Equity Returns and the Business Cycle: The Role of Supply and Demand Shocks

Alfonso Mendoza Velázquez and Peter N. Smith, 1

This draft
May 2012

Abstract

There is enduring interest in the relationship between the state of the business cycle and returns on financial markets. Counter cyclical behaviour of returns, as found in some studies, is a feature which models of financial markets are developed to match. The robustness of this characteristic is consequently of great interest. Despite this evidence, GDP growth alone seems not to be a good predictor of future returns. This paper examines the relationship between the business cycle and expected equity market returns. In this paper we examine a very simple relation between the nature of a business cycle quarter and returns. We examine several classifications of UK business cycle quarters and relate them to the returns from an investment strategy which buys the market one or more quarters after a business cycle quarter and holds it for one year. We find that there is clear evidence for the counter-cyclicality in expected returns. That is that expected returns are significantly higher following a recession quarter than following an expansion quarter. Furthermore, we show that there is a significant difference in the pattern of expected returns if the downturn in the quarter is the result of a supply or demand shock. The analysis in this paper does not depend on a particular asset pricing model but rather provides some general results which could be examined in the context of a particular model.

JEL Classification: G12, C32, C51, E44

Keywords: Equity Returns, Risk Premium, Business Cycle.

1 *Centro de Investigación e Inteligencia Económica (CIIE), Universidad Popular Autónoma del Estado de Puebla (UPAEP), **University of York.

The authors would like to thank Mike Wickens for helpful comments.

1 Introduction

There is enduring interest in the relationship between the state of the business cycle and returns on financial markets. Counter cyclical behaviour of returns, as found in some studies, is a feature which models of financial markets are developed to match. The robustness of this characteristic is consequently of great interest. Despite this evidence, GDP growth alone seems not to be a good predictor of future returns as Peña et al (2002) show. In this paper we examine a very simple relation between the nature of a business cycle quarter and returns. We examine several classifications of UK business cycle quarters and relate them to the returns from an investment strategy which buys the market one or more quarters after a business cycle quarter and holds it for one year. We find that there is clear evidence for the counter-cyclicality in expected returns. That is that expected returns are significantly higher following a recession quarter than following an expansion quarter. Furthermore, we show that there is a significant difference in the pattern of expected returns if the downturn in the quarter is the result of a supply or demand shock.

Our classification of business cycle quarters follows from two sources of information. The first is the classification of quarters from official business cycle classification methods. The best known of these is the NBER business cycle dating system operated in the United States. It focuses on the ex-post dating of the start and end of recessions. Whilst this precise methodology does not exist for the UK (or other countries) several agencies either produce their own or have adopted various classifications of recession dating. We examine the relation between the three leading classifications and future equity returns. A more nuanced relationship between the state of the business cycle and returns can be examined by extracting a more detailed identification of shocks to GDP. In this paper we use the identification scheme for aggregate supply and demand shocks proposed by Blanchard and Quah (1989) to provide quarterly measures of business cycle shocks and examine their relationship with future returns. These identified aggregate GDP shocks provide a more finely calibrated measure for the status of any business cycle quarter. We also examine the relationship between these shocks and returns when we also take into account the classification of the quarter using the official measures.

The results of our study show that returns are clearly countercyclical. Returns are 3.5% higher following a recession quarter compared with an expansion quarter. Similarly, returns are 1.5% higher following a 1% point negative aggregate supply shock. They are also 1.5% higher following a 1% point negative supply shock in an OECD recession quarter.

The literature on the relationship between the state of the business cycle and returns has examined a number of alternative measures of the business cycle and a number of different ways of measuring returns. Whilst Peña et al (2002) focus on GDP growth itself, Cooper and Priestley
(2009), on the other hand, demonstrate that the output gap has predictive strength for both returns and excess equity returns. Their favoured measure of the business cycle is the deviation of GDP from a quadratic trend. This business cycle measure is related to the recession indicators used in the current paper but identifies fewer recession quarters than the measures we use here. Cooper and Priestley find a counter-cyclical impact on returns but do not distinguish between the sources of deviations of the GDP from its trend, as we do. In related work, Aretz et al (2009) demonstrate that a number of macroeconomic risks correlated with a business cycle measure are priced in an equity factor model context. Rangvid (2006) focuses on an alternative normalization for the level of GDP by employing the equity price/GDP ratio to forecast equity returns for several years into the future for a number of countries including the UK. His results are mildly supportive of counter-cyclical behaviour of returns. Broadening the context, Kaminska (2008) examines the impact of similar aggregate structural shocks on the UK interest rate term structure through the lens of an affine term structure model. She shows that supply shocks affect the whole yield curve whilst positive demand shocks increase the slope of the yield curve by increasing the long end.

All of these studies use a specific model of asset pricing - here we provide a much more general set of results which could subsequently be examined in the context of an asset pricing model. In the case of the business cycle shocks, we identify the shocks from a simple structural VAR. Negative supply shocks are a much more important source of higher expected returns than are any other shock. Demand shocks have quite surprising relations with expected returns. Our analysis can compared to that of Lustig and Verdelhan (2011) who concentrate on business cycle turning points. In addition to the extension to examine supply and demand shocks, we show that their approach is less robust than ours in establishing the counter-cyclicality of expected returns in the UK.

