Evaluating Household Chauffeuring Burdens

Understanding Direct and Indirect Costs of Transporting Non-Driver

23 February 2015

By
Todd Litman
Victoria Transport Policy Institute

Submitted for presentation at the
Kuhmo Nectar
Annual Conference and Summer School of the International Transportation Economics Association (ITEA)

Abstract
Household chauffeuring refers to personal motor vehicle travel specifically made to transport independent non-drivers (people who could travel on their own if they had suitable travel options). This additional vehicle travel imposes various direct and indirect costs. This paper identifies factors that affect the amount of chauffeuring that occurs in a community. It develops a Chauffeuring Burden Index which can be used to quantify chauffeuring costs and therefore the savings and benefits of transport improvements that reduce chauffeuring burdens. This analysis indicates that in automobile dependent communities, chauffeuring costs often exceed congestion costs. Motorists often benefit from improved transport options which reduce their chauffeuring burdens, even if they do not use those options themselves.

Despite the magnitude of these costs, there is little formal analysis of chauffeuring burdens. This paper explores these issues, including how these impacts could be better incorporated into transport planning (they could justify more effort to improve mobility options for non-drivers), and why this impact has received so much less consideration than congestion costs in transport economic evaluation (chauffeuring burdens tend to be borne primarily by women, while congestion costs tend to be borne by professional men; and consideration of chauffeuring burdens tends to challenge automobile-oriented planning, while consideration of congestion costs tends to validate more roadway expansions). This makes a good case study of how transport problem definition and evaluation can be biased by the personal experiences of the people involved in the planning process.
Introduction

Chauffeuring (also called escort, serve passenger and caregiving travel) refers to motor vehicle travel made specifically to transport non-drivers. Chauffeuring can include commercial transport, such as taxi and limousine services. This report focuses on household chauffeuring: incremental unpaid motor vehicle travel to transport independent (people capable of traveling independently if suitable mobility options are available) non-driving family or friends who for any reason cannot drive for that trip. Table 1 categorizes non-drivers’ transport options and their impacts on total vehicle travel.

<table>
<thead>
<tr>
<th>Description</th>
<th>Non-automobile Mode</th>
<th>Ridesharing</th>
<th>Chauffeuring – increased vehicle travel</th>
<th>Chauffeuring – empty backhaul</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Walking, cycling and public transit</td>
<td>Passenger in a vehicle that would make the trip anyway</td>
<td>Vehicle travels farther to transport non-driver</td>
<td>Driver makes a special trip to transport non-driver and returns empty</td>
</tr>
</tbody>
</table>

| Impacts on total vehicle travel | No increase | No increase | Increases vehicle travel | Doubles total mileage |

Independent non-drivers have several possible transport options, some of which increase total vehicle travel.

Analysis of non-automobile travel demand (such as the need to provide public transit services) is sometimes evaluated based on the number of zero-vehicle households (USDOT 2013), which assumes that drivers will chauffeur non-driver household members; this report examines the costs of such travel, and therefore the savings and benefits of improving transport options.

Chauffeuring imposes various direct and indirect costs, including increased drivers’ time and stress, vehicle costs, and external costs including increased traffic and parking congestion, road and parking facility costs, accidents, and pollution emissions. Time spent chauffeuring is not always negative; it is often an opportunity for drivers and passengers to socialize, but it can impose costs and create problems, such as when drivers must interrupt important activities to fulfill chauffeuring obligations, or when non-drivers feel deprived of their independence. Chauffeuring burdens contribute to time poverty and stress (Curie and Delbose 2010). Seniors with declining abilities may be reluctant to give up driving because they don’t want to impose chauffeuring burdens on family and friends, despite increased crash risks. Chauffeuring trips decline in communities with better transport options, indicating that non-drivers and drivers would often prefer to avoid chauffeuring.

High chauffeuring rates indicate that a transport system fails to serve non-drivers’ travel demands, described as automobile dependency (Kodukula 2011). A more diverse transport system with better non-automobile transport options (walking, cycling, public transit, taxi services, and telecommunications), and more accessible development patterns can improve non-drivers’ access, and reduce chauffeuring burdens and associated costs.

