Hierarchic Government, Endogenous Policies, and Foreign Direct Investment: Theory and Evidence from China and India

Yong Wang

University of Chicago

June 2008
Motivations: FDI Inflows

Figure 1: China and India Per Capita FDI Inflows: 1987-2005

Governments policies on FDI are very different in India and China
(1) profit tax rate (41% vs 30%) and tariff rate (19.2% vs 9.9%)
(2) institutional barrier:

Table 1: Measures of the Ease of Doing Business in China and India (2005)

<table>
<thead>
<tr>
<th>Country</th>
<th>Overall Ease (Rankb)</th>
<th>Starting a Business</th>
<th>Enforcing Contract</th>
<th>Registering Property</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Overall Time (Days)</td>
<td>Cost (a) (%)</td>
<td>Procedures (Number)</td>
<td>Time (Days)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>China</td>
<td>91</td>
<td>48</td>
<td>13.6</td>
<td>35</td>
</tr>
<tr>
<td></td>
<td>406</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>India</td>
<td>116</td>
<td>71</td>
<td>62.0</td>
<td>46</td>
</tr>
<tr>
<td></td>
<td>1420</td>
<td></td>
<td></td>
<td>6</td>
</tr>
<tr>
<td></td>
<td>62</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Notes: a. as a percentage of Income per capita; b. among all the economies in the world
Preview of Main Results

- FDI polarization: provincial government revenue maximization + decreasing negative pecuniary externality
Preview of Main Results

- FDI polarization: provincial government revenue maximization + decreasing negative pecuniary externality
- Horizontal interaction between provinces might cause asymmetric FDI allocation but FDI bifurcation still holds.
Preview of Main Results

- FDI polarization: provincial government revenue maximization + decreasing negative pecuniary externality
- Horizontal interaction between provinces might cause asymmetric FDI allocation but FDI bifurcation still holds.
- Central government chooses incentive-compatible policies to induce provincial government(s) to implement its favored FDI.
Preview of Main Results

- FDI polarization: provincial government revenue maximization + decreasing negative pecuniary externality
- Horizontal interaction between provinces might cause asymmetric FDI allocation but FDI bifurcation still holds.
- Central government chooses incentive-compatible policies to induce provincial government(s) to implement its favored FDI.
- China and India’s FDI difference CAN be mainly because China’s central government obtained a higher share of total tax revenue.
Road Map

1. Single Province Model
 - 1. Exogenous Profit Tax Rate and Tariff Rate

2. Hierarchic Government (central government + SIG)
 - 1. Regional Competition for FDI
 - 2. Endogenous Profit Tax Rate and Tariff Rate

3. Calibration/Simulation
 - 1. China and India
 - 2. Counterfactual Experiment

4. Conclusion
\(n_h \) domestic firms, differentiated consumption goods, unit cost is \(c_h \)
Single Province Model

Environment

- n_h domestic firms, differentiated consumption goods, unit cost is c_h
- n_f potential foreign investors, unit cost is $c_f < c_h$,
n_h domestic firms, differentiated consumption goods, unit cost is c_h

n_f potential foreign investors, unit cost is $c_f < c_h$,

n_m denotes the total number of investors who makes FDI, so $n_f - n_m$ firms export.
- \(n_h \) domestic firms, differentiated consumption goods, unit cost is \(c_h \)
- \(n_f \) potential foreign investors, unit cost is \(c_f < c_h \),
- \(n_m \) denotes the total number of investors who makes FDI, so \(n_f - n_m \) firms export.
- Unit mass households, endowed with \(L \) units of labor, have identical utility function:

\[
U = x_0 + \frac{\theta}{\theta - 1} \left\{ \left[n_h x_h^{\frac{\varepsilon - 1}{\varepsilon}} + (n_f - n_m) x_f^{\frac{\varepsilon - 1}{\varepsilon}} + n_m x_m^{\frac{\varepsilon - 1}{\varepsilon}} \right]^{\frac{\varepsilon}{\varepsilon - 1}} \right\}^{\frac{\theta - 1}{\theta}}.
\]
Market Structure: competitive labor market and monopolistic competition commodity markets