2 Recessions and Structural Shocks

Two types of macroeconomic shocks are used to identify the state of the business cycle in this paper. The first is a recession indicator. We use three related indicator variables. In the absence of an official recession indicator such as that provided by the NBER in the United States, there are two official published recession indicators for the UK. The first is published by the OECD, see OECD (2011) and is based on a set of component series from which a series of turning points are computed. The components include the results of business and consumer confidence surveys as well as new car registrations. The second indicator is used by the Bank of England in it’s publications such as the Inflation Report (Bank of England, 2011) and is based on the popular
definition of a recession as beginning when there have been two quarters of negative GDP growth. The recession ends when GDP rises from the previous quarter. The final measure that we examine is the recession indicator that emerges from application of the quarterly version of the Bry-Boschen algorithm proposed by Harding and Pagan (2002).

The methodology behind the NBER dating method is based on the discussion in Burns and Mitchell (1946) which presents ways of identifying turning points, including graphical methods. Whilst some have concentrated on examining detrended versions of GDP, the BBQ method presented by Harding and Pagan (2002) examines the log growth rate in GDP Δy_t and we follow this lead in all of the analysis in this paper. The algorithm proposed by Bry and Boschen (1971) for monthly data translated into the quarterly frequency by Harding and Pagan (2002) has three steps:

1. Determine a potential set of turning points.
2. Ensure that peaks and troughs alternate.
3. Use a set of censoring rules which restrict the minimum length of a phase or complete cycle.

Here we use the steps proposed by Harding and Pagan, namely (1) that a local peak occurs at time t when $\{\Delta_2 y_t > 0, \Delta y_t > 0, \Delta y_{t+1} < 0, \Delta_2 y_{t+2} < 0\}$, which makes y_t a local maximum relative to two quarters on either side. An analogous condition applies to the definition of a trough, thus generalising the definition of turning points in the measure used by the Bank of England; (2) ensure that peaks and troughs alternate and (3) require that a complete cycle last at least 5 quarters.\(^3\)

The turning points for the three alternative recession indicators are given in Table 1. They differ in the number of turning points as well as in the length of the business cycle phases. In the period from 1955q1 - 2011q1 the OECD series has 13 recessions, the Bank of England series 7 recessions and the BBQ series 9 recessions. The analysis in this paper uses indicator or dummy variables where the series is equal to 1 for recession quarters and zero for expansion quarters. The correlation matrix for the three series is given in the lower part of Table 1 and shows significant differences between them. The highest correlation is between the Bank of England and BBQ series at 0.619 and the lowest between the OECD and Bank of England series at 0.254. Providing

\(^2\) where $\Delta_2 y_t = y_t - y_{t-2}$

\(^3\) This is the value used by Harding and Pagan for a number of countries apart from the UK. We don’t encounter the problem with the misidentification of the 1974 downturn which caused them to use 4 quarters for the UK and so stick with 5 quarters. Experimentation with other values does not suggest any improvement in identification of cycles.
estimates for the relationship between the three cyclical indicators and equity returns provides our analysis with robustness to the precise definition of the business cycle.

An alternative method for the identification of business cycle states is the identification of macroeconomic shocks. Whilst one would expect there to be an association between (possibly accumulations of) negative macroeconomic shocks and the identification of recessions, the identification of business cycle shocks also allows us to distinguish between small and large shocks as well as between the sources of shocks. The second contribution of this paper is to examine the relationship between identified macroeconomic shocks and excess equity returns.

The identification of fundamental shocks has a long history and the initial research by Sims (1980) on how to identify structural shocks from a vector autoregressive (VAR) representation of the macro economy has been followed by various strands including the identification of shocks based on the persistence of the response of output and price inflation to those shocks. More or less economic structure can be employed in identifying shocks. In this paper we employ the minimal identification of aggregate supply and demand shocks proposed by Blanchard and Quah (1989) in their analysis of output growth and unemployment. We follow Keating and Nye (1998) and Bullard and Keating (1995) in using a two-variable VAR for price inflation and output growth. We identify the two shocks which affect output growth and inflation as aggregate demand and aggregate supply shocks by restricting their long-run impact. Aggregate demand shocks are assumed to have no long-run impact on output. This is similar to the method of Keating and Nye (1998) who also associate the permanent component in output with aggregate supply shocks, while the temporary component is associated with aggregate demand and supply shocks.

Unit root tests suggest that prices and output in the UK are both integrated variables of order one, i.e., $I(1)$. Hence, the bivariate structural VAR model we use employs output growth and inflation, Δy_t and π_t, respectively. The standard first-order VAR, which can be estimated using quarterly output growth and price inflation data, is:

$$x_t = A_0 + A_1 x_{t-1} + e_t$$

(1)

where $x_t = \begin{bmatrix} \Delta y_t \\ \pi_t \end{bmatrix}$, $e_t = \begin{bmatrix} e_{yt} \\ e_{\pi t} \end{bmatrix}$ and the variance covariance matrix of the estimation errors is $E[e_t, e'_t]$.