This paper explores these issues. It develops a Chauffeuring Burden Index which estimates chauffeuring rates in a community, discusses the costs of this travel and explores its implications for transport planning. This analysis should be of interest to transportation and land use planners, policy makers and individuals affected by chauffeuring burdens.
Previous Research

In the popular literature on family caregiving (Bearon 2014; Jacobson 2013), one of the most commonly mentioned stresses is chauffeuring (McDonald 2005). Mothers often describe their role as “taxi driver” and their vehicles as “mom’s taxi.”

Table 2 2009 NHTS Vehicle Trip Summary (Bansal 2014)

<table>
<thead>
<tr>
<th>Trip purpose</th>
<th>Vehicle Trips</th>
<th>Percent Trips</th>
<th>Distance (vehicle miles)</th>
<th>Percent VMT</th>
<th>Duration (minutes per trip)</th>
<th>Percent Travel Time</th>
<th>Avg. trip length</th>
</tr>
</thead>
<tbody>
<tr>
<td>Not ascertained</td>
<td>15</td>
<td>0.0%</td>
<td>1,102</td>
<td>0.0%</td>
<td>84.7</td>
<td>0.0%</td>
<td>73.5</td>
</tr>
<tr>
<td>Don’t know</td>
<td>131</td>
<td>0.0%</td>
<td>1,625</td>
<td>0.0%</td>
<td>18.5</td>
<td>0.0%</td>
<td>12.4</td>
</tr>
<tr>
<td>Refused</td>
<td>102</td>
<td>0.0%</td>
<td>1,003</td>
<td>0.0%</td>
<td>17.8</td>
<td>0.0%</td>
<td>9.8</td>
</tr>
<tr>
<td>Home</td>
<td>253,533</td>
<td>34.2%</td>
<td>2,320,912</td>
<td>33.7%</td>
<td>18.3</td>
<td>35.0%</td>
<td>9.2</td>
</tr>
<tr>
<td>Work</td>
<td>100,896</td>
<td>13.6%</td>
<td>1,317,402</td>
<td>19.1%</td>
<td>22.4</td>
<td>17.1%</td>
<td>13.1</td>
</tr>
<tr>
<td>School/daycare/religious activity</td>
<td>19,406</td>
<td>2.6%</td>
<td>145,894</td>
<td>2.1%</td>
<td>15.8</td>
<td>2.3%</td>
<td>7.5</td>
</tr>
<tr>
<td>Medical/dental</td>
<td>15,481</td>
<td>2.1%</td>
<td>158,834</td>
<td>2.3%</td>
<td>21.0</td>
<td>2.5%</td>
<td>10.2</td>
</tr>
<tr>
<td>Shopping/errands</td>
<td>161,438</td>
<td>21.8%</td>
<td>944,661</td>
<td>13.7%</td>
<td>13.2</td>
<td>16.1%</td>
<td>5.9</td>
</tr>
<tr>
<td>Social/recreational</td>
<td>63,619</td>
<td>8.6%</td>
<td>958,218</td>
<td>13.9%</td>
<td>24.2</td>
<td>11.6%</td>
<td>15.1</td>
</tr>
<tr>
<td>Family personal business/obligations</td>
<td>24,448</td>
<td>3.3%</td>
<td>251,724</td>
<td>3.7%</td>
<td>18.9</td>
<td>3.5%</td>
<td>10.3</td>
</tr>
<tr>
<td>Transport someone</td>
<td>51,078</td>
<td>6.9%</td>
<td>392,831</td>
<td>5.7%</td>
<td>15.5</td>
<td>6.0%</td>
<td>7.7</td>
</tr>
<tr>
<td>Meals</td>
<td>49,596</td>
<td>6.7%</td>
<td>353,188</td>
<td>5.1%</td>
<td>14.7</td>
<td>5.5%</td>
<td>7.1</td>
</tr>
<tr>
<td>Other reason</td>
<td>1,430</td>
<td>0.2%</td>
<td>42,034</td>
<td>0.6%</td>
<td>36.4</td>
<td>0.4%</td>
<td>29.4</td>
</tr>
</tbody>
</table>

According to the 2009 National Household Travel Survey (NHTS), 6.9% of trips, 5.7% of vehicle travel and 6.0% of travel time is devoted to “Transport someone.” This is probably a lower-bound estimate since some chauffeuring travel is probably misclassified into other categories such as travel to “Home,” or “Family obligations.”

