The Time Dimension of Parking Economics

Roman Zakharenko

NRU Higher School of Economics, Moscow, Russia. Mailing address: office 3433, Shabolovka 26, Moscow 119049 Russia. Email: rzakharenko@hse.ru. Web: www.rzak.ru. Phone: +7-495-772-9590, ext.026081

Abstract

A model of demand for parking, evolving over time, is proposed. The model features both extensive (whether to park) and intensive (for how long to park) margins of parking demand, allows multidimensional heterogeneity of parkers, and evolution of demand throughout the day. I calculate the optimal price for parking and show that it is different from all existing pricing methods. I show that the primary purpose of pricing is to regulate departures, rather than arrivals, of parkers. I also find that asymmetric information about parkers' characteristics does not prevent the parking authority from achieving the social optimum. A numerical example compares the optimal policy against the alternatives.

Keywords: Demand for parking, Endogenous duration of parking, Optimal pricing

JEL codes: H42, R41, R48

1. Introduction

Economic theory in general, and multiple studies in particular, prescribe to tackle the problem of curbside parking congestion with price regulation. How exactly pricing affects parking, however, remains an open question. Most existing research asserts that a higher parking price either reduces the number of motorists traveling to the area in question (Arnott and Incli, 2006; Ahmadi Azari et al., 2013; Van Ommeren and Russo, 2012), or affects the location of parking (Anderson and de Palma, 2004; Qian et al., 2012), or both (Arnott and Rowse, 1999; Arnott, 2013; Madsen et al., 2013; Li et al., 2007). In this paper, I highlight another channel through which parking prices reduce congestion, namely the duration of
parking period, or the *intensive margin* of parking demand. The importance of this channel of parking regulation has been highlighted in popular writings on the topic. For example, Shoup (2005, p. 363) argues that higher parking rates, by reducing the duration of parking (intensive margin), may increase availability of parking to the point that the number of travelers (extensive margin) actually increases. This paper develops a model of parking demand in which both the arrival of would-be parkers and the duration of parking endogenously respond to the parking rates. The model features time-varying intensity of arrival of the motorists, and calculates the socially optimal parking price schedule.

In a world where parking rates not only deter entry of new motorists, but also expedite exit of those already parked, the philosophy of optimal parking rates is different. The existing research on optimal parking rates, focused on the extensive margin of parking demand, views parking pricing as analogous to that of road congestion pricing: wherever a road usage is below its capacity, motorists have no externality on each other and should travel for free; when full capacity is reached, a negative externality of vehicle use arises, and a toll should be optimally imposed. The existing research on parking (e.g. Shoup (2005)) is very similar as is prescribes to target a specific usage/occupancy level. The only difference is that the recommended occupancy target is less than 100% (the most popular figure is 85%), so that few spaces are left open for newly arriving parkers.

I argue that parking congestion should *not* be viewed as analogous to road congestion. A hundred of motorists on the same road create congestion and reduce each other’s welfare; a hundred of motorists already parked do *not* reduce each other’s welfare. More generally, the *motorists already parked do not compete with each other for space*. The only conflict of interest out there is between a motorist already parked and a motorist still looking for a place to park. Therefore, the right parking price, that aims to expedite or delay the departure of already parked vehicles, should take into account not only the occupancy level (how many are parked) but also the rate of new arrivals (how many are looking for parking). To make
the argument more transparent, if no new arrivals are expected, the optimal price for parking is zero even at full occupancy.

Despite the simplicity of this argument, is has been surprisingly overlooked by policy makers. For example, the federally funded SFpark project of San Francisco, considered to have employed the state-of-the art parking pricing policy, does not even collect the data on the frequency of new arrivals despite an infinitesimal additional cost of doing so, and bases its prices solely on the occupancy data.

2. Model

Consider the world with continuous time and a continuum of motorists. The length of a day is T units of time, and all days are identical. That is, the equilibrium value of a model parameter at time t is equal to that of time $t + T$. Motorists differ by their type $v \in \mathcal{V}$, which may have one or more dimensions. Motorists of different types have different demand for parking, detailed below. The motorists appear in the model exogenously; the rate of appearance of a type-v motorist at time t is $A(t, v)$. Immediately after appearance, a motorist decides whether to start searching for parking, or to quit the model permanently. Those who quit enjoy the outside utility of $U_0(v)$. Those who start searching are referred to as searchers. Search is a Poisson process in which exogenously supplied parking sites are randomly sampled at rate r. At each instance of sampling, a searcher randomly selects a parking site from the mass N of all existing sites. If the site is vacant, the searcher occupies it, the search is over, and the parking period begins. Otherwise, the search continues. The cost of search is c per unit of time. We assume that the search cost is a purely private cost. The search must continue until a vacant parking site is found. Note that the search technology is the same for motorists of all types.

1 The installed hardware does measure the precise time and location of arrivals, but the program operators choose not to keep this data, in order do save few hundred megabytes of computer memory per year.
The motorists already parked are referred to as parkers. For a type-v motorist/parker, the marginal value of being parked for an additional unit of time is $u(\tau, v)$, where τ is the time elapsed since the beginning of parking period. Without loss of generality, $u(\tau, v)$ does not depend on the time of appearance t: the time dimension can be incorporated into the set of types V. We assume that $u(\tau, v)$ is both continuous and strictly decreasing with respect to τ. We also assume that, for each type v, there exists a finite $\tau^\text{max}(v)$ such that $u(\tau, v) < 0, \forall \tau \geq \tau^\text{max}(v)$. In other words, every particular type of parkers will eventually depart even in the absence of parking regulation.

A parker may permanently exit the parked mode, and the model altogether, at any moment of time. There is zero additional value gained after the departure.

Define by $I(t, v) \in [0, 1]$ the endogenous probability that a type-v motorist, who appeared in the model at time t, chooses to enter the search mode. Define by $S(t, v)$ the stock of searchers of type v at time t, and by $q(t)$ the occupancy level, i.e. the share of occupied parking sites.

For an infinitesimal period of time $[t; t + dt]$, the probability that a searcher samples a parking site is $r dt$; the probability that such site is vacant is $1 - q(t)$. Therefore, the exit rate from the search mode is $r(1 - q(t))$, the mass of type-v parkers exiting the search mode and beginning their parking sessions is

$$R(t, v) = r(1 - q(t))S(t, v),$$

and the evolution of the stock of searchers is described by

$$\dot{S}(t, v) = I(t, v)A(t, v) - R(t, v).$$

The social cost of search at time t is equal to $c \int_V S(t, v) dv$.

Define by $\tau^+(t, v)$ the duration of stay of a type-v parker who began her session at t. 4
Thus, she remains parked within \([t, t + \tau^+(t, v)]\). Define by \(\tau^-(t, v)\) duration of stay of a type-\(v\) parker who ends his session at \(t\). Thus, she remains parked within \([t - \tau^-(t, v), t]\). We make the following

Assumption 1. \(\tau^-(t, v)\) is unique for all \(t, v\).

In other words, motorists of a given type \(v\) depart in the order of arrival, with unique correspondence between the arrival and the departure time. By definition, \(t = t' + \tau^+(t', v)\) iff \(t' = t - \tau^-(t, v), \forall t, v\).

With new notations, we can present the occupancy rate as

\[
q(t) \equiv \frac{1}{N} \int_{\mathcal{V}} \int_0^{\tau^-(t, v)} R(t, v) d\tau dv.
\] (3)

The social planner’s objective is to maximize the social welfare aggregated across all motorists that appear in the model during a day:

\[
V = \int_0^T \int_{\mathcal{V}} \int_0^{\tau^-(t, v)} u(\tau, v) R(t - \tau, v) d\tau dv dt - c \int_0^T \int_{\mathcal{V}} S(t, v) dv dt + \int_0^T \int_{\mathcal{V}} (1 - I(t, v)) A(t, v) U_0(v) dv dt,
\] (4)

using \(I(\cdot, \cdot)\) and \(\tau^-(\cdot, \cdot)\) as controls, and subject to (1), (2), (3), and to the condition of time cyclicality.