The Infinite Moving Average (IMA) representation can be expressed as follows:

$$x_t = \mu + \sum_{i=0}^{\infty} A_i^t e_{t-i}$$

(2)

or similarly
\[
\begin{bmatrix}
\Delta y_t \\
\pi_t
\end{bmatrix} = \begin{bmatrix}
\Delta y_t \\
\pi_t
\end{bmatrix} + \sum_{i=0}^{\infty} \begin{bmatrix}
a_{11} & a_{12} \\
a_{21} & a_{22}
\end{bmatrix}^i \begin{bmatrix}
e_{yt-i} \\
e_{\pi t-i}
\end{bmatrix}.
\] (3)

Since our interest is in the effects of the primitive supply and demand shocks \(e_{st}\) and \(e_{dt}\) on GDP growth and inflation, the following VAR shows each variable as a function of those shocks:

\[
x_t = C_0 + C_1 x_{t-1} + \varepsilon_t
\]

where \(\varepsilon_t = \begin{bmatrix} \varepsilon_{dt} \\ \varepsilon_{st} \end{bmatrix} \) with IMA representation:

\[
\begin{bmatrix}
\Delta y_t \\
\pi_t
\end{bmatrix} = \begin{bmatrix}
\Delta y_t \\
\pi_t
\end{bmatrix} + \sum_{i=0}^{\infty} \begin{bmatrix}
c_{11}(i) & c_{12}(i) \\
c_{21}(i) & c_{22}(i)
\end{bmatrix}^i \begin{bmatrix}
\varepsilon_{dt-i} \\
\varepsilon_{st-i}
\end{bmatrix}.
\] (4)

and we define the relationship between the two sets of shocks to be:

\[
\begin{bmatrix} c_{st} \\ c_{\pi t} \end{bmatrix} = \begin{bmatrix} c_{11}(0) & c_{12}(0) \\
c_{21}(0) & c_{22}(0) \end{bmatrix} \begin{bmatrix} \varepsilon_{dt} \\ \varepsilon_{st} \end{bmatrix}.
\]

As Blanchard and Quah (1989) show, identification of the two structural shocks from the estimation errors of the VAR requires two restrictions. The identification of structural innovations is achieved first by assuming that one of these shocks has only a temporary impact. In our application, we assume that the demand shock affects output but only in the short run, which means that the cumulative effect of demand innovations on output growth is zero, that is,

\[
\sum_{i=0}^{\infty} c_{11}(i) \varepsilon_{dt-i} = 0
\] (5)

Justification for this assumption follows Keating and Nye (1998) in their argument that if the aggregate supply curve is vertical and independent of aggregate demand factors, then supply shocks will affect output permanently (shown as a shift in the curve), whereas demand shocks will only have temporary effects on output. Similarly, supply and demand shocks will have also have an immediate and enduring impact on inflation. The second assumption is that the two structural shocks are uncorrelated. They are normalized to have unit variance, so their variance-covariance matrix is:

\[
\Sigma_{\varepsilon} = \begin{bmatrix} \sigma^2_{\varepsilon \Delta y} & \sigma_{\varepsilon \Delta y \varepsilon \pi} \\
\sigma_{\varepsilon \Delta y \varepsilon \pi} & \sigma^2_{\varepsilon \pi} \end{bmatrix} = \begin{bmatrix} 1 & 0 \\
0 & 1 \end{bmatrix}
\] (6)

5
Given these identification assumptions, the structural shocks are, in practice, recovered from OLS estimation of the VAR in equation (1.). The restriction in (5) becomes:

\[
1 - \sum_{k=0}^{\infty} a_{22}(i) c_{11}(0) + \sum_{k=0}^{\infty} a_{12}(i)c_{21}(0) = 0
\] (7)

In the analysis below we examine the response of excess equity returns to an investment strategy to the structural macroeconomic shocks \(\varepsilon_{st}\) and \(\varepsilon_{dt}\).

The two-variable VAR(1) in output growth and inflation is estimated over the period 1956 Q2 - 2008 Q4. The restriction (7) is applied and the structural macroeconomic shocks \(\varepsilon_{st}\) and \(\varepsilon_{dt}\) extracted. The impact of one standard deviation positive impulses to these shocks on output growth and inflation are shown in impulse response functions shown in Figure 1. The size of the impact of these shocks and the dynamic response to the shocks is familiar from similar exercises in the literature. The result of the aggregate supply and demand shocks is to raise output growth for a time. The impact on the level of output from a supply shock is 1.3% in the long run after an initial impact of 0.87%. The impact of a demand shock on the level of output is 0.4% initially falling to zero in the long run following the identification scheme - this adjustment has a half life of about 3 years. Inflation is affected negatively by the supply shock and positively by the demand shock and these effects are more persistent than the effects on output growth as can be seen in the Figure.