Although not all travel surveys specifically measure chauffeuring, those that do indicate that such trips generate significant amounts of vehicle travel (DfT 2013; Mustel Group and Halcrow 2010). The 2009 U.S. National Household Travel Survey (NHTS) indicates that at least 6.9% of total personal trips, 5.7% of total personal vehicle travel (Table 1), and 15% of morning peak and 9.4% of afternoon peak travel, is to serve passengers (i.e., chauffeur) (Figure 1).

Figure 1 Vehicle Travel in AM and PM Peak Periods (McGuckin 2009)

The 2009 National Household Travel Survey indicates that 15% of morning peak and 9.4% of afternoon peak travel is to “serve passengers” (i.e., chauffeur).
These are lower-bound estimates since some chauffeured travel, such as traveling home after delivering a non-driver to a destination, or special trips to drive somebody to school, medical or dental appointments, to errands, social or religious events, may be coded based on their destination rather than as “serve passenger” trips. The 2001 NHTS indicates that of morning chauffeur trips, 78% were to drive children to school and 12% were to drive someone to work (NPTS 2007). Of married mothers’ 5.0 total average daily trips, 2.3 included children, 36% of which were chauffeur trips (McDonald 2005, Table 2).

Figure 2 illustrates the average number and length of various morning peak non-commute trips; “serve passengers” was the largest category. They are relatively short, averaging 5.9 miles compared with the 9.9 overall average.

Figure 2 Number and Length of Non-Commute AM Peak Trips (NHTS 2007)

The 2001 National Household Travel Survey indicated that about 8% of total morning peak trips were to “serve passengers” (chauffeur). These are relatively short, averaging 5.9 miles compared with a 9.87 overall average.

Based on various U.S. time-use surveys, Ramey and Ramey (2010) find that chauffeuring is a major time demand on parents, averaging approximately two weekly hours (100 annual hours), with higher rates for mothers than fathers. Various studies have quantified the value of this travel time and travel time savings (Litman, 2006; Ian Wallis Associates 2014).

Children’s travel to school has been widely studied. The 2009 NHTS indicated that 10%–14% of total morning-peak private vehicle trips and 5%–7% of total vehicle travel consists of children 5 to 12 years of age being driven to school (McDonald, et al 2011; NCSRS 2011), rates that increase with distances to school. A survey of 1,237 British parents found that they average 1,664 annual vehicle-miles chauffeuring children (AA Insurance 2008), 23% of the 7,115 total annual vehicle-miles per private car (NTS 2013). Chauffeuring is common for destinations other than schools (jobs, recreation and social events) and for other groups (adolescents, adults who lack vehicles, visitors, seniors, etc.) (Marchetti, Jones and Pullen-Seufert 2007).

McGuckin (2012) analyzed the travel patterns of seniors living in households with their adult children. Of these, 64.3% do not drive, 27.1% only drive during daytime, and 67.1% frequently ask to be chauffeured. She explains, “The elderly parents living in multi-generational households who do not drive need assistance to travel to daily activities – for more than 4 out of 5 trips the parent is a passenger in a vehicle, and the caregiver is the driver on most of these trips. While the elderly parent who does not drive travels on average less than half the rates of comparable drivers there is one critical exception: non-driving elderly parents report more than four times the number of medical trips as do those who drive.”
A few studies examine chauffeuring burden costs. Barnett and Reisner (2004) found that the availability of non-automobile transport options (walking, cycling, public transit, school buses), significantly affects parental chauffeuring burdens and work schedules: inadequate options force parents, usually mothers, to work fewer hours to allow more time to transport children.

