Air Alliances Impact on Consumer Surplus: A reappraisal by means of auction models

M. Ivaldi, M. Petrova, M. Urdanoz

Toulouse School of Economics

June 5, 2014
Section 1

Motivation
We concern ourselves with two issues

- The airline industry and the DB1B data set: challenges, the empirical literature
We concern ourselves with two issues

- The airline industry and the DB1B data set: challenges, the empirical literature
- A fresh look at the US domestic airline market: competition, airline alliances
The airline industry and the DB1B data set

- The US Dept. of Transportation (DOT) publishes the Airline Origin and Destination Survey (DB1B)
The airline industry and the DB1B data set

- The US Dept. of Transportation (DOT) publishes the Airline Origin and Destination Survey (DB1B)
 - 10% of all airline tickets sold in the US
The airline industry and the DB1B data set

- The US Dept. of Transportation (DOT) publishes the Airline Origin and Destination Survey (DB1B)
 - 10% of all airline tickets sold in the US
 - Free, extensive and standardised data base
The airline industry and the DB1B data set

- The US Dept. of Transportation (DOT) publishes the Airline Origin and Destination Survey (DB1B)
 - 10% of all airline tickets sold in the US
 - Free, extensive and standardised data base
- Basis for a wide range of empirical studies:
The airline industry and the DB1B data set

- The US Dept. of Transportation (DOT) publishes the Airline Origin and Destination Survey (DB1B)
 - 10% of all airline tickets sold in the US
 - Free, extensive and standardised data base
- Basis for a wide range of empirical studies:
 - Mergers, low cost carrier entry, multimarket contact, alliances, etc.
The DB1B data

- Challenge: prices recorded at the individual sale level BUT characteristics recorded at the market and product levels; advance purchase also not recorded
The DB1B data

- Challenge: prices recorded at the individual sale level BUT characteristics recorded at the market and product levels; advance purchase also not recorded

- EX: a direct flight ticket is purchased 10 days in advance to fly on 8AM on Monday and return 8PM on Wednesday, with origin city New York and destination Chicago
The DB1B data

- Challenge: prices recorded at the individual sale level BUT characteristics recorded at the market and product levels; advance purchase also not recorded
- EX: a direct flight ticket is purchased 10 days in advance to fly on 8AM on Monday and return 8PM on Wednesday, with origin city New York and destination Chicago
 - Recorded: the Ori and Dest airport (market), the carrier and the number of connections (product)
The DB1B data

- Challenge: prices recorded at the individual sale level BUT characteristics recorded at the market and product levels; advance purchase also not recorded

- EX: a direct flight ticket is purchased 10 days in advance to fly on 8AM on Monday and return 8PM on Wednesday, with origin city New York and destination Chicago

 - Recorded: the Ori and Dest airport (market), the carrier and the number of connections (product)

 - Not recorded: the take-off time or the day of the week (flight), purchase days in advance of flight (advance purchase)
DB1B in the empirical literature

- How is the data used in empirical work?
Motivation

DB1B in the empirical literature

- How is the data used in empirical work?
- Price levels:
DB1B in the empirical literature

- How is the data used in empirical work?
- Price levels:
 - Reduced form: averaged prices at market or product level (ex, Ito and Lee (2007))
DB1B in the empirical literature

- How is the data used in empirical work?
- Price levels:
 - Reduced form: averaged prices at market or product level (ex, Ito and Lee (2007))
 - Structural work: clients’ product sets are unobserved (ex, Berry and Jia (2010), Armantier and Richards (2008))
DB1B in the empirical literature

• How is the data used in empirical work?

• Price levels:
 • Reduced form: averaged prices at market or product level (ex, Ito and Lee (2007))
 • Structural work: clients’ product sets are unobserved (ex, Berry and Jia (2010), Armantier and Richards (2008))

• Price dispersion:
How is the data used in empirical work?