3 Excess Returns in Recessions and Expansions

In this section we examine how the return from the investment strategy \(r_{t+i}^m\), in excess of the risk-free rate \(r_t^f\) varies between recession and expansion periods. The return to the strategy is from buying the market index \(i\) periods after a recession or expansion quarter and then selling it four quarters later. We measure returns using the Datastream total market index and the risk-free rate using the Bank of England base rate (and its previous incarnations) for the period 1956q1 to 2008q4. We estimate a very simple regression of the excess return at 1 to 5 quarter horizons \(i\) on the dummy variable for a recession for the three different business cycle measures \(j\), \(D_{jt}\). The regression is:

\[
 r_{t+i}^m - r_{t+i}^f = \alpha_i + \beta_i D_{jt} + \varepsilon_{it}, \quad i = 1,..5.
\] (8)

Estimates of the \(\beta_i\) are presented in Table 2 with HAC (Newey and West, heteroscedastic and autocorrelation consistent) standard errors in brackets. Each column presents individual estimates.

4 Lippi and Reichlin (1993) question the invertibility of the VAR system required in generating this condition but this argument is countered by Blanchard and Quah (1993) and a general condition to check for invertibility is developed by Fernandez-Villaverde et al (2005).
of the impact of the business cycle indicator variable on the excess return. So the first row shows
the results of five individual regressions of the excess return on the OECD business cycle indicator
variable for five different horizons. The estimates provide a consistent picture of higher excess
returns in quarters following recession quarters than following expansion quarters. Returns are
found to be between 1.5% and 2.1% (on an annualised basis) higher for the quarter immediately
after a recession quarter, depending on the business cycle measure. There is broad consistency in
the size and significance of the estimates despite the differences in the timing of recession quarters
implied by three business cycle measures. At five quarters after a recession quarter the return
from the investment strategy provides a quarterly excess return of between 2.62 and 3.54% above
that for the average expansion quarter.

There is evidence of a positive gradient in the impact of recession quarters on excess returns
which reach a peak between 3 and 5 quarters after a recession quarter, depending on the particular
recession measure chosen. The BBQ measure provides a steeper gradient of response, rising from
1.6% after one quarter to 3.5% after five quarters. The remaining two measures provide a flatter
profile. The finding of higher excess returns at the horizons with the largest response is significant
at more than 95%, according to the size of the HAC standard errors given in brackets in the Table.
These results imply that the excess return to the investment strategy is significantly increased in
the quarters following a recession quarter. The opposite is true for expansion quarters. This is
strong evidence for counter-cyclical equity returns in the UK.

3.1 Excess Returns Following Business Cycle Turning Points

In related research, Lustig and Verdelhan (2011) evaluate the size of equity returns following
business cycle turning points i.e. following the quarters at which the economy is said to move
from expansion into recession and vice versa. They demonstrate a large, significantly positive and
increasing response of returns over the quarters following entry into a recession for the United
States. They also show that the initially large increase in excess returns following exit from a
recession and entry into an expansion falls back below that following the start of a recession after
a couple of quarters. This provides the evidence for their assessment that recessions are periods of
higher excess returns than expansions. However, Lustig and Verdelhan also show that this shape
of response is much smaller for other countries such as for the UK.

We show the size of this particular effect for the three measures of business cycles for the UK
in Figure 2. The three parts of this figure show the return from the same investment strategy
as presented above; that is quarterly excess returns from an investment that buys the UK stock
market index one or more periods after the business cycle turning point and holds it for one year.
The figures show that equity returns are lower for the initial two quarters of a recession followed by increased excess returns for quarters further into the future. However, this pattern is also followed by returns following the start of an expansion after the end of a recession. Unlike the results that Lustig and Verdelhan find for the United States, the two lines do not cross for any of the three business cycle measures that we examine. The results for the OECD business cycle measure show the pattern of results closest to those of Lustig and Verdelhan. In this case, whilst excess returns increase following the start of an upturn and are reduced following the start of a recession, returns 5 quarters after a cyclical turning point are essentially the same whether the turning point is a peak or a trough. In the case of the remaining two business cycle definitions returns are greater following troughs than peaks at all horizons, although the gap is reduced as time passes from the turning points. Thus, in contrast to Lustig and Verdelhan, for the UK our results show that conditioning on turning points only appears to suggest that excess equity returns are not counter-cyclical. Conditioning on all recession and expansion quarters as we show above provides much stronger, statistically significant, evidence of counter-cyclical behaviour by excess returns at all horizons.

4 The Relative Importance of Supply and Demand Shocks for Excess Returns

In Section 3 we establish a significant relationship between the state of the business cycle and excess equity returns. Returns are significantly higher following recession than expansion quarters. This result is robust to the various leading definitions of a recession. In this section we take the argument one step further by examining the relationship between more narrowly defined structural macroeconomic shocks and excess equity returns. We flesh out the relationship between the state of the business cycle and returns by taking the identified aggregate supply and demand shocks and examining what their relationship is with the business cycle. First, we examine the broad relationship between all supply and demand shocks and returns. We do this with simple regressions:

$$r_{t+i} - r_{t+i}^f = \alpha_i + \beta_i \epsilon_{kt} + \epsilon_{it}, \quad i = 1, \ldots, 5.$$ (9)