\[\pi_h \equiv \frac{1}{\varepsilon} p_h^{1-\varepsilon} q^{\varepsilon-\theta} \]
\[\pi_m \equiv \frac{1}{\varepsilon} p_m^{1-\varepsilon} q^{\varepsilon-\theta} \]
\[\pi_f \equiv \frac{1}{\varepsilon^\tau} p_f^{1-\varepsilon} q^{\varepsilon-\theta} \]

\[q = \left[n_h p_h^{1-\varepsilon} + n_m p_m^{1-\varepsilon} + (n_f - n_m) p_f^{1-\varepsilon} \right]^{1/(1-\varepsilon)}, \]

\[p_h \equiv \frac{\varepsilon}{\varepsilon-1} c_h, \]
\[p_m \equiv \frac{\varepsilon}{\varepsilon-1} c_f, \]
\[p_f \equiv \frac{\varepsilon}{\varepsilon-1} c_f \tau, \]

Assume \(\varepsilon > \theta > 1 \).

Lemma

Profit \(\pi_i \) decreases with FDI \(n_m \) for any \(i \in \{h, m, f\} \); and both \(\pi_h \) and \(\pi_m \) increase with \(\tau \).
Any investor $j \in N_f$ chooses FDI ($D_j = 1$) rather than export ($D_j = 0$) iff
\[(1 - \lambda) \pi_m - \phi \geq \pi_f.\]
where λ is profit tax rate and ϕ is institutional entry cost.

When $\phi = 0$, any positive FDI supply requires
\[1 - \lambda - \tau^{-\varepsilon} w^{1-\varepsilon} \geq 0. \tag{1}\]

Aggregate FDI supply is $\int_{j \in N_f} D_j dj$.
Timing:

1. Given λ and τ, the provincial government decides ϕ
2. All the potential investors make FDI decisions simultaneously
3. Labor market opens, output is produced, commodity market opens, taxation, and consumption.
The government chooses ϕ to maximize total tax revenue and its attitude toward FDI is determined by

$$\max_{n_m} \Psi(n_m) \equiv (1 - \gamma) [\lambda n_m \pi_m(n_m) + \overline{\lambda} n_h \pi_h(n_m)]$$

pro-FDI tax base expansion effect versus anti-FDI profit-reduction effect, $\frac{\partial^2 \pi_i}{\partial n_m^2} > 0$ is crucial for the "convexity" of $\Psi(n_m)$

Provincial government’s demand for n_m:

$$n_m^d = \begin{cases} 0, & \text{if } \lambda \leq \tilde{\lambda}(\tau) \\ n_f, & \text{if } \lambda > \tilde{\lambda}(\tau) \end{cases}$$

where $\tilde{\lambda}'(\tau) > 0$ and $\tilde{\lambda}(\infty) < \overline{\lambda}$.

ϕ^* is determined by n_m^d.
Proposition 1: In the equilibrium with one province, FDI is either null or full:

\[n_m^* = \begin{cases}
 n_f, & \text{if } \tilde{\lambda}(\tau) < \lambda \leq 1 - \tau^{-\varepsilon} W^{1-\varepsilon} \\
 0, & \text{otherwise}
\end{cases} \]
two provinces, $k \in \{1, 2\}$, each is a replicate of the single-province economy
Endogenous Policies

Preliminary

• two provinces, \(k \in \{1, 2\} \), each is a replicate of the single-province economy

• two layers of governments
two provinces, $k \in \{1, 2\}$, each is a replicate of the single-province economy

two layers of governments

- central government determines τ and λ_k, $k \in \{1, 2\}$
two provinces, $k \in \{1, 2\}$, each is a replicate of the single-province economy

two layers of governments

- central government determines τ and λ_k, $k \in \{1, 2\}$
- government of province k determines ϕ_k
two provinces, $k \in \{1, 2\}$, each is a replicate of the single-province economy

two layers of governments
 - central government determines τ and λ_k, $k \in \{1, 2\}$
 - government of province k determines ϕ_k