Price levels:

- Reduced form: averaged prices at market or product level (ex, Ito and Lee (2007))

- Structural work: clients' product sets are unobserved (ex, Berry and Jia (2010), Armantier and Richards (2008))

Price dispersion:

- Gini coefficient of dispersion (ex, Borenstein and Rose (1995))
DB1B in the empirical literature

- How is the data used in empirical work?
 - Price levels:
 - Reduced form: averaged prices at market or product level (ex, Ito and Lee (2007))
 - Structural work: clients’ product sets are unobserved (ex, Berry and Jia (2010), Armantier and Richards (2008))
 - Price dispersion:
 - Gini coefficient of dispersion (ex, Borenstein and Rose (1995))
 - Problems with this treatment:
DB1B in the empirical literature

- How is the data used in empirical work?
- Price levels:
 - Reduced form: averaged prices at market or product level (ex, Ito and Lee (2007))
 - Structural work: clients’ product sets are unobserved (ex, Berry and Jia (2010), Armantier and Richards (2008))
- Price dispersion:
 - Gini coefficient of dispersion (ex, Borenstein and Rose (1995))
- Problems with this treatment:
 - Lose information by averaging
DB1B in the empirical literature

• How is the data used in empirical work?

• Price levels:
 • Reduced form: averaged prices at market or product level (ex, Ito and Lee (2007))
 • Structural work: clients’ product sets are unobserved (ex, Berry and Jia (2010), Armantier and Richards (2008))

• Price dispersion:
 • Gini coefficient of dispersion (ex, Borenstein and Rose (1995))

• Problems with this treatment:
 • Lose information by averaging
 • Mean and variance studied separately
DB1B in the empirical literature

• How is the data used in empirical work?

• Price levels:
 • Reduced form: averaged prices at market or product level (ex, Ito and Lee (2007))
 • Structural work: clients’ product sets are unobserved (ex, Berry and Jia (2010), Armantier and Richards (2008))

• Price dispersion:
 • Gini coefficient of dispersion (ex, Borenstein and Rose (1995))

• Problems with this treatment:
 • Lose information by averaging
 • Mean and variance studied separately
 • Strong assumptions or auxiliary data needed
A fresh look at the airline market: Competition

- Changes in the competitive structure of the airline industry in last 10 years
 - LCC, online ticket sales, smaller efficient aircraft, higher fuel costs, video conferencing and economic crises
 - The result:
 - Higher price and connection sensitivity of both business and leisure travellers
 - More direct and more homogeneous service offered
 - (see Berry and Jia (2010), Borenstein and Rose (2013), and Brueckner, Lee and Singer (2012))
A fresh look at the airline market: Competition

- Changes in the competitive structure of the airline industry in last 10 years
 - LCC, online ticket sales, smaller efficient aircraft, higher fuel costs, video conferencing and economic crises
A fresh look at the airline market: Competition

• Changes in the competitive structure of the airline industry in last 10 years
 • LCC, online ticket sales, smaller efficient aircraft, higher fuel costs, video conferencing and economic crises

• The result:
A fresh look at the airline market: Competition

- Changes in the competitive structure of the airline industry in last 10 years
 - LCC, online ticket sales, smaller efficient aircraft, higher fuel costs, video conferencing and economic crises
- The result:
 - Higher price and connection sensitivity of both business and leisure travellers
A fresh look at the airline market: Competition

- Changes in the competitive structure of the airline industry in last 10 years
 - LCC, online ticket sales, smaller efficient aircraft, higher fuel costs, video conferencing and economic crises

- The result:
 - Higher price and connection sensitivity of both business and leisure travellers
 - More direct and more homogeneous service offered

(see Berry and Jia (2010), Borenstein and Rose (2013), and Brueckner, Lee and Singer (2012))
A fresh look at the airline market: Competition

- Changes in the competitive structure of the airline industry in last 10 years
 - LCC, online ticket sales, smaller efficient aircraft, higher fuel costs, video conferencing and economic crises

- The result:
 - Higher price and connection sensitivity of both business and leisure travellers
 - More direct and more homogeneous service offered
 - (see Berry and Jia (2010), Borenstein and Rose (2013), and Brueckner, Lee and Singer (2012))
A fresh look at the airline market: Alliances

- Airline alliances in the US Domestic market:
A fresh look at the airline market: Alliances

- Airline alliances in the US Domestic market:
 - Cooperation agreements for more extensive service
A fresh look at the airline market: Alliances

- Airline alliances in the US Domestic market:
 - Cooperation agreements for more extensive service
 - Competition concerns because of network overlap
A fresh look at the airline market: Alliances

- Airline alliances in the US Domestic market:
 - Cooperation agreements for more extensive service
 - Competition concerns because of network overlap
- Majority of research in the early years of formation
A fresh look at the airline market: Alliances