where we estimate the impact on the return from the simple investment strategy from buying the market index i periods after a recession or expansion quarter and then selling it four quarters later, r_{t+i}^m in excess of the risk-free rate r_i^f for structural shocks ϵ_{kt}, $k = s, d$ which have been identified from the VAR in Section 2, above. The estimates of equation (9) are given in Panel A of Table 3 and show that positive supply and demand shocks are mostly associated with lower levels of excess returns. At horizons of more than 2 quarters, positive supply shocks are associated with
lower excess returns and significantly so at the 95% level, according to the HAC standard errors. Positive demand shocks are also negatively associated with returns at horizons from 3 quarters but less significantly so. These estimates support those from Section 3 in showing that negative business cycle states are associated with higher excess returns. The coefficients on supply shocks are generally much larger than those on demand shocks. The scale of these effects over the sample can be judged by taking, separately, the average sizes of positive and negative supply and demand shocks. We then compute the size of the impact of these shocks on excess returns implied by the coefficient estimates. These are given in Panel B of Table 3 and show that negative supply shocks generate around 1% per quarter higher excess returns for horizons of three to five quarters. Negative demand shocks, on the other hand, generate lower returns of only around 0.25% per quarter. Thus, as the structural shocks of each sign have similar average sizes, the fact that we find that excess returns to the investment strategy are more sensitive to aggregate supply shocks, the average impact of these shocks is much larger in the case of supply shocks. The response is significantly counter cyclical in both cases.

Next, we examine whether positive and negative supply and demand shocks have different sized coefficients by sub-dividing the shocks included in equation (9) into positive and negative shocks, so \(k = s^-, s^+, d^-, d^+ \). The estimates and average impacts are shown in Table 4. The impact of positive and negative supply shocks is somewhat asymmetric but not significantly so. The impact of negative supply shocks on returns is bigger at all horizons beyond 2 quarters. Asymmetry is much more striking in the case of demand shocks. Negative demand shocks have the anticipated negative, counter-cyclical effect. Beyond 2 quarters from the shock and the impact increases in size strikingly to 1.67 for excess returns 5 quarters after the shock. However, positive demand shocks have a pro-cyclical impact at all horizons, although these estimates are not very significantly larger than zero. Thus demand shocks of both signs have a positive impact on excess equity returns. This result is complementary to the results in Smith, Sorensen and Wickens (2010) for the impact of structural supply and demand shocks on the risk premium in US equity returns where the risk premium is that of a stochastic discount factor (SDF) model with conditional moments modelled as GARCH processes.

Finally, we interact the structural macroeconomic shocks with the business cycle recession indicators examined in Section 2. That is, we examine the differential impact of the supply and demand shocks in periods identified separately to be recession or expansion quarters. We estimate the following set of equations for the excess return from the investment strategy at 5 horizons:

\[
 r_{t+i} - r_{t+i}^f = \alpha_i + \beta_i D_t \varepsilon_{kt} + \epsilon_{it}, \quad i = 1,..5. \tag{10}
\]

for the business cycle indicator variable \(D_t \) and the structural shocks \(\varepsilon_{kt} \). We estimate equation
for, firstly, the two supply and demand shocks, \(k = s, d \) and secondly splitting them into positive and negative values \(k = s^-, s^+, d^-, d^+ \). In the estimation we employ the OECD business cycle indicator \(D_t \).\(^5\) The estimation results for the first case, where shocks can be positive or negative, are given in Table 5. Previous results above have shown that supply shocks of either sign have a large, counter-cyclical impact on excess returns, especially at longer horizons. The estimates in the first two rows of Table 5 reinforce and extend that conclusion. In these results, the counter-cyclical effect is bigger in recessions than expansions. These coefficients are significant from a horizon of 3 quarters onwards and the impact in recessions is significantly larger than in expansions at these longer horizons. Demand shocks also have a counter-cyclical impact. The estimates in rows three and four show that these effects are smaller and less significant than for supply shocks. In terms of the average size of the change in excess returns following a shock, Panel B of Table 5 shows that supply shocks in a recession are on average negative and have a positive impact on excess returns of 0.7% per quarter at the 3 quarter horizon increasing to 1.0% at the 5 quarter horizon. Supply shocks in expansions are on average positive and result in a fall in returns of around 0.5% per quarter. Interestingly, demand shocks in a recession are, on average, positive and vice versa for expansions. Therefore, combined with the estimates, rows seven and eight show that demand shocks in recessions are associated with lower returns at longer horizons and demand shocks in expansions with higher returns. These pro-cyclical results are quite small and not very significant.

In Table 6 we present the final set of estimates and impacts for the version of equation (10) where we interact the recession indicator variable \(D_t \) with the negative and positive supply and demand shocks, \(k = s^-, s^+, d^-, d^+ \). The estimates in Panel A of Table 6 provide the clearest picture of the counter-cyclical impact of aggregate supply and demand shocks on returns. Negative supply and demand shocks in recessions have the biggest and most significant counter-cyclical impact on excess equity returns. The negative coefficients are significant from 2 quarters in the case of negative supply shocks and 4 quarters for negative demand shocks. Positive shocks have a pro-cyclical effect on returns for both supply and demand shocks in expansions. Panel B shows the size of response of returns to the average shocks. These show increases in returns of nearly 1%/quarter at the 5 quarter horizon for negative supply shocks in a recession and effects of two thirds of that size for negative demand shocks in a recession. The impact of positive shocks in an expansion are more muted. Returns are around 0.5%/quarter lower following these shocks. These effects decline in size over the time horizon according to the figures in Panel B.