Other studies examine the problems that inadequate non-automobile travel options impose on particular groups, including seniors (AARP 2010), adolescents (AMHC 2013; O’Brien, et al. 2009) and low-income households (Weinstein Agrawal, et al. 2011). Some recent studies have quantified various economic, social and environmental impacts of automobile dependency (Ewing and Hamidi 2014; Garceau, et al. 2013).

Other studies identify the savings and benefits of improved transport options (Currie and Delbose 2010; DfT 2003; Homan 2012; Litman 2001). Among these benefits are reduced drivers’ chauffeuring burdens and increased non-drivers’ independence (Schaeffer and Sclar 1980). There is significant literature on vehicle costs, including direct user costs (vehicle expenses, time and risk) and external costs including congestion, roadway facility costs, accidents and pollution costs imposed on others (AAA 2013; Litman 2009; TC 2008). Virtually all of these costs apply to chauffeured trips, including incremental vehicle ownership costs if households purchase more or larger vehicles for chauffeuring sake. Litman (2012) identified “avoided chauffeuring” as a public transit benefit, and described how to quantify it. Godavarthy, Mattson and Ndembé (2014), used this methodology in their transit benefit analysis. Estimating that chauffeuring costs (including vehicle operation and drivers’ time) average $5.25 per avoided motor vehicle trip or $1.05 per vehicle-mile, they calculate that rural and small urban transit services save $332 million annually in reduced chauffeuring costs, 8% of the $4,276 million total economic benefits.
The Chauffeuring Burden Index

The Chauffeuring Burden Index estimates incremental vehicle travel caused by inadequate non-automobile travel options. Here is the calculation:

1. Ratio of independent non-drivers to drivers
2. Independent non-drivers’ vehicle trip generation rates
3. Portion of independent non-drivers’ trips that are chauffeured
4. Empty backhaul factor (1 + percentage of trips that require an empty link)
5. Average trip length (if measured in miles) or duration (if measured in hours)

These five factors are discussed below.

1. Ratio of independent non-drivers to drivers

Independent non-drivers are people who can travel independently if they have suitable transport options. There are many possible reasons that independent people cannot drive:

- Seniors who do not or should not drive (5-15% of total population and increasing).
- Youths 12-22 who lack drivers licenses (15-25% of total population and increasing) (Davis, Dutzik and Baxandall 2012).
- Adults with significant disabilities (3-5% of total population).
- Drivers who cannot afford an automobile (5-20% of population).
- Visitors and immigrants who lack cars or licenses.
- Drivers whose vehicle is temporarily inoperable.
- Drivers impaired by alcohol or drugs.
- People who lose their driving privileges.

The portion of Americans 14-64 years of age without a driver’s license rose from 21% in 2000 to 26% in 2012 (Baxandall 2012), and licensed drivers sometimes need chauffeuring if they cannot afford a vehicle, their vehicle is temporarily inoperable or unavailable, or they are impaired. This suggests that in a typical community, probably 25-35% of the population consists of temporary or permanent independent non-drivers. This analysis assumes that independent non-drivers are 25% of the population, the lower range of this estimate (it reflects 14-64 year olds that lack licenses but excludes 65+ year olds, and license holders who for any reason lack access to a vehicle or cannot drive), so there are three drivers for each independent non-driver.
2. **Independent non-drivers’ trip generation rates**

Independent non-drivers (who include adolescents, seniors and people with low-incomes), tend to have lower than average trip generation rates since they are less likely to be employed or have family management responsibilities (shopping and errands), although this effect is surprisingly modest. For example, 2009 National Household Travel Survey data indicate that both under-16 and over-65 age groups generate on average 3.2 daily trips, just 16% less than the overall average of 3.8 daily or 1,387 annual trips (Santos, et al. 2009, Table 13), and that 16-24 year olds generate on average 17.43 daily vehicle-miles, which is 32% less than the 25.77 overall average daily VMT (Santos, et al. 2009, Table 33). This analysis assumes that independent non-drivers generate 60% the overall average, or 733 annual vehicle trips.