3. **Approximating the stock of searchers**

Analyzing the optimal parking price schedule in the general case is a non-standard dynamic optimization problem that involves solving differential equations with endogenously varying time lags. The general solution may be impossible to analyze analytically, and we proceed by developing an approximate solution for any \(A(t, v)\) evolving gradually enough over time.

To understand the idea behind the approximation, consider the following example. Suppose for some \(v\), the appearance rate \(A(\cdot, v)\), the entry decision \(I(\cdot, v)\), and the occupancy
rate $q(\cdot)$ are time-invariant and are equal to some A, I and q, respectively. Then, the stock of type-v searchers converges to the steady-state level of

$$\tilde{S} = \frac{IA}{r(1 - q)}.$$ \hfill (5)

The rate of convergence is equal to

$$\frac{\dot{S}(t, v)}{S(t, v) - \tilde{S}} = \frac{A - r(1 - q)S(t, v)}{S(t, v) - \frac{A}{r(1-q)}} = -r(1 - q),$$ \hfill (6)

i.e. to the rate of exit from the search state. Thus, $S(t, v) = \tilde{S} + (S(t_0, v) - \tilde{S}) \exp(-r(1 - q)(t - t_0))$, where $S(t_0, v)$ is the stock of type-v searchers at some initial time t_0.

To calibrate (6), suppose there is on average one parking site per 10m of the curb space. A vehicle traveling at 15kmh (a likely speed of a motorist searching for parking) may then inspect 1500 parking sites per hour, thus it is reasonable to assume $r = 1500$. The occupancy rate is endogenous to the model; at 99% occupancy, the rate of convergence $r(1 - q)$ is equal to 15. A study by Falcocchio et al. (1995) implies a lower estimate: they find that the average search time in Manhattan, New York City, one of the world’s busiest markets for parking, is equal to about 10 minutes, which corresponds to $r(1 - q) = \frac{60}{10} = 6$. This means that the gap between the actual stock of searchers and its approximation (5) will be reduced $\exp(6) \approx 400$ times per hour, or twice every seven minutes. To summarize, it is plausible to say that $S(t, v)$ converges to a steady-state level \tilde{S} at the rate of 6 or higher.

Next, we relax the assumption of time-invariance of \tilde{S}. Consider the following approximation for $S(t, v)$ (cf.5):

$$\hat{S}(t, v) = \frac{A(t, v)I(t, v)}{r(1 - q(t))}.$$ \hfill (7)

\footnote{Most vehicles actually require only half of that, but we account for the fact that the curb space is frequently utilized for other purposes, such as road junctions, pedestrian crossings, and fire hoses.}
Such approximation is reasonable only if $\tilde{S}(t, v)$ changes over time rarely enough and/or gradually enough. Is it the case empirically?

Since $\tilde{S}(t, v)$ depends on the control variable, $I(t, v)$, it can indeed change sharply. It is possible that type-v motorists stop arriving at a certain moment of time t_0, i.e. $I(t, v) = 1, \forall t \leq t_0$ and $I(t, v) = 0, \forall t > t_0$. Then, $\tilde{S}(t, v)$ will instantly drop to zero, while $S(t, v)$ will decline exponentially at the rate $r(1 - q(t))$ assessed above. Empirically, however, such instances are likely to be rare: motorists of a certain type are likely to stop arriving when parking becomes busy enough, and resume arrivals when congestion decreases. Since a typical daily demand profile is single-peaked, it is likely that $I(t, v)$ will change at most twice during the day: from one to zero in the morning, and from zero to one in the afternoon.

We can also provide a much more specific empirical assessment of $\tilde{S}(t, v)$ aggregated over all types, i.e. of

$$\tilde{\tilde{S}}(t) \equiv \int_V \tilde{S}(t, v) dv = \frac{\int_V A(t, v) I(t, v) dv}{r(1 - q(t))}.$$ \hfill (8)

For that, we refer to the data on the history of parking events published by the Melbourne, Australia city council. The city has equipped many of its parking sites with sensors capable to detect the exact time of arrival and departure of a vehicle. The published data covers the period from October 1, 2011 to September 30, 2012. While the sensors were installed at thousands of parking sites, most of them either work for a limited number of hours per day, or impose parking limits (e.g. maximum two hours of parking) that distort parkers’ behavior. In our analysis, we focus on a subset of 42 parking sites that worked around the clock and where there were no parking time limits. There is a total of 10782 parking events.

We define the occupancy rate $q(t)$ at time t as the total occupancy at t divided by the capacity. The total occupancy at t is the total number of vehicles parked on that second on any day in the dataset. The capacity is the total number of available site-days, where the parking site was classified as “available” on a given day if there was at least one parking
event on that site during that day. To remove volatility caused by limited sample size, we smooth the data using the normal kernel with 1-minute bandwidth.

The aggregate observed arrival rate \(\int_V I(t, v)A(t, v)dv \) was estimated non-parametrically from the information on arrivals of parkers, using the normal kernel with 15-minute bandwidth.

With the empirical estimates of arrivals and occupancy, we estimate (8) for every time of the day, excluding the first two and the last two minutes, where some data are generated by parking sensors coming online and offline, rather than by the actual parking process. We find that the maximal rate of change of \(\tilde{S}(t) \) is approximately equal to 3 (between 5am and 5:30am, when the arrival rate sharply increases), while the mean of the absolute value of \(\frac{\hat{s}_i(t)}{\tilde{s}_i(t)} \) is only 0.4. This is fifteen times less than \(6 \leq r(1 - q(t)) \), the lower bound of rate of convergence of \(S(t, v) \) to \(\tilde{S}(t, v) \).

Thus, we may conclude, the rate of change of the stock of searchers is indeed slow enough, and \(\tilde{S}(t, v) \) may be used as a reasonable approximation of \(S(t, v) \).

With this result in hand, we can also approximate \(R(t, v) \) by employing the approximation for \(S(t, v) \):

\[
\tilde{R}(t, v) = r(1 - q(t))\tilde{S}(t, v) = I(t, v)A(t, v).
\]

(9)

In other words, motorists exit the search mode at about the same rate as they enter it.

4. The alternative model

With the above approximation results, we can replace the original model with the alternative model, defined below, that makes calculation of optimal parking rates straightforward.

Suppose parkers appear at rate \(A(t, v) \) and decide whether to participate in the parking process, as in the original model. However, those who decided to park, instead of searching, park instantly. Each parking motorist must pay the expected search cost from the original
model, \(\frac{c}{r(t-q(t))} \). This payment is not received by anyone, but is a deadweight loss. Otherwise, the alternative model is identical to the original one.

In the alternative model, the entry into parking mode is characterized by (9), while the occupancy rate is defined by (cf.(3))

\[
q(t) \equiv \frac{1}{N} \int_{\mathcal{V}} \int_{0}^{\tau(t,v)} I(t-\tau, v)A(t-\tau, v)d\tau dv.
\] (10)

4.1. The planner’s problem

We can redefine the social planner’s objective as to maximize (cf.(3))

\[
V = \int_{0}^{T} \int_{\mathcal{V}} \int_{0}^{\tau(t,v)} I(t-\tau, v)A(t-\tau, v)u(\tau, v)d\tau dv dt
\]

\[
- \frac{c}{r} \int_{0}^{T} \frac{1}{1-q(t)} \int_{\mathcal{V}} I(t, v)A(t, v)dv dt + \int_{0}^{T} \int_{\mathcal{V}} (1-I(t, v))A(t, v)U_0(v)dv dt.
\] (11)

The first component of (11) describes the total welfare gain from the parking process; the second component is the total welfare loss from the search process; the last component is the total welfare gain from enjoying the outside opportunity. The social planner’s controls are the trajectories \(I(\cdot, v) \) and \(\tau^-(\cdot, v) \) (or, interchangeably, \(\tau^+\cdot, v) \)) for every \(v \), subject to (11).