\(^5\) We report only the results using the OECD business cycle indicator variable. The results for the other two definitions are very similar. Equivalent tables to Tables 5 and 6 for these measures can be supplied by the authors, on request.
5 Conclusions

This paper analyses the relationship between the state of the business cycle and excess equity returns. It does so by examining both business cycle indicator variables drawn from business cycle turning point analysis and identified structural macroeconomic shocks. The results provide strong support to the hypothesis of counter-cyclical excess equity returns. They show that there is a significant relationship between recession quarters identified by business cycle indicator variables and excess equity returns at horizons between one and five quarters. Comparison with analysis based only on business cycle turning points shows much more support for counter-cyclicality in returns when all recession and expansion quarters are identified. Conditioning on turning points provides little evidence of counter-cyclicality at any horizon.

Analysis of the relationship between identified structural aggregate supply and demand shocks supports the broader results and provides more detail. In particular, the estimates show that aggregate supply shocks are more important for excess returns than are demand shocks and this is especially evident when shocks are split into positive and negative shocks. Negative supply shocks are especially important in terms of size and statistical significance. This is amplified further by concentrating on negative shocks that occur during recession periods, as identified by the business cycle indicator variables.

The analysis in this paper does not depend on a particular asset pricing model but rather provides some general results which could be examined in the context of a particular model. The methods of identifying business cycle quarters examined here could be employed in cross-section analysis of portfolios of individual stocks or other financial assets.

References

Table 1: Reference chronology of turning points

1. **OECD Reference Turning Points, OECD (2011).**

2. **Bry-Boschen Quarterly Turning Points, Harding and Pagan (2002).**

Table 1: Correlation Matrix

<table>
<thead>
<tr>
<th></th>
<th>OECD</th>
<th>BBQ</th>
<th>Bank of England</th>
</tr>
</thead>
<tbody>
<tr>
<td>OECD</td>
<td>1</td>
<td>0.339</td>
<td>0.254</td>
</tr>
<tr>
<td>BBQ</td>
<td>1</td>
<td>0.618</td>
<td></td>
</tr>
<tr>
<td>Bank of England</td>
<td>1</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table 2: The Impact on Excess Equity Returns of Recession Measures

The table shows the quarterly excess returns from an investment strategy that buys the UK stock market index one or more periods after a recession quarter and holds it for one year compared with buying the index after an expansion quarter. The stock market return index is the total return index for the UK market provided by Datastream. The risk-free rate of interest is the Base Rate. HAC standard errors are given in brackets.

Number of observations: 212. Period of estimation: 1956 Q1 - 2008 Q4

<table>
<thead>
<tr>
<th>Recession Measure</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>OECD</td>
<td>0.0149 (0.0094)</td>
<td>0.0228 (0.011)</td>
<td>0.0279 (0.011)</td>
<td>0.0294 (0.0099)</td>
<td>0.0262 (0.0084)</td>
</tr>
<tr>
<td>BBQ</td>
<td>0.0160 (0.012)</td>
<td>0.0115 (0.0088)</td>
<td>0.0227 (0.013)</td>
<td>0.0304 (0.014)</td>
<td>0.0354 (0.013)</td>
</tr>
<tr>
<td>Bank of England</td>
<td>0.0208 (0.018)</td>
<td>0.0265 (0.018)</td>
<td>0.0244 (0.017)</td>
<td>0.0257 (0.012)</td>
<td>0.0274 (0.0095)</td>
</tr>
</tbody>
</table>
Figure 1
Table 3: The Impact on Excess Equity Returns of Business Cycle Shocks

The table shows the results of estimating equation $r_{t+1}^m - r_{t+1}^f = \alpha_i + \beta_i \varepsilon_{kt} + \epsilon_{it}$, $i = 1,..5.$ for shocks ε_{kt}, $k = s, d$. The dependent variable is quarterly excess returns from an investment strategy that buys the UK stock market index one or more periods after the business cycle shocks and holds it for one year. The coefficient estimates are shown in panel A. Panel B shows the quarterly expected returns from the investment strategy at each horizon evaluated at the mean values of the shocks. The stock market return index is the total return index for the UK market provided by Datastream The risk-free rate of interest is the Base Rate. HAC standard errors are given in brackets. The equations also include an unreported constant. Number of observations: 212.

Period of estimation: 1956 Q1 - 2008 Q4

<table>
<thead>
<tr>
<th>Business Cycle Shock</th>
<th>Quarters ahead</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1</td>
</tr>
<tr>
<td>A. Estimates</td>
<td></td>
</tr>
<tr>
<td>Supply</td>
<td>0.0169 (0.52)</td>
</tr>
<tr>
<td>Demand</td>
<td>0.0169 (0.50)</td>
</tr>
<tr>
<td>Regression standard error</td>
<td>0.0510</td>
</tr>
<tr>
<td>B. Expected Returns</td>
<td></td>
</tr>
<tr>
<td>Neg Supply</td>
<td>-0.00017</td>
</tr>
<tr>
<td>Neg Demand</td>
<td>0.00018</td>
</tr>
</tbody>
</table>
Table 4: The Impact on Excess Equity Returns of Positive and Negative Business Cycle Shocks