3. **Portion of independent non-drivers’ vehicle trips that are chauffeured**

Chauffeured trip generation rates are affected by the quality of travel options in a community, and which can range from multi-modal (areas where most destinations can be easily reached without an automobile) to automobile-dependent (areas where most destinations require automobile travel). Useful indicators of multi-modalism include WalkScore (which counts to number of common destinations that can be reached within convenient walking distance) and transit accessibility (the quality of transit service within convenient walking distance).

Urban economist Christopher Leinberger (2008) estimates that 5-10% of U.S. housing stock is located in walkable urban places, and the National TOD Database indicates that about six million households (about 5% of total households) are located within a half-mile of a fixed guideway transit stop (CTOD 2014). This suggests that only about 10% of U.S. residents live in highly multi-modal communities, although residents of other communities have some non-automobile travel options.

Adolescent school trip chauffeuring rates, which are available from travel surveys, provide an indicator of the quality of local travel options available to independent non-drivers. According to the 2009 National Household Travel Survey, 40.5% of middle schools (12-14 year old) students were chauffeured (McDonald, et al. 2011, Table 2), with higher chauffeuring rates for longer-distance trips. This suggests that 40-60% of independent non-drivers’ trips are chauffeured. This analysis assumes that in compact, multi-modal areas (transit-oriented developments) independent non-drivers require chauffeuring for 10% of their trips, and in sprawled, automobile-dependent areas they require chauffeuring for 50% of their trips.

4. **Empty backhaul factor**

The incremental vehicle travel generated by chauffeuring can vary:

- Chauffeuring is sometimes integrated with vehicle trips that would occur anyways, such as a parent driving a child to school on their way to work, which often requires some incremental vehicle travel.
- Drivers sometimes accompany their passenger for the entire trip, such as to and from an appointment, so the incremental vehicle travel equals the total passenger-travel.
- Some chauffeured trips involve dropping off a passenger and returning with an empty backhaul, so each passenger-mile generates two vehicle-miles traveled.
Travel surveys indicate that the portion of parents who return directly home after chauffeuring children to school averages 44% in the U.S. (NCSRS 2011) and 72% in the UK (DfT 2013). Other types of chauffeuring trips, such as such as medical appointments, sport and social events, probably have equal or higher empty backhaul rates since school commutes are relatively easy to coordinate with work commutes and errands. This analysis assumes that on average, half of all chauffeured trips have empty backhauls, so the backhaul factor is 1.5.

5. **Average trip length (if measured in miles) or duration (if measured in hours)**

This varies depending on factors such as land use density and mix, and therefore the distances and travel speeds to common destinations. Overall, U.S. vehicle trips average about 10 miles in length (Santos, et al. 2009), but are shorter in compact communities and longer in sprawled communities. Chauffeuring trips (e.g., driving children to school and local shopping centers, and seniors to medical services) tend to be relatively short, averaging about 6 miles in length (Figure 2). This analysis assumes that chauffeur vehicle trip lengths average 4 miles in compact communities and 8 miles in sprawled communities.

Estimate

Table 3 uses the previously described assumptions to estimate and compare chauffeuring burdens between compact, multi-modal communities with sprawled, automobile-dependent communities. It assumes that in both types of communities the ratios of non-drivers to drivers, non-driver vehicle trip generation rates, and the portion of chauffeured trips that generate empty backhauls are the same, but in compact, multi-modal communities non-drivers only require chauffeuring for 10% of trips while in automobile-dependent, communities they require chauffeuring for 50% of trips. This indicates that automobile dependency and sprawl causes each driver to spend an additional 52 hours and 66 gallons of fuel to drive 1,318 annual vehicle miles compared with the same households located in a compact, multi-modal community.

