Uncertainty and Capital Accumulation:
Empirical Evidence from African and Asian Firms

Stephen Bond, Måns Söderbom, Guiying Wu

University of Oxford

NASM of Econometric Society
Carnegie Mellon University
June 2008
Motivation–Puzzle

- Why in general economic convergence doesn’t happen?
- Could low capital accumulation be one possible explanation?

Table 1- Proportion of Zero Investment in Micro-Level Data (%)

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>sample</td>
<td>proportion</td>
<td></td>
</tr>
<tr>
<td>LRD</td>
<td>8.1</td>
<td>0.5</td>
<td></td>
</tr>
<tr>
<td>Compustat</td>
<td>China</td>
<td>22.8</td>
<td>62.4</td>
</tr>
<tr>
<td>India</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Morocco</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ghana</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Note: Data source for BSW(2007b): Enterprises Surveys, World Bank
Motivation–Explanations

- **Investment Decision**

 Marginal Product of Capital = User Cost of Capital

- **Technological Constraint**

 Uncertainty-Capital Adjustment Costs (BSW, 2007a, b)

- **Financing Constraint**

 Capital Market Imperfections (BSW, 2007c)
Motivation–Theoretical Interest

- uncertainty-investment/capital accumulation
- Hartman-Abel: positive Jensen’s inequality effect
- Pindyck-Dixit: negative marginal call option effect
- Abel-Eberly: (-) user cost effect v.s. (+) hang over effect
- Highlighting the importance of empirical work
This Paper (BSW, 2007b)
Introduction

- This Paper (BSW, 2007b)
 - Ask how costly is capital adjustment and what is the level of uncertainty
This Paper (BSW, 2007b)
- Ask how costly is capital adjustment and what is the level of uncertainty
- Provide structural estimation by simulated method of moments
This Paper (BSW, 2007b)

- Ask how costly is capital adjustment and what is the level of uncertainty
- Provide structural estimation by simulated method of moments
- Use firm-level data from China, India, Morocco and Ghana
This Paper (BSW, 2007b)

- Ask how costly is capital adjustment and what is the level of uncertainty
- Provide structural estimation by simulated method of moments
- Use firm-level data from China, India, Morocco and Ghana
- Simulate the counterfactual short-run adjustment and long-run accumulation due to an exogenous decrease in uncertainty
The Model

- **Dynamic Programming**

 \[V_t(X_t, K_t) = \max_{I_t} \Pi(X_t, K_t; I_t) + \frac{1}{1 + r} E_t \left[V_{t+1}(X_{t+1}, K_{t+1}) \right] \]

- **Law of motion for capital**

 \[K_{t+1} = (1 - \delta) (K_t + I_t) \]

- **Law of motion for demand**

 \[
 \begin{align*}
 x_t &= \ln X_t = x_0 + \mu t + z_t \\
 z_t &= \rho z_{t-1} + \varepsilon_t \\
 \varepsilon_t &\sim \text{iid } N(0, \sigma^2)
 \end{align*}
 \]

- \(\sigma \) is the measure of uncertainty in this model
The Model

- Net Revenue = operating profit - purchase cost - adjustment cost

\[\Pi(X_t, K_t; I_t) = X_t^\gamma (K_t + I_t)^{1-\gamma} - I_t - G(I_t, K_t) \]

- Without adjustment cost, analytical solution

\[\frac{I_t^*}{K_t} = \text{const} \cdot \frac{X_t}{K_t} - 1 \]
\[\hat{K}_t^* = K_t + I_t^* = \text{const} \cdot X_t \]

- Adjustment Cost = partial irreversibility + fixed cost + quadratic cost

\[G(I_t, K_t) = -b_i I_t 1_{[I_t<0]} + b_f 1_{[I_t \neq 0]} X_t^\gamma (K_t + I_t)^{1-\gamma} + \frac{b_q}{2} \left(\frac{I_t}{K_t} \right)^2 K_t \]
Solution—Partial Irreversibility Only

- Capital is Firm-Specific; Adverse Selection Problem
Solution—Fixed Costs of Adjustment Only

- Indivisibilities in Capital; IRS; License or Permission
Solution—Quadratic Adjustment Costs Only

- Capital Installation; Labour Training; Organization Reconstruction

[Graph showing Investment Policy-Quadratic Costs Only with two lines: quadratic costs and no adjustment cost vs. const*\(X_t/K_t - 1\)]
Partial Irreversibility Only
Uncertainty-Investment Relationship—Short Run

- Fixed Costs of Adjustment Only

![Graph showing short-run effects with fixed costs only.](image-url)
Uncertainty-Investment Relationship—Short Run

- Quadratic Adjustment Costs Only
Uncertainty-Investment Relationship—Long Run

- Partial Irreversibility Only

![Graph showing the long-run effect with partial irreversibility only](image)
Uncertainty-Investment Relationship–Long Run

- Fixed Costs of Adjustment Only
Uncertainty-Investment Relationship–Long Run

- Quadratic Adjustment Costs Only
Towards Estimation

- Both in the short-run and long-run, the effects of uncertainty depend on the form and the magnitude of adjustment costs.
Both in the short-run and long-run, the effects of uncertainty depend on the form and the magnitude of adjustment costs.

To study and quantify these effects, we need to know which forms of adjustment costs are significant and how large they are.
Towards Estimation

- Both in the short-run and long-run, the effects of uncertainty depend on the form and the magnitude of adjustment costs.