The table shows the results of estimating the equation $r_{t+i}^{m} - r_{t+i}^{f} = \alpha_i + \beta_i \varepsilon_{kt} + \epsilon_{it}$, $i = 1, \ldots, 5$, for shocks ε_{kt}, $k = s^{-}, s^{+}, d^{-}, d^{+}$. The dependent variable is quarterly excess returns from an investment strategy that buys the UK stock market index one or more periods after the business cycle shocks and holds it for one year. The coefficient estimates are shown in panel A. Panel B shows the quarterly expected returns from the investment strategy at each horizon evaluated at the mean values of the shocks. The stock market return index is the total return index for the UK market provided by Datastream. The risk-free rate of interest is the Base Rate. HAC standard errors are given in brackets. The equations also include an unreported constant. Number of observations: 212. Period of estimation: 1956 Q1 - 2008 Q4

<table>
<thead>
<tr>
<th>Quarterly excess returns</th>
<th>Business Cycle Shock</th>
<th>Quarters ahead</th>
<th>A. Estimates</th>
<th>B. Expected Returns</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Negative Supply</td>
<td>1 2 3 4 5</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Positive Supply</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Negative Demand</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Positive Demand</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Regression standard error</td>
<td>0.0513 0.0509 0.0502 0.0506 0.0498</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>A. Estimates</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Negative Supply</td>
<td>0.0884</td>
<td>-1.060</td>
<td>-1.551</td>
<td>-0.941</td>
<td>-0.725</td>
</tr>
<tr>
<td>Positive Supply</td>
<td>-0.0478</td>
<td>-0.351</td>
<td>-0.899</td>
<td>-0.791</td>
<td>-1.110</td>
</tr>
<tr>
<td>Negative Demand</td>
<td>0.728</td>
<td>0.533</td>
<td>-0.638</td>
<td>-1.147</td>
<td>-1.672</td>
</tr>
<tr>
<td>Positive Demand</td>
<td>0.560</td>
<td>0.209</td>
<td>0.106</td>
<td>0.439</td>
<td>1.022</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>B. Expected Returns</th>
<th>Negative Supply</th>
<th>Positive Supply</th>
<th>Negative Demand</th>
<th>Positive Demand</th>
</tr>
</thead>
<tbody>
<tr>
<td>-0.00052</td>
<td>0.00623</td>
<td>0.00912</td>
<td>0.00553</td>
<td>0.00426</td>
</tr>
<tr>
<td>-0.00030</td>
<td>-0.00217</td>
<td>-0.00556</td>
<td>-0.00489</td>
<td>-0.00687</td>
</tr>
<tr>
<td>-0.00438</td>
<td>-0.00321</td>
<td>0.00384</td>
<td>0.00691</td>
<td>0.01007</td>
</tr>
<tr>
<td>0.00376</td>
<td>0.00140</td>
<td>0.00071</td>
<td>0.00295</td>
<td>0.00686</td>
</tr>
</tbody>
</table>
Table 5: The Impact on Excess Equity Returns of Business Cycle Shocks

The table shows the results of estimating equation $r_{t+i}^m - r_{t+i}^f = \alpha_i + \beta_i D_t \varepsilon_{kt} + \varepsilon_{it}$, $i = 1, \ldots, 5$. for shocks ε_{kt}, $k = s, d$ and the business cycle indicator variable D_t computed by the OECD. The dependent variable is quarterly excess returns from an investment strategy that buys the UK stock market index one or more periods after the business cycle shocks and holds it for one year.

The coefficient estimates are shown in panel A. Panel B shows the quarterly expected returns from the investment strategy at each horizon evaluated at the mean values of the shocks. The stock market return index is the total return index for the UK market provided by Datastream. The risk-free rate of interest is the Base Rate. HAC standard errors are given in brackets. The equations also include an unreported constant. Number of observations: 212. Period of estimation: 1956 Q1 - 2008 Q4.