Table 3 Chauffeuring Burdens Per Driver

<table>
<thead>
<tr>
<th></th>
<th>Compact, Multi-Modal</th>
<th>Sprawled, Auto-Dependent</th>
<th>Differences</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Ratio of non-drivers to drivers</td>
<td>1/3</td>
<td>1/3</td>
<td></td>
</tr>
<tr>
<td>2. Non-drivers annual motor vehicle trips</td>
<td>733</td>
<td>733</td>
<td></td>
</tr>
<tr>
<td>2. Portion of trips chauffeured</td>
<td>10%</td>
<td>50%</td>
<td>40%</td>
</tr>
<tr>
<td>4. Avg. chauffeured trip (miles/minutes)</td>
<td>5/15</td>
<td>10/20</td>
<td>5 miles/5 minutes</td>
</tr>
<tr>
<td>5. Empty backhaul factor</td>
<td>1.5</td>
<td>1.5</td>
<td></td>
</tr>
<tr>
<td>Totals vehicle miles</td>
<td>146</td>
<td>1,465</td>
<td>1,318</td>
</tr>
<tr>
<td>Totals vehicle hours</td>
<td>9</td>
<td>61</td>
<td>52</td>
</tr>
<tr>
<td>Totals gallons</td>
<td>7</td>
<td>73</td>
<td>66</td>
</tr>
</tbody>
</table>

In a compact, multi-modal community a typical driver spends about nine hours and consumes about 7 gallons of fuel driving 183 annual miles to chauffeur non-drivers in their household. In a sprawled, automobile-dependent community they spend 61 hours and 92 gallons to drive 1,648 annual chauffeuring miles.

This estimate of chauffeuring burdens in automobile dependent communities is similar to the 1,237 annual vehicle-miles driven per UK child reported in the 2008 AA Insurance survey. Although they differ in perspective (the Chauffeuring Burden Index reflects all chauffeuring per driver in automobile-dependent communities, the AA Insurance survey reports the additional vehicle travel per child) it suggests that this estimate is a reasonable order of magnitude.
Of course, these burdens vary significantly. Drivers with no independent non-drivers in their households have minimal chauffeuring burdens, while “sandwich generation soccer moms” responsible for multiple children and a senior non-driver located in automobile-dependent communities may spend many hours a week chauffeuring.

In addition to increased vehicle travel, chauffeuring responsibilities may cause motorists to purchase larger, more costly vehicles. For example, a household might consider a small car adequate for most trips if located in a multi-modal community but purchase a larger vehicle such as a van or SUV for chauffeuring if located in an automobile-dependent community. Such shifts can significantly increase both user costs and external costs such as parking space size requirements, accident risk to other road users, and pollution emissions.

Transportation economists have developed estimates of the monetized value of various motor vehicle costs (Litman 2009; TC 2008). Table 4 summarizes an estimate of these costs, using the USDOT (2011) valuation of drivers’ travel time between 35% and 60% of average wages; the AAA (2014) estimate that vehicle costs range from 19¢ (operating costs only) to 59¢ (average total vehicle costs) per vehicle-mile; and that external costs range from 10¢ to 50¢ per vehicle-mile (Litman 2009; TC 2008).

Table 4 Estimated Chauffeuring Burden Costs Per Driver

<table>
<thead>
<tr>
<th></th>
<th>Compact, Multi-Modal</th>
<th>Sprawled, Auto-dependent</th>
<th>Differences</th>
</tr>
</thead>
<tbody>
<tr>
<td>Travel Time (USDOT 2011)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Low (35% average wages)</td>
<td>$77</td>
<td>$510</td>
<td>$434</td>
</tr>
<tr>
<td>High (60% average wages)</td>
<td>$131</td>
<td>$875</td>
<td>$744</td>
</tr>
<tr>
<td>Vehicle Expenses (AAA 2014)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Low (vehicle operating expenses)</td>
<td>$28</td>
<td>$278</td>
<td>$250</td>
</tr>
<tr>
<td>High (total average expenses)</td>
<td>$87</td>
<td>$867</td>
<td>$780</td>
</tr>
<tr>
<td>External Costs (Litman 2009; TC 2006)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Low (lower congestion, crash & pollution cost estimate)</td>
<td>$15</td>
<td>$146</td>
<td>$132</td>
</tr>
<tr>
<td>High (comprehensive cost estimates)</td>
<td>$73</td>
<td>$732</td>
<td>$659</td>
</tr>
<tr>
<td>Totals</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Low</td>
<td>$119</td>
<td>$935</td>
<td>$816</td>
</tr>
<tr>
<td>High</td>
<td>$291</td>
<td>$2,474</td>
<td>$2,183</td>
</tr>
</tbody>
</table>

Chauffeuring burdens increases total motor vehicle travel which increases time, vehicle and external costs.