All the owners of domestic firms form one special interest group (SIG)
The special interest group solves

\[
\max_{C(\lambda_1,\lambda_2,\tau)} \sum_{k=1}^{2} (1 - \bar{\lambda}) n_h \pi_h(k) - C(\lambda_1, \lambda_2, \tau)
\]

(2)
Timing

- The special interest group solves

\[
\max_{C(\lambda_1, \lambda_2, \tau)} \sum_{k=1}^{2} (1 - \lambda) n_h \pi_h(k) - C(\lambda_1, \lambda_2, \tau) \tag{2}
\]

- Central government solves

\[
\max_{\lambda_1, \lambda_2, \tau} C(\lambda_1, \lambda_2, \tau) + \sum_{k=1}^{2} \gamma [\lambda n_h \pi_h(k) + \lambda_k n_m(k) \pi_m(k)] + \sum_{k=1}^{2} \frac{\tau-1}{\tau} (n_f - n_m(k)) p_f x_f(k) + a \sum_{k=1}^{2} W_k(\tau, n_m(k)). \tag{3}
\]
Timing

- The special interest group solves
 \[
 \max_{C(\lambda_1, \lambda_2, \tau)} \sum_{k=1}^{2} (1 - \bar{\lambda}) n_h \pi_h(k) - C(\lambda_1, \lambda_2, \tau) \tag{2}
 \]

- Central government solves
 \[
 \max_{\lambda_1, \lambda_2, \tau} C(\lambda_1, \lambda_2, \tau) + \sum_{k=1}^{2} \gamma [\bar{\lambda} n_h \pi_h(k) + \lambda_k n_m(k) \pi_m(k)] \tag{3}
 \]
 \[
 + \sum_{k=1}^{2} \frac{\tau-1}{\tau} (n_f - n_m(k)) p_f x_f(k) + a \sum_{k=1}^{2} W_k(\tau, n_m(k)).
 \]

- Government of Province \(k\) solves
 \[
 \max_{\phi_k \geq 0} (1 - \gamma) [\lambda_k \pi_m(k) n_m(k) + \bar{\lambda} n_h \pi_h(k)].
 \]
Timing

- The special interest group solves

 $$\max_{C(\lambda_1, \lambda_2, \tau)} \sum_{k=1}^{2} (1 - \bar{\lambda}) n_h \pi_h(k) - C(\lambda_1, \lambda_2, \tau)$$ \hspace{1cm} (2)

- Central government solves

 $$\max_{C(\lambda_1, \lambda_2, \tau)} \sum_{k=1}^{2} \gamma [\bar{\lambda} n_h \pi_h(k) + \lambda_k n_m(k) \pi_m(k)] + \sum_{k=1}^{2} \frac{\tau-1}{\tau} (n_f - n_m(k)) p_f x_f(k) + a \sum_{k=1}^{2} W_k(\tau, n_m(k)).$$ \hspace{1cm} (3)

- Government of Province k solves

 $$\max_{\phi_k \geq 0} (1 - \gamma) [\lambda_k \pi_m(k) n_m(k) + \bar{\lambda} n_h \pi_h(k)].$$

- Each potential investor j chooses:

 $$D_j^* \in \arg \max_{D_j \in \{A, B(1), B(2)\}} \{\Pi^A, \Pi^{B(1)}, \Pi^{B(2)}\}.$$
Definition. A Political Equilibrium (PE) is a collection of the policy variables τ^*, $\{\phi^*_k, \lambda^*_k\}_{k \in \{1,2\}}$, the commodity prices $p^* (j)$, $j \in N_f \cup N_h$, the lobby schedule function $C^*(\lambda_1, \lambda_2, \tau)$, and the investment decisions D^*_j, for all $j \in N_f$, such that the interest group, the central government, each provincial government $k \in \{1,2\}$, each potential investor $j \in N_f$, each domestic firm $j \in N_h$, and each household maximize their goal functions, and markets are clear for domestic labor and each kind of commodity. [the international payment for the domestic economy can also be balanced]