- Airline alliances in the US Domestic market:
 - Cooperation agreements for more extensive service
 - Competition concerns because of network overlap
- Majority of research in the early years of formation
A fresh look at the airline market: Alliances

- Airline alliances in the US Domestic market:
 - Cooperation agreements for more extensive service
 - Competition concerns because of network overlap
- Majority of research in the early years of formation
- Our goal: find how alliances affected prices in the recent economic environment using the DB1B data in a new way
Section 2

Model
Price competition in the airline market

- Buyers buy the lowest price ticket \Rightarrow Bertrand competition
Price competition in the airline market

- Buyers buy the lowest price ticket \Rightarrow Bertrand competition
 - Sellers with heterogeneous reservation values compete, the sale price is the second-lowest value
Price competition in the airline market

- Buyers buy the lowest price ticket \Rightarrow Bertrand competition
 - Sellers with heterogeneous reservation values compete, the sale price is the second-lowest value
- **Observationally equivalent** to reverse English auction with heterogeneous players

Martinez-de-Albeniz and Tallury (2010)
Price competition in the airline market

- Buyers buy the lowest price ticket ⇒ Bertrand competition
 - Sellers with heterogeneous reservation values compete, the sale price is the second-lowest value
- Observationally equivalent to reverse English auction with heterogeneous players
 - Sellers compete openly to offer the lowest price to the buyer
Price competition in the airline market

- Buyers buy the lowest price ticket \Rightarrow Bertrand competition
 - Sellers with heterogeneous reservation values compete, the sale price is the second-lowest value

- Observationally equivalent to reverse English auction with heterogeneous players
 - Sellers compete openly to offer the lowest price to the buyer
 - Lowest-value seller makes sale, price equals second-lowest value
Motivation

Price competition in the airline market

- Buyers buy the lowest price ticket \Rightarrow Bertrand competition
 - Sellers with heterogeneous reservation values compete, the sale price is the second-lowest value

- **Observationally equivalent** to reverse English auction with heterogeneous players
 - Sellers compete openly to offer the lowest price to the buyer
 - Lowest-value seller makes sale, price equals second-lowest value

- Auction empirical methodology allows us to:

 - Interpret each ticket sale as outcome of an auction
 - Estimate the effect of covariates on the distribution of prices
 - Similar to bid price control in revenue management practices (Martinez-de-Albeniz and Tallury (2010))
Price competition in the airline market

- Buyers buy the lowest price ticket \Rightarrow Bertrand competition
 - Sellers with heterogeneous reservation values compete, the sale price is the second-lowest value
- **Observationally equivalent** to reverse English auction with heterogeneous players
 - Sellers compete openly to offer the lowest price to the buyer
 - Lowest-value seller makes sale, price equals second-lowest value
- Auction empirical methodology allows us to:
 - Interpret each ticket sale as outcome of an auction
Price competition in the airline market

- Buyers buy the lowest price ticket \Rightarrow Bertrand competition
 - Sellers with heterogeneous reservation values compete, the sale price is the second-lowest value
- Observationally equivalent to reverse English auction with heterogeneous players
 - Sellers compete openly to offer the lowest price to the buyer
 - Lowest-value seller makes sale, price equals second-lowest value
- Auction empirical methodology allows us to:
 - Interpret each ticket sale as outcome of an auction
 - Estimate the effect of covariates on the distribution of prices
Motivation

Model

Estimation

Price competition in the airline market

- Buyers buy the lowest price ticket \Rightarrow Bertrand competition
 - Sellers with heterogeneous reservation values compete, the sale price is the second-lowest value

- Observationally equivalent to reverse English auction with heterogeneous players
 - Sellers compete openly to offer the lowest price to the buyer
 - Lowest-value seller makes sale, price equals second-lowest value

- Auction empirical methodology allows us to:
 - Interpret each ticket sale as outcome of an auction
 - Estimate the effect of covariates on the distribution of prices

- Similar to bid price control in revenue management practices
 (Martinez-de-Albeniz and Tallury (2010))
Section 3