As previously described, travel surveys indicate that 9-15% of U.S. peak-period vehicle travel consists of parents chauffeuring young children to school. Considering other types of chauffeuring trips (children and adolescents driven to non-school destinations, seniors driven to shopping and medical services, adult non-drivers driven to work and other destinations, drivers being picked up after drinking alcohol, etc.) it seems reasonable to conclude that chauffeuring generates 5-15% of total vehicle travel and vehicle costs, with drivers’ travel time unit travel time costs (dollars per hour) somewhat lower than for other types of vehicle travel, but still significant in total. These costs tend to increase with automobile dependency.
Evaluating Household Chauffeuring Burdens
Victoria Transport Policy Institute

Chauffeuring Burdens Compared with Congestion Costs

It is interesting to compare chauffeuring and traffic congestion costs. Traffic congestion costs are widely analyzed (Grant-Muller and Laird 2007). According to the most recent *Urban Mobility Report* (TTI 2012), congestion costs average U.S. automobile commuters 38 hours of time and 19 gallons of fuel, which is smaller than the estimated 52 hours of driver time and 66 gallons of fuel required for chauffeuring in automobile-dependent communities, as summarized in Table 5.

<table>
<thead>
<tr>
<th></th>
<th>Travel Time</th>
<th>Fuel Consumption</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chauffeur Burdens</td>
<td>52</td>
<td>66</td>
</tr>
<tr>
<td>Congestion Costs</td>
<td>38</td>
<td>19</td>
</tr>
</tbody>
</table>

Chauffeuring burdens add 52 hours of travel time and 66 gallons of fuel per driver, which is far higher than the incremental traffic congestion time and fuel costs per automobile commuter.

There are, of course, differences. Commute trips tend to be higher value and less flexible than chauffeuring trips, so congestion delay time may have higher unit time costs than chauffeuring, but even if chauffeuring hours are valued at half congestion delay hours, total time costs would be comparable in magnitude to congestion delays, and incremental vehicle costs, fuel and pollution costs are larger. Since 8-15% of peak-period vehicle travel consists of chauffeuring trips, chauffeuring trips significantly increase congestion costs.

It is interesting to speculate why chauffeuring costs receive less consideration than congestion costs. A feminist perspective could argue that this reflects male dominance in planning, since the tendency of men to bear congestion costs and women to bear chauffeuring burdens (TRB 2005). Another perspective emphasizes the shifting planning paradigm; the older paradigm evaluated transport system performance based primarily on traffic speeds and delays, and vehicle operating costs, giving less consideration to other objectives and impacts such as vehicle mobility for non-drivers, affordability and physical fitness (Litman 2013).

Strategies for Reducing Chauffeuring Burdens

Improving non-automobile modes (walking, cycling, public transit, taxi and delivery services), and more accessible community design can help reduce chauffeuring costs. These strategies allow non-drivers more independent mobility (for example, adolescents and people with disabilities can travel on their own), allows some chauffeured automobile trips to shift modes (for example, parents walk and bike rather than drive children to local schools and parks), and reduces chauffeured vehicle trip lengths and duration (Pangborn-Dolde and Walker 2014).

To be successful, such improvements must respond to non-drivers’ travel demands and constraints. Some non-drivers have impairments which limit their walking and cycling ability, and travelers will be reluctant to use inconvenient, uncomfortable or unaffordable transport options. For example, McDonald (2005) found that urban adolescents relied more on parental chauffeuring than rural adolescents, apparently because travel on city streets and transit is considered unsafe. Some independent non-drivers, such as children, seniors and people with disabilities, may require targeted information programs concerning non-automobile travel options. Comprehensive programs that include a combination of improved transport options, more accessible land use development, and targeted information programs, are probably most effective at reducing chauffeuring burdens.
Conclusions
Chauffeuring burdens increase vehicle travel and associated costs. Although few travel survey measure this factor directly, available data suggest that 5-15% of total vehicle travel consists of chauffeuring independent non-drivers (people who could travel on their own if they had suitable transport options). This travel impose significant financial and time costs on drivers, and increases external costs including traffic and parking congestion, infrastructure costs, accidents and pollution emissions compared with those trips made by non-automobile modes.