Lemma

There always exists at least one Political Equilibrium.
Proposition 6. When $a \to \infty$, there exists only one symmetric PE, in which $\lambda^* = 1 - w^{1-\varepsilon}$, $\tau^* = 1$, $n^*_m(1) = n^*_m(2) = \frac{n_f}{2}$, and $\phi_1^* = \phi_2^* = 0$, if $1 - w^{1-\varepsilon} > \tilde{\lambda}(1)$.

Proposition 7. Suppose $a = 0$. If γ is sufficiently small, then in the symmetric PE, we must have $\tau^* > \frac{\varepsilon}{\varepsilon - 1}$, $\lambda^* \leq \tilde{\lambda}(\tau^*)$ or $\lambda^* > 1 - \tau^{*-\varepsilon}w^{1-\varepsilon}$, $n^*_m(1) = n^*_m(2) = 0$, and $\phi_1^* = \phi_2^* \geq \Phi$.

$$\max_{\lambda_1, \lambda_2, \tau} \sum_{k=1}^{2} \left[(1 - \bar{\lambda}) n_h \pi_h(k) + aW_k(\tau, n_m(k)) \right] + \sum_{k=1}^{2} \gamma [\bar{\lambda} n_h \pi_h(k)$$

$$+ \lambda_k n_m(k) \pi_m(k)] + \sum_{k=1}^{2} \frac{\tau - 1}{\tau} (n_f - n_m(k)) p_f(k) x_f(k)$$
is important

\[\gamma \]

Proposition 8. When the central government’s share of the tax revenue becomes higher, it’s more likely that the central government will induce the provincial governments to compete for rather than block FDI.

\[
\max_{\lambda_1, \lambda_2, \tau} \sum_{k=1}^{2} \left[(1 - \lambda) n_h \pi_h(k) + aW_n(\tau, n_m(k)) \right] + \sum_{k=1}^{2} \gamma \lambda n_h \pi_h(k) \\
+ \lambda_k n_m(k) \pi_m(k) \right] + \sum_{k=1}^{2} \frac{\tau - 1}{\tau} (n_f - n_m(k)) p_f(k) x_f(k)
\]
Calibration/ Simulation for China & India

Data Sources: China Statistical Yearbook (2005), Penn World Table, Economic Survey by India’s Ministry of Finance, 2003-2004 Annual Survey of Industries data.

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Description</th>
<th>China</th>
<th>India</th>
</tr>
</thead>
<tbody>
<tr>
<td>γ</td>
<td>central government’s tax share</td>
<td>0.6</td>
<td>0.38</td>
</tr>
<tr>
<td>λ</td>
<td>profit tax rate on domestic firms</td>
<td>0.33</td>
<td>0.36</td>
</tr>
<tr>
<td>$n_f : n_h$</td>
<td># foreign firms vs. # domestic firms</td>
<td>1:6</td>
<td>1:6</td>
</tr>
<tr>
<td>$c_f : c_h$</td>
<td>labor productivity ratio</td>
<td>6:1</td>
<td>7.4:1</td>
</tr>
<tr>
<td>L</td>
<td>total population</td>
<td>3</td>
<td>2.45</td>
</tr>
<tr>
<td>ε</td>
<td>substitution elasticity</td>
<td>1.89</td>
<td>3.05</td>
</tr>
<tr>
<td>θ</td>
<td>price elasticity of CES aggregate</td>
<td>1.8</td>
<td>1.16</td>
</tr>
<tr>
<td>a</td>
<td>weight on average household welfare</td>
<td>1.302</td>
<td>1.302</td>
</tr>
<tr>
<td>w</td>
<td>foreign wage</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>s</td>
<td>tax enforcability constraint</td>
<td>1</td>
<td>1.6</td>
</tr>
</tbody>
</table>
Simulation Results

