-sectional medical distribution across years
- Get implied series of $\{\alpha_t, \beta_t\}$
- How much risk sharing across types if asymmetric information?
Interpreting the Gamma Distribution

β, scale parameter

- Decrease $\beta \Rightarrow$ All risk grows same amount
- E.g., a change in price of medical care
Interpreting the Gamma Distribution

\[\beta, \text{ scale parameter} \]

- Decrease \(\beta \) \(\Rightarrow \) All risk grows same amount
- E.g., a change in price of medical care

\[\alpha, \text{ shape parameter} \]

- Decrease \(\alpha \) \(\Rightarrow \) Increase skewness, kurtosis
- Asymmetric changes (obesity, disease incidence, disease cost)
Model

- CARA Preferences
- Asymmetric information
- Competitive insurance markets
Model

- CARA Preferences
- Asymmetric information
- Competitive insurance markets
- Multiple equilibria
- Get predicted insurance price, rate
One stable equilibrium

Stability of two equilibria: $\alpha=1.05 \ \beta=.003 \ \gamma=0.01 \ \kappa=50,000$

$\pi(\lambda; \kappa)$
$\varpi(\lambda)$
Data

- 1996-2004 MEPS
- Non-elderly, non-poor, non-military
- Total charges vs. Private insurance spending
Insurance rate trends, using private medical insurance expenditure

Year	Insurance rate
1996 | 0.78
1997 | 0.8
1998 | 0.82
1999 | 0.84
2000 | 0.86
2001 | 0.88
2002 | 0.9
2003 | 0.88
2004 | 0.86

Predicted vs. Actual Insurance Rate
Changes in β Dominate

Insurance rate trends, using private medical insurance expenditure

- **Fit**
- **Constant α**
- **Constant β**

Year	Insurance rate
1996 | 0.78
1997 | 0.80
1998 | 0.82
1999 | 0.84
2000 | 0.86
2001 | 0.88
2002 | 0.90
2003 | 0.88
2004 | 0.87

Thomas G. Koch

Shape of Risk
Swartz (2006)

1. Increasing cost of care \Rightarrow Increasing price of insurance
2. Increasing price of insurance \Rightarrow Decreasing insurance rate
Swartz (2006)

1. Increasing cost of care ⇒ Increasing price of insurance
2. Increasing price of insurance ⇒ Decreasing insurance rate

The glass is half full

1. Common increases in medical risk
Swartz (2006)

1. Increasing cost of care \Rightarrow Increasing price of insurance
2. Increasing price of insurance \Rightarrow Decreasing insurance rate

The glass is half full

1. Common increases in medical risk
2. Should have induced more insurance