Chauffeuring burdens are affected by the quality of mobility and accessibility options available in an area. In compact, multi-modal communities, non-drivers can travel independently for most trips and so impose much lower chauffeuring burdens than in automobile-dependent communities. As a result, everybody can benefit from improving mobility and accessibility options, including people who never use them but benefit from reduced chauffeuring traffic.

Some transportation agencies recognize the value of improving transport options (DfT 2003; FHWA 2010), but there is no standard method for calculating chauffeuring costs and the value of improving transport options. In recent years interest groups have investigated some of these impacts, such as the value of improving mobility options for adolescents and seniors (AARP 2010; AMHC 2013), but these are often treated as special objectives with targeted solutions (for example, special bus services for students and seniors, and senior driver refresher courses) rather than a justification to increase transport system diversity and land use accessibility.

The Chauffeuring Burden Index can be used to quantify the costs of inadequate non-automobile travel options, and therefore the benefits of more multi-modal transport systems and more accessible development. Applying this index to typical conditions indicates that in automobile dependent communities, chauffeuring burden costs often exceed traffic congestion costs.

This is not to ignore chauffeuring benefits. Time spent chauffeuring is an opportunity for drivers and passengers to socialize, although this is limited since drivers can only give partial attention to, and have minimal eye contact with, passengers. Other travel modes (walking, cycling and public transit) provide equal or better socializing opportunities. The fact that independent non-drivers’ chauffeuring rates are lower in more accessible, multi-modal communities indicates that many people would prefer to avoid chauffeuring. Given better mobility and accessibility options, chauffeuring and its associated costs would probably decline significantly compared with current patterns in automobile-dependent communities.

Chauffeuring burdens can be reduced by improving non-automobile travel options and creating more accessible communities. These strategies provide additional benefits including reduced traffic and parking congestion, consumer savings, increased traffic safety and environmental protection. Failing to consider chauffeuring costs biases planning decisions in favor of automobile-oriented solutions and undervalues improvements to alternative modes and land use accessibility. This analysis shows how drivers benefit from more multi-modal planning, even if they never use non-automobile options, because it reduces the money and time they must spend chauffeuring non-drivers, and they also benefit from reduced external costs including congestion, accident risk and pollution exposure.
References

AAA (annual reports), Your Driving Costs, American Automobile Association (www.aaaexchange.com).

APTA (2007), A Profile of Public Transportation Passenger Demographics and Travel Characteristics Reported in On-Board Surveys, American Public Transportation Association (www.apta.com); at http://tinyurl.com/7rwsvj5.

Prateek Bansal (2014), Special NHTS Analysis of "Transport Someone" Trips.

Phineas Baxandall (2012), In the Public Interest: Women or Men Leading the Trend Away from Driving?, Huffington Post (www.huffingtonpost.com); at http://tinyurl.com/mhk548u.

Evaluating Household Chauffeuring Burdens
Victoria Transport Policy Institute

Reid Ewing and Shima Hamidi (2014), Measuring Urban Sprawl and Validating Sprawl Measures, Metropolitan Research Center at the University of Utah for the National Cancer Institute, the Brookings Institution and Smart Growth America (www.smartgrowthamerica.org); at www.arch.utah.edu/cgi-bin/wordpress-metroresearch.

Ranjit Godavarthy, Jeremy Mattson and Elvis Ndembe (2014), Cost-Benefit Analysis of Rural and Small Urban Transit, Upper Great Plains Transportation Institute, North Dakota State University, for the U.S. Department of Transportation (www.nctr.usf.edu); at http://tinyurl.com/mkgxpvo.

Todd Litman (2009), Transportation Cost and Benefit Analysis; Techniques, Estimates and Implications, Victoria Transport Policy Institute (www.vtpi.org/tca).

TTI (2012), Urban Mobility Report, Texas Transportation Institute (http://mobility.tamu.edu/ums).

www.vtpi.org/chauffeuring.pdf