- To study and quantify these effects, we need to know which forms of adjustment costs are significant and how large they are.

- How to estimate these unobservable underlying structural parameters?
Towards Estimation

- Both in the short-run and long-run, the effects of uncertainty depend on the form and the magnitude of adjustment costs.

- To study and quantify these effects, we need to know which forms of adjustment costs are significant and how large they are.

- How to estimate these unobservable underlying structural parameters?

- Simulated Method of Moments: link the model to the data.
Simulated Method of Moments

1. DGP
 - Observe Empirical Dataset with $N \times T$
 - Estimate a set of Empirical Moments $\hat{\Phi}^D$

2. Structural Model
 - Guess Structural Parameters (Θ)
 - Simulate H Datasets with $N \times T$
 - Estimate same set of Simulated Moments $\frac{1}{H} \sum_{h=1}^{H} \Phi^S_h(\Theta)$

3. Compare Θ^* with Θ
 - If yes, MATCH?
 - If no, NO
Simulated Method of Moments

- **Estimate**

\[\hat{\Theta} = \arg \min_{\theta} L = \left(\hat{\Phi}^D - \frac{1}{H} \sum_{h=1}^{H} \hat{\Phi}_h^S (\Theta) \right)' \Omega \left(\hat{\Phi}^D - \frac{1}{H} \sum_{h=1}^{H} \hat{\Phi}_h^S (\Theta) \right) \]

- **Property**

\[\sqrt{N} \left(\hat{\Theta} - \Theta^* \right) \overset{D}{\rightarrow} N \left(0, W (H, \Omega) \right) \]

- **Test**

\[OI = \frac{NH}{1 + H} L \sim \chi^2 \left[\dim (\hat{\Phi}) - \dim (\Theta) \right] \]

- **Algorithm**

simulated annealing algorithm to avoid local minima
Identification

- **10 Parameters**
 - parameters for capital adjustment costs
 - parameters characterising demand process
 - s.d. of measurement errors in investment and sales

- **14 Moments**
 - proportion of zero and spike investment rate
 - first and second moments of investment rate and sale growth rates
 - serial correlation between investment rates and sales growth rates

- **Criterion of Moment Choice**
 - variation in moments is informative about changes in parameters
The effect of varying b_f on the proportion with zero investment
Empirical Results

Table 2-Estimation Result for the China Small Sample

<table>
<thead>
<tr>
<th>parameters</th>
<th>symbol</th>
<th>estimate</th>
<th>t-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>irreversibility</td>
<td>b_i</td>
<td>0.005</td>
<td>0.0004</td>
</tr>
<tr>
<td>fixed cost</td>
<td>b_f</td>
<td>0.046</td>
<td>3.4755</td>
</tr>
<tr>
<td>quadratic cost</td>
<td>b_q</td>
<td>3.133</td>
<td>12.887</td>
</tr>
<tr>
<td>demand growth rate</td>
<td>μ</td>
<td>0.029</td>
<td>9.1115</td>
</tr>
<tr>
<td>level of demand uncertainty</td>
<td>σ</td>
<td>0.463</td>
<td>6.5754</td>
</tr>
<tr>
<td>profit function curvature</td>
<td>γ</td>
<td>0.586</td>
<td>19.767</td>
</tr>
<tr>
<td>measurement error 1</td>
<td>σ_{YP}</td>
<td>1.042</td>
<td>5.8318</td>
</tr>
<tr>
<td>measurement error 2</td>
<td>σ_{YT}</td>
<td>0.128</td>
<td>0.0001</td>
</tr>
<tr>
<td>measurement error 3</td>
<td>σ_{IP}</td>
<td>0.732</td>
<td>22.292</td>
</tr>
<tr>
<td>measurement error 4</td>
<td>σ_{IT}</td>
<td>0.563</td>
<td>19.296</td>
</tr>
<tr>
<td>criterion value</td>
<td>OI</td>
<td>21.1</td>
<td></td>
</tr>
<tr>
<td>over-identifying restrictions</td>
<td>dim $\left(\widehat{\Phi} - \Theta \right)$</td>
<td>4</td>
<td></td>
</tr>
</tbody>
</table>
Counterfactual Simulation

- Short-Run Adjustment
Counterfactual Simulation

- Long-Run Accumulation

![Graph showing long-run effect in China with unsmoothed and smoothed lines.](image-url)
Conclusions

- A rich specification of adjustment costs—both convex and non-convex is necessary to fit firm-level investment data.
Conclusions

- A rich specification of adjustment costs—both convex and non-convex is necessary to fit firm-level investment data.

- Investment would be more responsive to new information about demand under lower uncertainty.
Conclusions

- A rich specification of adjustment costs—both convex and non-convex is necessary to fit firm-level investment data.

- Investment would be more responsive to new information about demand under lower uncertainty.

- A lower level of uncertainty would induce firms to operate with substantially higher capital stock in the long run.
Further Research

- Turn on Hartman-Abel effect and estimate its importance empirically.
Further Research

- Turn on Hartman-Abel effect and estimate its importance empirically.
- Introduce unobservable heterogeneity in uncertainty and firm size.
Further Research

- Turn on Hartman-Abel effect and estimate its importance empirically.
- Introduce unobservable heterogeneity in uncertainty and firm size.
- Introduce incomplete market or risk-aversion through discount rate.
The End.
Thank You Very Much.
Questions and Comments Welcome!