<table>
<thead>
<tr>
<th>Business Cycle Shock</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Recession Supply</td>
<td>0.869</td>
<td>-0.0681</td>
<td>-1.066</td>
<td>-1.036</td>
<td>-1.484</td>
</tr>
<tr>
<td></td>
<td>(0.96)</td>
<td>(0.66)</td>
<td>(0.56)</td>
<td>(0.56)</td>
<td>(0.51)</td>
</tr>
<tr>
<td>Expansion Supply</td>
<td>-0.695</td>
<td>-1.106</td>
<td>-1.297</td>
<td>-0.742</td>
<td>-0.602</td>
</tr>
<tr>
<td></td>
<td>(0.65)</td>
<td>(0.95)</td>
<td>(1.02)</td>
<td>(0.42)</td>
<td>(0.39)</td>
</tr>
<tr>
<td>Recession Demand</td>
<td>0.899</td>
<td>0.737</td>
<td>-0.0415</td>
<td>-0.139</td>
<td>-0.299</td>
</tr>
<tr>
<td></td>
<td>(0.68)</td>
<td>(0.54)</td>
<td>(0.33)</td>
<td>(0.44)</td>
<td>(0.30)</td>
</tr>
<tr>
<td>Expansion Demand</td>
<td>0.540</td>
<td>0.142</td>
<td>-0.377</td>
<td>-0.606</td>
<td>-0.432</td>
</tr>
<tr>
<td></td>
<td>(0.99)</td>
<td>(1.06)</td>
<td>(0.54)</td>
<td>(0.70)</td>
<td>(0.84)</td>
</tr>
<tr>
<td>Regression standard error</td>
<td>0.0508</td>
<td>0.0507</td>
<td>0.0504</td>
<td>0.0509</td>
<td>0.0505</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Business Cycle Shock</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Recession Supply</td>
<td>-0.00583</td>
<td>0.00046</td>
<td>0.00716</td>
<td>0.00696</td>
<td>0.00996</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Expansion Supply</td>
<td>-0.00468</td>
<td>-0.00744</td>
<td>-0.00873</td>
<td>-0.00499</td>
<td>-0.00405</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Recession Demand</td>
<td>0.00724</td>
<td>0.00593</td>
<td>-0.00033</td>
<td>-0.00112</td>
<td>-0.00241</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Expansion Demand</td>
<td>-0.00350</td>
<td>-0.00092</td>
<td>0.00244</td>
<td>0.00393</td>
<td>0.00280</td>
</tr>
</tbody>
</table>
Table 6: The Impact on Excess Equity Returns of Positive and Negative Business Cycle Shocks

The table shows the results of estimating equation $r_{t+i}^{m} - r_{t+i}^{f} = \alpha_i + \beta_i D_t \cdot \varepsilon_{kt} + \varepsilon_{it}$, $i = 1, ..., 5$, for shocks ε_{kt}, $k = s^-, s^+, d^-, d^+$ and the business cycle indicator variable D_t computed by the OECD. The dependent variable is quarterly excess returns from an investment strategy that buys the UK stock market index one or more periods after the business cycle shocks and holds it for one year. The coefficient estimates are shown in panel A. Panel B shows the quarterly expected returns from the investment strategy at each horizon evaluated at the mean values of the shocks. The stock market return index is the total return index for the UK market provided by Datastream. The risk-free rate of interest is the Base Rate. HAC standard errors are given in brackets. The equations also include an unreported constant. Number of observations: 212. Period of estimation: 1956 Q1 - 2008 Q4

Quarterly excess returns

<table>
<thead>
<tr>
<th>Business Cycle Shock</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>A. Estimates</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Recession Negative Supply</td>
<td>$-0.163^{(9.92)}$</td>
<td>$-1.176^{(9.58)}$</td>
<td>$-1.718^{(7.78)}$</td>
<td>$-1.330^{(8.89)}$</td>
<td>$-1.656^{(7.76)}$</td>
</tr>
<tr>
<td>Expansion Positive Supply</td>
<td>$-0.861^{(7.79)}$</td>
<td>$-1.193^{(1.14)}$</td>
<td>$-1.301^{(1.11)}$</td>
<td>$-0.635^{(4.40)}$</td>
<td>$-0.702^{(0.52)}$</td>
</tr>
<tr>
<td>Recession Negative Demand</td>
<td>$0.146^{(0.72)}$</td>
<td>$0.176^{(0.65)}$</td>
<td>$-0.953^{(0.64)}$</td>
<td>$-1.532^{(0.53)}$</td>
<td>$-1.571^{(0.49)}$</td>
</tr>
<tr>
<td>Expansion Positive Demand</td>
<td>$-1.010^{(1.06)}$</td>
<td>$-1.755^{(1.07)}$</td>
<td>$-1.312^{(1.77)}$</td>
<td>$-1.777^{(1.91)}$</td>
<td>$0.619^{(0.96)}$</td>
</tr>
<tr>
<td>Regression standard error</td>
<td>0.0512</td>
<td>0.0498</td>
<td>0.0491</td>
<td>0.0498</td>
<td>0.0500</td>
</tr>
</tbody>
</table>

B. Expected Returns

<table>
<thead>
<tr>
<th>Business Cycle Shock</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Negative Supply</td>
<td>0.00094</td>
<td>0.00678</td>
<td>0.00991</td>
<td>0.00767</td>
<td>0.00955</td>
</tr>
<tr>
<td>Positive Supply</td>
<td>-0.00514</td>
<td>-0.00712</td>
<td>-0.00777</td>
<td>-0.00379</td>
<td>-0.00419</td>
</tr>
<tr>
<td>Negative Demand</td>
<td>-0.00061</td>
<td>-0.00073</td>
<td>0.000397</td>
<td>0.00639</td>
<td>0.00655</td>
</tr>
<tr>
<td>Positive Demand</td>
<td>-0.00337</td>
<td>-0.00585</td>
<td>-0.00438</td>
<td>-0.00593</td>
<td>0.00207</td>
</tr>
</tbody>
</table>
Chart 2: Excess Equity Returns Following Cyclical Turning Points

The panels of this chart show the average quarterly excess returns from an investment strategy that buys the UK stock market index one or more periods after the business cycle turning points and holds it for one year. The unbroken lines are for expansion quarters following a business cycle trough and the dashed lines for recession quarters after a business cycle peak. The panels shows the returns for turning points for each of three business cycle dating methods for the period 1956 Q1 - 2008 Q4.