4.1.1. The optimal duration of parking

The first-order condition of optimal \(\tau^-(t, v) \) is

\[
\frac{\partial V}{\partial \tau^-(t, v)} = I(t-\tau^-(t, v), v)A(t-\tau^-(t, v), v)u(\tau^-(t, v), v)
\]

\[
- \frac{c}{rN} \frac{I(t-\tau^-(t, v), v)A(t-\tau^-(t, v), v)}{(1-q(t))^2} \int_{\mathcal{V}} I(t, v')A(t, v')dv' \begin{cases} = 0, & \tau^-(t, v) > 0, \\
\leq 0, & \tau^-(t, v) = 0. \end{cases} \] (12)
If $I(t - \tau^-(t, v))A(t - \tau^-(t, v), v) = 0$, the problem is meaningless because the parkers of type v simply do not enter the system at time $t - \tau^-(t, v)$, and therefore their duration of parking has no effect on social welfare. If $I(t - \tau^-(t, v))A(t - \tau^-(t, v), v) > 0$, we can redefine (12) as

$$u(\tau^-(t, v), v) \leq \frac{c}{rN} \int_{V} I(t, v')A(t, v')dv', \quad (13)$$

with equality if $\tau^-(t, v) > 0$. Note that the right-hand side of (13) is the same for all types $v \in \mathcal{V}$; denote it by

$$p(t) \equiv \frac{c}{rN} \int_{V} I(t, v')A(t, v')dv'. \quad (14)$$

The optimal duration of parking then satisfies

$$\tau^-(t, v) = u^{-1}(p(t), v), \quad (15)$$

where $u^{-1}(x, v) \equiv x, \forall x \geq 0$, and $u^{-1}(p, v) = 0, \forall p > u(0, v)$. With this result, we can relate $q(t)$ to $p(t)$ by modifying (14):

$$q(t) = \frac{1}{N} \int_{V} \int_{0}^{u^{-1}(p(t), v)} I(t - \tau, v)A(t - \tau, v)d\tau dv. \quad (16)$$

The equations (14) and (16) constitute a system that jointly determines $p(t)$ and $q(t)$. The equilibrium at time t is visualized on Figure 11. The downward-sloping curve represents the demand for parking (16). On the far-right extreme, the demand is cut by previous departures: even at zero price, the demand cannot exceed the number of previously parked vehicles plus the number of most recently arrived vehicles. The upward-sloping curve is the social cost of parking (i.e. the externality on motorists arriving in the future) as described by (14). This curve depends on $q(t)$ directly, as well as indirectly via endogenous arrival decisions $I(t, v)$: a higher occupancy $q(t)$ increases the search cost and thus reduces arrivals. The intersection of the two curves determines the equilibrium.
What is the socially optimal relationship between the rate of arrival of new parkers, $\int_v I(t,v)A(t,v)dv$, and the occupancy rate? Arnott (2013), in a model analyzing the optimal spatial allocation of parking, prescribes a positive relationship. Our model prescribes just the opposite: if more parkers appear in the model, the shadow price of parking is higher, and it is optimal to keep more spaces vacant. Visually, a higher appearance rate $A(t,v)$ shifts the social cost curve on Figure 1 upward, causing the equilibrium occupancy rate to decrease and the price to increase.
4.1.2. The optimal entry decision

The first-order condition of optimal $I(t, v)$ in the maximization problem (11) is

$$
\frac{\partial V}{\partial I(t, v)} = A(t, v) \int_0^{\tau^+(t,v)} u(\tau, v) d\tau - \frac{c}{r} \frac{A(t, v)}{1 - q(t)}
$$

$$
- \frac{c}{r} \frac{A(t, v)}{N} \int_0^{\tau^+(t,v)} \frac{1}{(1 - q(t + \tau))^2} \int V I(t + \tau, v') A(t + \tau, v') d\tau - A(t, v) U_0(v)
$$

\[
\begin{cases}
 \geq 0, & I(t, v) = 1, \\
 = 0, & I(t, v) \in (0, 1), \\
 \leq 0, & I(t, v) = 0.
\end{cases}
\]

In (17), the first component is the welfare gained from the process of parking; the second component is own cost of search; the third component is the additional cost of search for subsequent motorists, caused by elevated occupancy; the fourth component is the foregone outside opportunity. If $A(t, v) = 0$, the motorists of type-v do not appear at t and their decisions are immaterial; otherwise, it is socially optimal to participate in the parking process if

$$
\int_0^{\tau^+(t,v)} u(\tau, v) d\tau - \frac{c}{r} \frac{1}{1 - q(t)} - \frac{c}{rN} \int_0^{\tau^+(t,v)} \frac{1}{(1 - q(t + \tau))^2} \int V I(t + \tau, v') A(t + \tau, v') d\tau - A(t, v) U_0(v) \geq 0,
$$

with $I(t, v) = 1$ in case of strict inequality.

4.2. The optimal regulation of parking

A motorist already parked makes the decision to exit by comparing her marginal utility of parking $u(\tau, v)$ against a marginal cost of parking. Since there is no “natural” marginal cost, it consists entirely of a price per unit of parking time imposed by the planner. Thus, the planner regulates exit from parking by imposing a price $\bar{p}(t, v)$, such that motorists of type v that are parked between t and $t + dt$ pay $\bar{p}(t, v)dt$.

A motorist considering whether to search for parking compares the expected value of
parking, integrated over the entire (optimally chosen) parking period, less the search costs and the monetary costs, against the outside opportunity. Therefore, the planner can regulate the entry process by imposing, on top of the price $\tilde{p}(t, v)$, an entry fee $f(t, v)$ paid by motorists of type v entering the parking session at time t once, at the time of entry. Such two-part tariff is sufficient to regulate both margins, extensive and intensive, of parking demand.

With such two-part tariff in place, the motorists of type v appearing at t' choose whether to park, and for how long to park, by maximizing the following expected utility:

$$U(t', v) = I(t', v) \int_0^{\tau^+(t', v)} u(\tau, v) - \tilde{p}(t' + \tau, v) d\tau - \frac{c}{r} \frac{I(t', v)}{1 - q(t')} - I(t', v)f(t', v) + (1 - I(t', v))U_0(v)$$

(19)

4.2.1. The duration of parking

The duration of parking for those arriving at t' is relevant only if $I(t', v) > 0$; the corresponding first-order condition is

$$u(\tau^+(t', v), v) \leq \tilde{p}(t' + \tau^+(t', v), v),$$

(20)

with equality if $\tau^+(t', v) > 0$. Using the mutual dependence of $\tau^+(\cdot, v)$ and $\tau^-(\cdot, v)$, and defining $t \equiv t' + \tau^+(t', v)$, we can rewrite (20) as

$$u(\tau^-(t, v), v) \leq \tilde{p}(t, v),$$

(21)

with equality if $\tau^-(t, v) > 0$. To make the duration of parking socially optimal, it must satisfy (13); substituting the latter into (21), for positive parking durations,

$$\tilde{p}(t, v) = p(t), \forall t, v.$$

(22)

We arrive at the following
Theorem 1. The optimal price for parking is proportional to the rate of arrival of new parkers, and is inversely related to the square of the vacancy rate.

For proof, observe the definition of $p(t)$ in (14). Note that the recommendation of Theorem 1 is quite different from all existing pricing methods, in particular from the policy of setting the price to target a constant occupancy rate $q(t)$ (e.g. within the SFpark project). The Theorem 1 is indeed consistent with the intuition that the planner should charge zero price if no new arrivals are expected, regardless of the occupancy level.