Estimation
Estimation equations

- Use the MLE approach of Paarsch (1997)
Motivation Model Estimation

Estimation equations

- Use the MLE approach of Paarsch (1997)
- Price $P_i = \text{the second-lowest order statistic of value } V_i$

$$L = \prod_{i=1}^{N} f_{P_i}(p_i; \mu, \sigma) = \prod_{i=1}^{N} 2F_{V_i}(p_i; \mu, \sigma)$$

Mean and variance with observed deterministic components:

$$\mu_{jk} = \alpha A_{\text{Alliance} jk} + \alpha X \ln X_{jk} + \alpha Y \ln Y_j + \alpha Z \ln Z_k$$

$$\sigma_{jk} = \beta A_{\text{Alliance} jk} + \beta X \ln X_{jk} + \beta Y \ln Y_j + \beta Z \ln Z_k$$
Estimation equations

- Use the MLE approach of Paarsch (1997)
- Price $P_i =$ the second-lowest order statistic of value V_i
- Assume log-Normal distribution for the reservation value V_i
Estimation equations

- Use the MLE approach of Paarsch (1997)
- Price \(P_i \) = the second-lowest order statistic of value \(V_i \)
- Assume log-Normal distribution for the reservation value \(V_i \)
 - Cost determinants (operations scale, connectivity)
Estimation equations

- Use the MLE approach of Paarsch (1997)
- Price $P_i = \text{the second-lowest order statistic of value } V_i$
- Assume log-Normal distribution for the reservation value V_i
 - Cost determinants (operations scale, connectivity)
 - Option values determinants (demand expectations, own and competitor remaining capacity)
Motivation Model Estimation

Estimation equations

- Use the MLE approach of Paarsch (1997)
- Price $P_i =$ the second-lowest order statistic of value V_i
- Assume log-Normal distribution for the reservation value V_i
 - Cost determinants (operations scale, connectivity)
 - Option values determinants (demand expectations, own and competitor remaining capacity)
- Likelihood for a set of observed sales $N = 1, .., i$:
 \[L = \prod_{i=1}^{N} f_P(p_i; \mu, \sigma) = \prod_{i=1}^{N} 2F_V(p_i; \mu, \sigma)f_V(p_i; \mu, \sigma) \]
Estimation equations

- Use the MLE approach of Paarsch (1997)
- Price $P_i =$ the second-lowest order statistic of value V_i
- Assume log-Normal distribution for the reservation value V_i
 - Cost determinants (operations scale, connectivity)
 - Option values determinants (demand expectations, own and competitor remaining capacity)
- Likelihood for a set of observed sales $N = 1, \ldots, i$:
 \[
 L = \prod_{i=1}^{N} f_P(p_i; \mu, \sigma) = \prod_{i=1}^{N} 2F_V(p_i; \mu, \sigma)f_V(p_i; \mu, \sigma)
 \]
- Mean and variance with observed deterministic components:
 \[
 \mu_{jk} = \alpha_A \text{Alliance}_{jk} + \alpha_X \ln X_{jk} + \alpha_Y \ln Y_j + \alpha_Z \ln Z_k
 \]
 \[
 \sigma_{jk} = \beta_A \text{Alliance}_{jk} + \beta_X \ln X_{jk} + \beta_Y \ln Y_j + \beta_Z \ln Z_k
 \]
Data and covariates

- Markets with duopoly non-stop service
Data and covariates

- Markets with duopoly non-stop service
- Q3 2009
Data and covariates

- Markets with duopoly non-stop service
- Q3 2009
- 5 major/legacy carriers
Data and covariates

- Markets with duopoly non-stop service
- Q3 2009
- 5 major/legacy carriers
- CO - NW - DL and UA - US
Data and covariates

- Markets with duopoly non-stop service
- Q3 2009
- 5 major/legacy carriers
- CO - NW - DL and UA - US
- Alliance=1 when two alliance partners in a market