Table 4: Data and Simulation Results

<table>
<thead>
<tr>
<th></th>
<th>$n_m^*(k) : n_h$</th>
<th>λ_k^*</th>
<th>τ^*</th>
<th>$l^_h : l^_m$</th>
<th>GDP : $n_h \pi_h$</th>
</tr>
</thead>
<tbody>
<tr>
<td>China</td>
<td>1: 12</td>
<td>0.300</td>
<td>1.104</td>
<td>2.4: 1</td>
<td>21.0: 2.4</td>
</tr>
<tr>
<td>Model</td>
<td>1: 12</td>
<td>0.238</td>
<td>1.155</td>
<td>2.4: 1</td>
<td>25.8: 2.4</td>
</tr>
<tr>
<td>India</td>
<td>0.06: 12</td>
<td>0.410</td>
<td>1.222</td>
<td>/</td>
<td>/</td>
</tr>
<tr>
<td>Model</td>
<td>0: 12</td>
<td>≥ 0.475</td>
<td>1.235</td>
<td>/</td>
<td>/</td>
</tr>
</tbody>
</table>
Table 5: Equilibrium FDI Might Be Sensitive to α and γ

<table>
<thead>
<tr>
<th>(α, γ)</th>
<th>$n^_m : n^_h$</th>
<th>λ^*_k</th>
<th>τ^*</th>
<th>$l_h : l_m : l_n$</th>
<th>GDP: $n_h \pi_h : n^*_m \pi_m$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$(0.072, 0.6)$</td>
<td>1: 12</td>
<td>0.8458</td>
<td>2.69</td>
<td>2.4: 1: 21.4</td>
<td>25.6: 2.44: 1</td>
</tr>
<tr>
<td>$(0.071, 0.6)$</td>
<td>0: 12</td>
<td>0</td>
<td>2.06</td>
<td>0.3 : 0 : 2.7</td>
<td>3.33 : 0.33 : 0</td>
</tr>
<tr>
<td>$(0.071, 0.61)$</td>
<td>1: 12</td>
<td>0.8458</td>
<td>2.69</td>
<td>2.4: 1: 21.4</td>
<td>25.6: 2.44: 1</td>
</tr>
</tbody>
</table>
Counterfactual Experiment Two

Minimal Requirement of Positive FDI for Tax Revenue Share γ

(Yong Wang (University of Chicago))
Table 9: Counterfactual Experiments 3

<table>
<thead>
<tr>
<th>Country</th>
<th>(n_m^*(k): n_h)</th>
<th>[1] (\alpha = 0.434)</th>
<th>[2] (\varepsilon = 3.31)</th>
</tr>
</thead>
<tbody>
<tr>
<td>China</td>
<td>1 : 12</td>
<td></td>
<td>1: 12</td>
</tr>
<tr>
<td>India</td>
<td>0 : 12</td>
<td></td>
<td>0: 12</td>
</tr>
</tbody>
</table>
Conclusion

- We show how the central government, by optimally choosing the profit tax rates (λ) and tariff rate (τ) under the influence of SIG, might induce the provincial government to compete for rather than block FDI (better technology) by reducing the *de facto* entry cost (ϕ).

- Quantitative exploration suggests the large China-India FDI difference CAN be mainly because China’s central government is stronger than its Indian counterpart (higher γ).

- Some Future Extensions
 - Global game analysis when ϕ is uncommon Knowledge (done).
 - Tax enforcement constraint /sectoral Heterogeneity/export-promoting policies (in progress)
 - Dynamic version (macro dynamics due to productivity heterogeneity and policy dynamics due to common agency)
 - Determination of γ in the federalism
 - Empirical relevance of our main result for the other developing economies