4.2.2. The entry decisions

Suppose the price is set at the socially optimal level, and therefore parking durations are socially optimal, as well. We now analyze which entry fee $f(t, v)$ induces the socially optimal decision to participate in search for parking. The motorist of type v arriving at t chooses to search for parking if

$$
\int_0^{\tau(t,v)} [u(\tau, v) - p(t + \tau)] d\tau - \frac{c}{r} \frac{1}{1 - q(t)} - f(t, v) \geq U_0(v). \tag{23}
$$

To achieve socially optimal participation decisions, (18) must also be true. Since the right-hand sides of (23) and of (18) are the same, it is sufficient for the social optimum that the left-hand sides are the same, too. This implies that

$$
f(t, v) + \int_0^{\tau(t,v)} p(t+\tau)d\tau = \frac{c}{rN} \int_0^{\tau(t,v)} \frac{1}{(1 - q(t + \tau))^2} \int_V I(t+\tau,v')A(t+\tau,v')dv'd\tau. \tag{24}
$$

We can now formulate the following

Theorem 2. If parking departures are optimally regulated, there is no need to regulate parking arrivals.

For proof, use the definition of price (14) to observe that $\int_0^{\tau(t,v)} p(t + \tau)d\tau$ in (24) is equal to the right-hand side of (23), and therefore $f(t, v) = 0, \forall t, v$. In other words, the price of
parking $p(t)$, set to optimize parking departures, already helps to internalize all externalities that parkers have on searchers, and no additional pricing is needed. Again, this result contrasts with the existing theoretical literature on parking, which attempts to regulate the arrivals and typically ignores the departures regulation by assuming exogenous duration of parking.

Finally,

Theorem 3. If motorists’ types are their private information, the first-best allocation can still be achieved.

This is due to the fact that the optimal prices set by the planner, $\tilde{p}(t, v) = p(t)$ and $f(t, v) = 0$, in fact do not depend on the motorists’ types.

5. Private supply of parking

This section investigates whether the social optimum can be achieved with privatized supply of parking space. In the presence of costly search for parking, every interaction between the provider of a parking site and a motorist is essentially a bargaining problem, in which each party has an outside opportunity. Since the process of parking is continuous, bargaining within a provider-parker pair also occurs continuously during the entire parking session.

Can the optimal pricing schedule of section 4.2 be implemented in a free market? The answer is yes. We have already established in section 4.2 that is it individually rational and incentive compatible for the motorists. It is also individually rational for the providers, since their outside opportunity is to provide their spot to another motorist, at the same price but after a costly waiting period.

However, if the price is not externally imposed but is determined via bargaining, the outcome is generally not optimal. For example, if the providers have zero bargaining power, the price will always be zero (again, because the provider’s only outside opportunity is to
provide their spot to another motorist after a waiting period), clearly making the allocation of parking space suboptimal.

In a more likely scenario that the providers have full bargaining power (i.e. are the price-setters) and if the motorist types are public information, the providers will be able to extract the entire consumer surplus (because the motorist’s two outside opportunities are to search for another provider and to exit the system); the duration of parking and the occupancy rates can be shown to be socially optimal.

In the most likely scenario that the providers are price-setters but motorist types are their private information, the standard inefficiency result will apply: the providers will set the price above the socially optimal level, resulting in lower-than-optimal occupancy level. For example, at the time of zero arrivals when present parkers should optimally be allowed to stay for free, until their marginal value is zero, a price-setting provider is likely to set a strictly positive price, prompting some parkers to leave prematurely.

To conclude, if the parking authority chooses to privatize parking sites, it may still have to regulate the price.

6. A Numerical Example

We illustrate the proposed pricing scheme with a numerical example. Suppose the parking capacity is $N = 100$ and the time interval is $[0, T] = [0, 24]$. The set of all types is unidimensional, $\mathcal{V} = [0, \infty)$. The appearance rate is characterized by $A(t, v) = B(t) \exp(-\frac{v}{\lambda}), \forall v \in [0, \infty)$, where $\lambda = 10$. The marginal value of parking is

$$u(\tau, v) = v - s\tau,$$

(25)

with $s = 2$. Essentially, the type v is the instantaneous value at the beginning of parking session, and the marginal value decays linearly over time. The mean initial value is then
equal to $\lambda = 10$, and the mean duration of unrestricted parking is $\lambda = 5$ hours. The outside opportunity is assumed to be equal to zero, primarily for the purposes of better analytical tractability of the example: $U_0(v) = 0$. The $B(t)$ is as follows:

<table>
<thead>
<tr>
<th>Time, t</th>
<th>$B(t)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 – 5</td>
<td>0</td>
</tr>
<tr>
<td>5 – 9</td>
<td>$2(t - 5)$</td>
</tr>
<tr>
<td>9 – 13</td>
<td>$-2(t - 13)$</td>
</tr>
<tr>
<td>13 – 24</td>
<td>0</td>
</tr>
</tbody>
</table>

The evolution of $B(t)$ over time is illustrated on Figure 2. All motorists appear between 5am and 1pm, with a peak of $B = 8$ at 9am. Such schedule of motorist appearance may not be the most empirically-driven, but useful to highlight the differences between regulation methods in the presence of time-varying demand for parking.

The search rate is, as calibrated in Section 3, $r = 1500$.

The time cost of searching c is worth a discussion. Recent theoretical literature on parking (e.g. Arnott (2013)) emphasizes that, besides the search itself, there is another cost associated with the search for parking: the need to walk from the location of parking to the destination, and back to the location of parking. A motorist that searches for parking longer is likely to end up further away from the destination, and to spend more additional...
time on walking. Thus, there is a multiplier effect of the search process. To assess the magnitude of such multiplier, we need to introduce some assumptions about the geography of search. Suppose a motorist searches on a straight line, i.e. cannot make turns or u-turns while searching. The search begins at units of time before arrival to destination, and continues until a parking site is found. The exit rate from the search state is \(r(1 - q) \) and is assumed to be constant for the duration of search, as explained in section \(\text{section} \). Then, the expected driving time (at the speed of a searcher) from the parking location to the destination is

\[
\int_0^\infty |t - a| r(1 - q) \exp(-tr(1 - q))dt = a + \frac{2}{r(1-q)} \exp(-ar(1 - q)) - \frac{1}{r(1-q)};
\]

its minimization with respect to \(a \) yields \(a^* = \frac{\log(2)}{r(1-q)} \), and the corresponding expected driving time is

\[
\int_0^\infty |t - a^*| r(1 - q) \exp(-tr(1 - q))dt = \frac{\log(2)}{r(1-q)}.
\]

For example, with 99% occupancy, a motorist should start the search 0.0462 hours, or 2 minutes 46 seconds before passing by the destination; the expected driving time from parking location to destination will also be 0.0462.

The time needed to walk this distance there and back is twice the ratio of the driving speed (in the search mode) to the walking speed. We assume this ratio to be equal to 4 (15 kmh vs. 3.75 kmh), thus the total time spent on search with walking is \(\frac{1}{r(1-q)} (1 + 2 \times 4 \log(2)) \), compared to \(\frac{1}{r(1-q)} \) spent on search per se. If the value of the search time is 10 dollars per hour (i.e. the mean initial value of parking), then the cost of search plus walking is \(10 \times (1 + 2 \times 4 \log(2)) \approx 65 \) dollars per hour of search. Following this intuition, we assume \(c = 65 \).

We calculate parking patterns under the following five regulation scenarios:

1. No regulation at all. The planner does not intervene the parking process. Parkers stay until zero marginal value of parking.

2. The (optimal) time-invariant price for parking. This scenario is realized, for example,
in the city of Moscow. Parkers stay until the marginal value of parking equals the price.

3. Time-invariant parking time limit. To isolate the effects of time limits, we assume no parking fees are collected. The time limits are popular in the cities of Australia, although a fee usually does apply in addition.

4. Price regulation targeting (optimal) time-invariant occupancy rate. There is a lower bound of zero on the price, i.e. motorists are not subsidized when occupancy falls below the target. This scenario has been implemented within the SFpark project in San Francisco.

5. The optimal price proposed by this paper, as defined in $\frac{c}{r(1-q(t))}$ and illustrated on Figure 1.

For each scenario, we analyze and compare the following model parameters: occupancy rate, expected search time, entry value cutoff, price (if applicable), and social welfare generation.

6.1. Preliminary analysis

While the model is complex enough so the equilibrium has to be computed, some results can be derived analytically. We now conduct such analysis for each of the above mentioned regulation scenarios.

6.1.1. No regulation

Without regulation, parkers stay until their marginal value is zero. From (25), it follows that $\tau^+(t, v) = \tau^+(t', v) = \frac{v}{g}, \forall t, t'$. The utility from a parking session, gross of search costs, is $\int_{0}^{\tau^+(t, v)} u(\tau, v) d\tau = \frac{v^2}{2s}$. A motorist appearing at time t initiates the search process iff her value from parking exceeds the search cost: $\frac{v^2}{2s} \geq \frac{c}{\overline{1-q(t)}}$, which allows us to define the entry

3Although the optimality of the posted price has never been discussed.
Enter, depart before t

$v^E(t - \tau)$

$v^X(\tau)$

Enter, remain at t

No entry

No entry

No entry

τ (time of entry before t) $\tau^*(t)$ 0 (time t)

Figure 3: Determining the types still present at t

cutoff type as follows:

$$v^E(t) = \left(\frac{2sc}{r}\right)^{\frac{1}{2}} (1 - q(t))^{-\frac{1}{2}}.$$ (26)

As we demonstrate below, in equilibrium $q(t) < 1, \forall t$, and therefore $v^E(t)$ has an upper bound.

Observe that a parker who appeared at $t - \tau$ is still present at t if (i) she has indeed entered at $t - \tau$, i.e. if $v \geq v^E(t - \tau)$, and (ii) she did not exit by time t, i.e. if $v \geq v^X(\tau)$, where

$$v^X(\tau) \equiv s\tau$$ (27)

is referred to as the exit cutoff.

Define by $\tau^*(t)$ the smallest τ such that

$$v^E(t - \tau) - v^X(\tau) \leq 0, \forall \tau \geq \tau^*(t).$$ (28)

Such $\tau^*(t)$ exists because $v^E(t)$ is cyclical, i.e. $v^E(t - nT) = v^E(t), \forall n = 0, 1, 2, \ldots$, and is therefore constrained from above, while $v^X(nT)$ is increasing to infinity with n. The motorist types still present at time t are illustrated in Figure 3.
We next modify the expression for \(q(t) \) in (31) for better analytical tractability of the latter. Denote \(v^{\text{mx}}(t, \tau) \equiv \max(v^E(t - \tau), v^X(\tau)) \); the set of motorists entering at \(t - \tau \) and still present at \(t \) is \([v^{\text{mx}}(t, \tau), \infty)\), thus (31) can be rewritten as

\[
q(t) = \frac{1}{N} \int_0^\infty \int_{v^{\text{mx}}(t, \tau)}^\infty A(t - \tau, v)dv \, d\tau
= \frac{1}{N} \int_0^\infty B(t - \tau) \int_{v^{\text{mx}}(t, \tau)}^\infty \exp \left(-\frac{v}{\lambda} \right) \, dv \, d\tau
= \frac{1}{N} \int_0^\infty B(t - \tau) \lambda \exp \left(-\frac{v^{\text{mx}}(t, \tau)}{\lambda} \right) \, d\tau
= \frac{1}{N} \int_0^{\tau^*(t)} B(t - \tau) \lambda \exp \left(-\frac{v^{\text{mx}}(t, \tau)}{\lambda} \right) \, d\tau + \frac{1}{N} \int_{\tau^*(t)}^\infty B(t - \tau) \lambda \exp \left(-\frac{v^X(\tau)}{\lambda} \right) \, d\tau. \tag{29}
\]

Using the definition of \(v^X(\tau) \) and the fact that \(B(t) = B(t + T), \forall t \), we can modify the last component of (29) as follows:

\[
X(t) \equiv \frac{1}{N} \int_{\tau^*(t)}^\infty B(t - \tau) \lambda \exp \left(-\frac{v^X(\tau)}{\lambda} \right) \, d\tau
= \frac{1}{N} \exp \left(-\frac{st}{\lambda} \right) \int_{\tau^*(t)}^\infty B(t - \tau) \lambda \exp \left(\frac{s(t - \tau)}{\lambda} \right) \, d\tau
= \frac{1}{N} \exp \left(-\frac{st}{\lambda} \right) \int_{-\infty}^{t - \tau^*(t)} B(t') \lambda \exp \left(\frac{st'}{\lambda} \right) \, dt'
= \frac{1}{N} \frac{\exp \left(-\frac{st}{\lambda} \right) \int_{t - \tau^*(t) - T}^{t - \tau^*(t)} B(t') \lambda \exp \left(\frac{st'}{\lambda} \right) \, dt'}{1 - \exp \left(-\frac{st}{\lambda} \right)} \tag{30}
\]

Also denote

\[
E(t, \tau) \equiv B(t) \lambda \exp \left(-\frac{v^{\text{mx}}(t, \tau)}{\lambda} \right) \tag{31}
\]

the mass of parkers who entered at \(t - \tau \) and still present at \(t \). With new notations, we can rewrite (29) as follows:

\[
q(t) = \frac{1}{N} \int_0^\tau \int E(t, \tau) \, d\tau + X(t). \tag{32}
\]

Likewise, we can modify (31) as follows. Its double integral with respect to \(\tau \) and \(v \) can
be rewritten as

\[
\int_V \int_0^{\tau^-(t,v)} I(t, v) A(t - \tau, v) u(\tau, v) d\tau dv \\
= \int_0^\infty B(t - \tau) \int_0^{\infty} (v - s\tau) \exp\left(-\frac{v}{\lambda}\right) dv d\tau \\
= \int_0^\infty B(t - \tau) (v^{\text{mx}}(t, \tau) - s \tau + \lambda) \lambda \exp\left(-\frac{v^{\text{mx}}(t, \tau)}{\lambda}\right) d\tau \\
= \int_0^{\tau^+(t)} (v^{\text{mx}}(t, \tau) - s \tau + \lambda) E(t, \tau) d\tau + \lambda X(t). \tag{33}
\]

The search cost at time \(t \) in (11) can be rewritten as

\[
\frac{c}{r} \int_V \int_0^{\tau^+(t,v)} I(t, v) A(t, v) dv = \frac{c}{r} \frac{E(t, 0)}{1 - q(t)} \tag{34}
\]

This allows us to redefine (11) as follows:

\[
V = \int_0^T \int_0^{\tau^+(t)} (v^{\text{mx}}(t, \tau) - s \tau + \lambda) E(t, \tau) d\tau + \lambda X(t) - \frac{c}{r} \frac{E(t, 0)}{1 - q(t)} dt. \tag{35}
\]

6.1.2. Constant price

The parking authority sets a constant price \(P \) per unit of parking time. From (22), it follows that \(\tau^+(t, v) = \tau^-(t', v) = \frac{v - P}{s}, \forall t, t' \). The utility from a parking session, gross of search costs, is \(\int_0^{\tau^+(t,v)} (u(\tau, v) - P) d\tau = \frac{(v - P)^2}{2s} \). As before, entry decisions are made by comparing the gross utility with the search cost (cf.(26)):

\[
v^{E}(t) = P + \left(\frac{2sc}{r}\right)^{\frac{1}{2}}(1 - q(t))^{-\frac{1}{2}}. \tag{36}
\]
The exit cutoff is (cf.27) \(v^X(\tau) = P + s\tau \); the definitions of \(\tau^*(t) \), \(E(t, \tau) \) are unchanged from \((28, 31)\), respectively. The occupancy at time \(t \) is then (cf.(32))

\[
q(t) = \frac{1}{N} \int_0^{\tau^*(t)} E(t, \tau) d\tau + \exp\left(-\frac{P}{\lambda}\right) X(t),
\]

where \(X(t) \) is unchanged from \((31)\). The social welfare is redefined as (cf.(35))

\[
V = \int_0^T \int_0^{\tau^*(t)} (v^\text{mx}(t, \tau) - s\tau + \lambda) E(t, \tau) d\tau + (P + \lambda)N \exp\left(-\frac{P}{\lambda}\right) X(t) - \frac{c}{r} E(t, 0) dt.
\]

Note that \((38)\) adds up motorists’ welfare and the revenue of the parking authority. The price \(P \) is chosen to maximize \((38)\).

6.1.3. Time limit

The parking authority sets a time limit \(\tau \) on the duration of parking. From \((23)\), it follows that \(\tau^+(t, v) = \tau^-(t', v) = \min\{\frac{v}{s}, \bar{\tau}\} \), \(\forall t, t' \). The utility from a parking session, gross of search costs, is

\[
\int_0^{\tau^+(t, v)} u(\tau, v) d\tau = \begin{cases}
\frac{v^2}{2s}, & v < s\bar{\tau}, \\
\frac{\bar{\tau}^2 - s\bar{\tau}^2}{2}, & v \geq s\bar{\tau}
\end{cases}
\]

If the occupancy level is low enough, the entry cutoff \(v^E(t) \) is below \(s\bar{\tau} \), meaning that some parkers entering at \(t \) will depart before the time limit expires. Specifically, if \(q(t) < \bar{q} \equiv 1 - 2\frac{c}{rs\bar{\tau}} \), then \(v^E(t) \) is described by \((23)\). Otherwise, the entry cutoff is above or equal to \(s\bar{\tau} \), meaning that all parkers entering at \(t \) will stay until the end of the time limit. In algebra, if \(q(t) \geq \bar{q} \), then \(v^E(t) = \frac{c}{r\bar{\tau}(1 - q(t))} + \frac{1}{2} s\bar{\tau} \). The equation for occupancy is (cf.(42))

\[
q(t) = \frac{1}{N} \int_0^{\min\{\tau^*(t), \bar{\tau}\}} E(t, \tau) d\tau + \bar{X}(t),
\]

23
where \(\tau^*(t) \), \(E(t, \tau) \) are defined in (28,31), respectively. If \(\tau^*(t) \geq \bar{\tau} \), then \(X(t) \equiv 0 \); otherwise (cf. (31))

\[
X(t) \equiv \frac{1}{N} \int_{\tau^*(t)}^{\bar{\tau}} B(t - \tau) \lambda \exp \left(-\frac{X(t)}{\lambda} \right) \, d\tau = \frac{1}{N} \exp \left(-\frac{st}{\lambda} \right) \int_{t - \bar{\tau}}^{t} B(t') \lambda \exp \left(\frac{st'}{\lambda} \right) \, dt'.
\] (41)

The social welfare can be computed as (cf. (35))

\[
V = \int_{0}^{\tau} \int_{0}^{\min\{\tau^*(t), \bar{\tau}\}} (v^{\max}(t, \tau) - s \tau + \lambda) E(t, \tau) \, d\tau + \frac{c}{r} \frac{E(t, 0)}{1 - q(t)} \, dt.
\] (42)

6.1.4. Occupancy target

The parking authority targets an occupancy level \(Q \in (0,1) \) by introducing a price function \(p(t) \). The duration of parking is \(\tau^- (t', v) = \frac{v - p(t')}{s} \), and thus

\[
\tau^+ (t, v) = \frac{v - p(t + \tau^+(t, v))}{s}.
\] (43)

The utility from a parking session, gross of search costs, is

\[
\int_{0}^{\tau^+(t, v)} (u(t, v) - p(t + \tau)) \, d\tau = v \tau^+(t, v) - \frac{s}{2} \tau^+(t, v)^2 - \int_{0}^{\tau^+(t, v)} p(t + \tau) \, d\tau.
\]

The entry cutoff \(v^E(t) \) and the minimal duration of stay \(\tau^E(t) \equiv \tau^+(t, v^E(t)) \) satisfy the system of equations (cf. (13))

\[
v^E(t) \tau^E(t) - \frac{s}{2} \tau^E(t)^2 - \int_{0}^{\tau^E(t)} p(t + \tau) \, d\tau \equiv \frac{c}{r} \frac{1}{1 - q(t)},
\] (44)

\[
\tau^E(t) = \frac{v^E(t) - p(t + \tau^E(t))}{s}.
\] (45)

The exit cutoff is (cf. (27)) \(v^X(t, \tau) = p(t) + s \tau \); the functions \(\tau^*(t) \), \(E(t, \tau) \) are unchanged from (28,31). The occupancy at \(t \) satisfies (cf. (37))

\[
q(t) = \frac{1}{N} \int_{0}^{\tau^*(t)} E(t, \tau) \, d\tau + \exp \left(-\frac{p(t)}{\lambda} \right) X(t),
\] (46)
with $X(t)$ unchanged from (31). The price $p(t)$ is such that

$$q(t) \begin{cases}
\leq Q, & p(t) = 0, \\
= Q, & p(t) > 0.
\end{cases}$$

(47)

The social value is given by (cf. (38))

$$V = \int_0^T \int_0^{\tau^*(t)} (v_{\text{mx}}(t, \tau) - s \tau + \lambda) E(t, \tau) d\tau + (p(t) + \lambda) N \exp \left(-\frac{p(t)}{\lambda} \right) X(t) - \frac{c}{r} \frac{E(t, 0)}{1 - q(t)} dt.$$

(48)

The occupancy target Q is chosen to maximize welfare (48).

If the occupancy constraint is still binding, and therefore the price still positive, at the end of the arrivals period ($t = t_{\text{end}}$, equal to 13 in our example), then pricing beyond this period is worth special attention.

Lemma 1. If $p(t_{\text{end}}) > 0$, then the authority must charge an ‘exit fee’ of $F_{\text{ex}} \equiv \frac{1}{2s} p(t_{\text{end}})^2$ for all those willing to stay beyond t_{end}. In such case, there will be no departures within $[t_{\text{end}}, t_{\text{end}} + \frac{1}{2} p(t_{\text{end}})]$.

Note that the one-time exit fee specified above is equivalent to continuously paying the price falling from $p(t_{\text{end}})$ to zero at a linear rate of s beyond the arrivals period:

$$F_{\text{ex}} = \int_{t_{\text{end}}}^{t_{\text{end}} + \frac{1}{2} p(t_{\text{end}})} p(t_{\text{end}}) - s(t' - t_{\text{end}}) dt'.$$

In the illustrations below (Figure 8), we show the price decreasing in this way beyond t_{end}.

Proof. First, suppose the exit fee is smaller: $F_{\text{ex}} < \frac{1}{2s} p(t_{\text{end}})^2$. Consider the lowest-marginal-value parker still present at time $t_{\text{end}} - dt$, with dt being small. Since parkers stay until their value equals the price, the remaining value v_{min} of such marginal parker is no less than $p(t_{\text{end}} - dt) \approx p(t_{\text{end}})$. The utility of such parker from staying until marginal value becomes
zero, i.e. until \(t_{end} - dt + \frac{1}{s} v_{\text{min}} > t_{end} \), is equal to

\[
\frac{1}{2s} (v_{\text{min}})^2 - p(t_{end})dt - F_{\text{ex}},
\]

which is positive and is greater than the utility from exiting anytime before \(t_{end} \), for a sufficiently small \(dt \). Therefore, the marginal parker at time \(t_{end} - dt \), and thus all other parkers at that time, will choose to stay until after \(t_{end} \). The same conclusion applies to everyone present within \([t_{end} - dt, t_{end}]\), and thus there will be no departures during this period. At the same time, the arrivals rate is still positive within this interval, meaning that the occupancy must be strictly increasing over time. On the other hand, \(p(t) > 0 \) on this interval implies that the occupancy is at its maximal level and is therefore constant, which is a contradiction.

Second, suppose the exit fee is above the specified value: \(F_{\text{ex}} > \frac{1}{2s} p(t_{end})^2 \). We can show that in this case a strictly positive mass of parkers will choose to exit exactly at \(t_{end} \), in order to avoid paying the fee, and the occupancy would discontinuously drop below the constraint. This would contradict the rules of the occupancy target policy, that the fees collected are just high enough to meet the occupancy constraint.

6.1.5. Optimal policy

The optimal policy is similar to the occupancy target policy. One difference is that the price is determined by (14) rather than by (47). The definition (14) can be rewritten, using the notations of the Section 6, as follows:

\[
p(t) = \frac{c}{rN} \frac{E(t,0)}{(1 - q(t))^2}.
\]

Another important difference is the behavior of parkers shortly before the end of the
arrivals period. By (14), parking must be free after t^{end}; at the same time, the price may fall sharply enough just before t^{end} so that some parkers have their utility double-peaked with respect to exit time. In this case, some parkers may choose to stay even when their marginal value is below the current price, because they expect a sharp price drop in the near future. For this reason, all parkers are divided into (i) the short stayers, who exit before t^{end}, when their marginal value is equated to the price, and (ii) the long stayers, who stay until after t^{end}, as long as the marginal value is positive. The cutoff type is indifferent between a short stay and a long stay, meaning that their additional integrated value from a longer stay is exactly equal to the additional monetary payment for the longer stay.

Figure 3 illustrates the cutoff line between the short-stayers and the long-stayers. The slope of the line is $-s$, i.e. the rate of decay of everyone’s marginal value, thus every parker is either always below or always above the cutoff line. The position of the cutoff line is determined by the condition that area A is equal to area B. The point t_2 is the intersection of the price curve and the cutoff line; it is also the time of departure of the last short-stayer.

Note that the motorists entering the model during the no-departure period (i.e. within $[t_2, t^{\text{end}}]$) are all long-stayers, yet some of them may be below the cutoff line, meaning that they exit before all those long-stayers who arrived before t_2.

Given the fact that parkers do not always exit when their instantaneous value drops below the price, we need to redefine the function $v^X(t, \tau)$ for $t > t_2$. Parkers that arrived before t_2 still stay at t if their instantaneous value at t is positive and is above the cutoff line shown on Figure 3. Parkers that arrived after t_2 are still present if their instantaneous value at t is positive. In math,

$$v^X(t, \tau) = \begin{cases}
p(t) + s\tau, & t \leq t_2 \\
p(t_2) + s\tau - s(t - t_2), & t \in [t_2, t_2 + \frac{p(t_2)}{s}] & \& \tau \geq t - t_2 \\
s\tau, & \text{otherwise} \end{cases}$$

(50)
6.2. Computational details

The general philosophy of searching for an equilibrium is to assume some initial values of model parameters; given these values, calculate all model ingredients, including the new values of the same parameters. Equating the initial values to the new values of the model parameters constitutes a system of nonlinear equations which is then solved numerically. To facilitate the numerical search of the solution, we also calculate the derivatives of all model ingredients with respect to initially assumed values of model parameters, so the Jacobian matrix for the system of equations is known. We now proceed to describing the details.

6.2.1. Initially assumed parameters

We assume some initial values of the entry cutoff \(v^E(t) \), labeled \(v_0^E(t) \), on a grid of time points. The grid is limited to the arrivals period (i.e. from \(t \in [5, 13] \)) and is equally spaced with 1-minute time interval, resulting in 481 grid points.

In case of the optimal regime, we also assume an initial value of \(t_2 \), the time when the last short-stayer quits.
6.2.2. Calculation of \(q(t) \) and \(p(t) \)

We evaluate \(q(t) \), and \(p(t) \) if applicable, on the same time grid. To find \(q(t) \) at a given time \(t \) (with a given value of \(p(t) \) if applicable), we identify all time lags \(\tau \) at which \(v_E^0(t-\tau) \) and \(v_X(t, \tau) \) intersect; since such intersections typically do not coincide with the grid points, we evaluate them by assuming that \(v_E^0(\cdot) \) evolves linearly between the grid points. For most accurate results, we insert such points of intersection of \(v_E^0(t-\tau) \) and \(v_X(t, \tau) \), for a given \(t \), as auxiliary time grid points before evaluating the integrals used to calculate \(q(t) \).

In case of the occupancy target regime, for every time point on the grid we evaluate two parameters: (i) occupancy \(q(t) \) in case of \(p(t) = 0 \), and (ii) price \(p(t) \) that equates occupancy to the target (\(q(t) = Q \)). Although at a typical point in time, only one of the two values is relevant, knowing both is useful because it allows us to infer the precise time of switching from non-binding to binding occupancy target, i.e. the time at which both \(p(t) = 0 \) and \(q(t) = Q \) are true. We add such switching time as an auxiliary time grid point, which later helps us to evaluate more accurately the expected monetary costs for newly arriving motorists.

In case of optimal regime, if \(t \leq t_2 \), we evaluate \(q(t) \) and \(p(t) \) simultaneously to meet the constraint (49). If \(t > t_2 \), parkers no longer respond to the price, therefore we calculate the occupancy \(q(t) \) first, and then use (49) to infer \(p(t) \). When evaluating \(q(t) \), we pay attention to the fact that \(v_X(t, \tau) \) is discontinuous at \(\tau = t - t_2 \) if \(t \in [t_2, t_2 + \frac{p(t_2)}{s}] \); we insert an auxiliary time grid point.

6.2.3. Calculation of \(v^E(t) \)

In case of no regulation, constant price, time limit regimes the new values of \(v^E(t) \) can be found analytically once \(q(t) \) is known. Since the value of \(q(t) \) calculated above is not guaranteed to be less than unity, which is necessary to find a meaningful value of \(v^E(t) \), we impose an upper bound on \(q(t) \).
In case of the occupancy target regime, the cutoff entry value \(v^E(t) \) and the minimal duration of stay \(\tau^E(t) \) are jointly determined from the system of equations (44, 45). As implied by earlier discussion, there exists a discontinuity in \(\tau^E(t) \) (but not in \(v^E(t) \)) at some point \(t_1 < t^{\text{end}} \), due to a sharp drop in price after \(t^{\text{end}} \) and resulting zero departures between \(t^{\text{end}} \) and \(t^{\text{end}} + \frac{1}{s}p(t^{\text{end}}) \). This time point satisfies

\[
\begin{align*}
\lim_{t \searrow t_1} t + \tau^E(t) &= t^{\text{end}}, \\
\lim_{t \nearrow t_1} t + \tau^E(t) &= t^{\text{end}} + \frac{1}{s}p(t^{\text{end}}), \\
\tau^E(t) &= v^E(t)/s, t > t_1.
\end{align*}
\]

Under the optimal regime, there also exists a no-departure period of time, but unlike the occupancy target regime, the beginning of such period \(t_2 \) is not ex-ante known. For this reason, at each point in time we calculate two sets of the cutoff entry value \(v^E(t) \) and duration of stay \(\tau^E(t) \):

(i) Short stay: parkers exit when marginal value is equated to price for the first time. The unknowns \(v_{SS}^E(t), \tau_{SS}^E(t) \) are found from the system (44, 45).

(ii) Long stay: parkers exit when marginal value equals zero. The unknowns \(v_{LS}^E(t), \tau_{LS}^E(t) \) are found from the system (46) and \(\tau_{LS}^E(t) = \frac{1}{s}v_{LS}^E(t) \).

The entry cutoff value is the minimum of the two: \(v^E(t) = \min(v_{SS}^E(t), v_{LS}^E(t)) \). We also calculate the new commencement time of the no-departures period, \(t_2 \), as follows. We first find \(t_1 \), the entry time of the last short-stayer: it is the earliest time that satisfies \(v_{SS}^E(t_1) = \frac{1}{s}v_{LS}^E(t_1) \). The exit time of the last short-stayer then satisfies \(t_2 = t_1 + \tau_{SS}^E(t_1) \).

6.2.4. Additional parameters of interest

Having found the equilibrium, we calculate the parameters of interest, some of which (occupancy, social value) are calculated not only within the arrivals period but also at other
times of the day. For those other times ($t \in [0, 5], t \in [13, 24]$), we introduce the additional time grid with equally spaced 3-minute intervals. In the constant price and occupancy target scenarios we choose the value of a parameter (P, Q, respectively) by maximizing the social welfare integrated over time.

6.3. Results

The evolution of equilibrium occupancy over time, under various regulation policies, is shown in Figure 5. Not surprisingly, the highest occupancy is achieved when there is no regulation at all; in our example, the maximum occupancy without regulation is 99.93%, i.e. one vacancy per almost 1500 parking sites; it is achieved at 8:59, i.e. at the time of peak rate of motorist appearance.

The welfare-maximizing constant price was found to be $P = 4.83$, or 48.3% of the mean initial value of parking. Since this regulation applies at all times of the day, it is not surprising that occupancy is also reduced by this policy at all times of the day. This regulation reduces congestion dramatically, with peak occupancy being 99.72% (one vacancy per 360 sites), at 10:08.

The time-limit policy is worth special discussion. In the world of homogenous motorists, the time limit yields the same outcomes as the price regulation. For example, if the price is such that [all] motorists park for 4 hours, such price can be replaced by the 4-hour time limit with the same consequences for the aggregate welfare. However, when motorists are heterogenous as in our case, the time limit policy results in poorer welfare outcomes. Some motorists are forced to depart while their value of parking is still high, while other motorists are allowed to stay while their value is already low. At the time of peak congestion, the time limit policy leads to what I call the adverse selection, or crowding out of high-value parkers by low-value parkers. When there is no regulation at all, low-value motorists are kept out by the prospect of search; when there is price regulation, they are kept out by the prospect
of monetary expenses. With time limit policy, there is nothing that keeps them out so they fill nearly all parking spaces vacated by the regulation. As a result, the time limit policy is least effective at the time when regulation is most needed, as demonstrated on Figure 4. Such regulation may in fact be worse, from social welfare perspective, than no regulation at all. In particular, in our example we find that welfare-maximizing time limit is infinite, i.e. no time limit at all. For illustration purposes, we have calculated the equilibrium for a 3-hour time limit, short enough to have any effect on peak occupancy. With such limit, the peak occupancy is 99.84% (one vacancy per 625 sites) at 8:41. At the same time, the limit implies zero occupancy between 16:00 (3 hours after arrivals end) and 5:00, when new arrivals begin.

The welfare-maximizing occupancy target was found to be equal to 95.99%, which corresponds to one vacant site out of 25, and which is somewhat higher than the 85% recommended by Shoup (2005). Since this policy restricts behavior only during hours of peak demand, the off-peak occupancy is identical to that of no regulation. Note that peak occupancy lasts until 15:19, i.e. more than two hours after the end of the arrival period. As discussed above, this is due to the fact that no one exits for some time after the end of the arrivals period.

Finally, the optimal occupancy exactly matches the intuition outlined in the introduction of this paper. During off-peak hours, it is nearly identical to that of no-regulation scenario. At the beginning of congestion period, the optimal occupancy is lower than that of occupancy-target scenario: in the presence of high arrival rate, it is optimal to keep more spaces open in order to reduce search costs for newly arriving motorists. On the contrary, at the end of congestion period, the optimal occupancy is higher than that under the occupancy target: in the presence of reduced arrival rate, there is less competition for vacant spaces, so it is optimal to allow those already parked to stay longer. Shortly before the end of the arrivals period at 13:00, departures halt, leading to 99.53% occupancy (one vacancy per 215 sites) at the end of the arrivals period and for some time beyond it.
Figure 5: Occupancy over time, under various regulation policies

Figure 6 demonstrates the expected search time at different times of the day under different policies. It is equal to $\frac{1}{r(1-q(t))}$. Under the no-regulation scenario, the search time reaches nearly 60 minutes during the time of maximum congestion. Under the occupancy target policy, the expected search time during the congestion period is 60 seconds. Under the optimal policy, the expected search time rises during the day: at 9:00, the time of maximum arrivals, it is only 29 seconds; by 12:25 when departures halt, it is already 108 seconds; by the end of arrivals at 13:00, it reaches the maximum of 9 minutes. Such a high search cost is socially optimal because, by the end of the arrivals period, very few motorists have to pay this cost.

Figure 7 demonstrates the entry value cutoff: only those whose initial value of parking is above the cutoff choose to search for parking. Therefore, it illustrates the extensive margin of parking demand: a higher cutoff implies a lower arrival rate. This cutoff is determined by the cost of search and, where applicable, by the monetary cost of parking.
Without regulation or with time limit regulation, there is no monetary cost, hence the entry cutoff is proportional to the search time. Under other policies, the monetary cost contributes to the cutoff. The constant price deters a substantial fraction of motorists from entering at all times of the day, while the occupancy target and the optimal regulation affect mostly those appearing during the congestion period. We can indeed see that good regulation methods (occupancy target and optimal) allow more entry during peak demand hours than other methods. The optimal entry value cutoff is slightly lower than that of the occupancy target around 9:00, allowing a greater proportion of (a large number of) motorists to enter; at the same time, a slightly smaller proportion of (a small number of) motorists enters shortly before 13:00.

Figure 8 demonstrates the evolution of prices, wherever applicable. As discussed earlier, the optimal price is higher than the occupancy-target price at the beginning of high-entry period, creating more vacancy for those who enter. The optimal price skyrockets during
the period when exit is already zero while entry is still positive (between 12:25 and 13:00), reaching the maximum of $20.67: this helps to control the number of motorists willing to stay beyond this period.

Figure 7 demonstrates the generation of social welfare, i.e. value from parking minus the search cost, per parking site, over time. Without regulation, there is a “trough of misery” at 9:00 due to extremely high cost of search for parking. The time limit policy reduces the depth of the trough, at the cost of eliminating all welfare generation for most of non-arrivals period. Under the constant price regime, the trough of misery is much smaller though still visible; there are some welfare losses during low-demand period due to premature departure of the parkers. The occupancy target and optimal value generation are nearly indistinguishable on Figure 7. We “zoom in” the difference on Figure 10. There are two intervals of time when the optimal policy outperforms the occupancy target policy: near peak arrivals at 9:00, due to shorter time of search for parking, and near the end of arrivals at 13:00, by allowing more
7. Conclusion

This paper develops a novel policy of pricing parking. It differs from the occupancy target policy currently being implemented in San Francisco and in Los Angeles by conditioning the price not only on the occupancy but also on the arrivals rate. The proposed mechanism inherits all advantages of the occupancy target policy: it is simple, transparent, and does not require any knowledge of the type distribution of the users. The welfare gains from the new policy are especially pronounced at times when the occupancy target (i) becomes binding for the first time and (ii) is no longer binding for the first time. In the first case, the optimal policy prescribes a lower occupancy, making it easier to find a vacant spot for a large number of newly arriving motorists. In the second case, it prescribes a higher occupancy, allowing already present parkers to stay longer and to get more value from their parking.
Figure 9: Social value per parking site over time, under various regulation policies

Figure 10: Social value of occupancy target policy relative to optimal policy, per parking site over time.
The potential extensions of the model include the following. First, one could account for negative externalities of the search for parking: those who search slow down other traffic. A time-varying entry fee may help to internalize the externality.

Second, by assuming a continuum of motorists, the current version removes all stochasticity from the model. At the same time, demand for parking in a specific geographic location can be indeed discrete and therefore stochastic. An inhomogeneous Poisson process could be employed to model the phenomenon. In case of discrete demand, there are two possible pricing modes: (i) deterministic pricing, when the price is ex-ante known and does not respond to actual occupancy, and (ii) stochastic pricing, when the price is adjusted after every parking arrival/departure. In the latter case, one has to account for the fact that each user has a positive impact on the aggregate demand and on the price, thus some aspects of incentive compatibility of the optimal mechanism have to be considered.

References