<table>
<thead>
<tr>
<th></th>
<th>Alliance=0</th>
<th>Alliance=1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Price</td>
<td>352.49</td>
<td>440.28</td>
</tr>
<tr>
<td>Distance</td>
<td>14.67</td>
<td>21.33</td>
</tr>
<tr>
<td>Population at origin</td>
<td>4.54</td>
<td>3.57</td>
</tr>
<tr>
<td>Population at destination</td>
<td>1.92</td>
<td>4.13</td>
</tr>
<tr>
<td>Income at origin</td>
<td>5.45</td>
<td>5.74</td>
</tr>
<tr>
<td>Income at destination</td>
<td>5.04</td>
<td>4.92</td>
</tr>
<tr>
<td>Market sales</td>
<td>299.24</td>
<td>201.71</td>
</tr>
<tr>
<td>Origin sales</td>
<td>1203.05</td>
<td>997.32</td>
</tr>
<tr>
<td>Destination sales</td>
<td>1122.47</td>
<td>872.04</td>
</tr>
<tr>
<td>Origin connections</td>
<td>5.65</td>
<td>5.59</td>
</tr>
<tr>
<td>Destination connections</td>
<td>5.66</td>
<td>5.03</td>
</tr>
<tr>
<td>Total</td>
<td>6,104</td>
<td>8,405</td>
</tr>
</tbody>
</table>
Data and covariates

- Markets with duopoly non-stop service
- Q3 2009
- 5 major/legacy carriers
- CO - NW - DL and UA - US
- Alliance=1 when two alliance partners in a market
 - Efficiency gains could lower costs

<table>
<thead>
<tr>
<th></th>
<th>Alliance=0</th>
<th>Alliance=1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Price</td>
<td>352.49</td>
<td>440.28</td>
</tr>
<tr>
<td>Distance</td>
<td>14.67</td>
<td>21.33</td>
</tr>
<tr>
<td>Population at origin</td>
<td>4.54</td>
<td>3.57</td>
</tr>
<tr>
<td>Population at destination</td>
<td>1.92</td>
<td>4.13</td>
</tr>
<tr>
<td>Income at origin</td>
<td>5.45</td>
<td>5.74</td>
</tr>
<tr>
<td>Income at destination</td>
<td>5.04</td>
<td>4.92</td>
</tr>
<tr>
<td>Market sales</td>
<td>299.24</td>
<td>201.71</td>
</tr>
<tr>
<td>Origin sales</td>
<td>1203.05</td>
<td>997.32</td>
</tr>
<tr>
<td>Destination sales</td>
<td>1122.47</td>
<td>872.04</td>
</tr>
<tr>
<td>Origin connections</td>
<td>5.65</td>
<td>5.59</td>
</tr>
<tr>
<td>Destination connections</td>
<td>5.66</td>
<td>5.03</td>
</tr>
<tr>
<td>Total</td>
<td>6,104</td>
<td>8,405</td>
</tr>
</tbody>
</table>
Data and covariates

- Markets with duopoly non-stop service
- Q3 2009
- 5 major/legacy carriers
- CO - NW - DL and UA - US
- Alliance=1 when two alliance partners in a market
 - Efficiency gains could lower costs
 - Option value may be affected

<table>
<thead>
<tr>
<th></th>
<th>Alliance=0</th>
<th>Alliance=1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Price</td>
<td>352.49</td>
<td>440.28</td>
</tr>
<tr>
<td>Distance</td>
<td>14.67</td>
<td>21.33</td>
</tr>
<tr>
<td>Population at origin</td>
<td>4.54</td>
<td>3.57</td>
</tr>
<tr>
<td>Population at destination</td>
<td>1.92</td>
<td>4.13</td>
</tr>
<tr>
<td>Income at origin</td>
<td>5.45</td>
<td>5.74</td>
</tr>
<tr>
<td>Income at destination</td>
<td>5.04</td>
<td>4.92</td>
</tr>
<tr>
<td>Market sales</td>
<td>299.24</td>
<td>201.71</td>
</tr>
<tr>
<td>Origin sales</td>
<td>1203.05</td>
<td>997.32</td>
</tr>
<tr>
<td>Destination sales</td>
<td>1122.47</td>
<td>872.04</td>
</tr>
<tr>
<td>Origin connections</td>
<td>5.65</td>
<td>5.59</td>
</tr>
<tr>
<td>Destination connections</td>
<td>5.66</td>
<td>5.03</td>
</tr>
<tr>
<td>Total</td>
<td>6,104</td>
<td>8,405</td>
</tr>
</tbody>
</table>
Estimation results

<table>
<thead>
<tr>
<th></th>
<th>Mean (μ)</th>
<th>Variance (σ)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alliance</td>
<td>0.066***</td>
<td>0.044***</td>
</tr>
<tr>
<td>Distance</td>
<td>0.107***</td>
<td>-0.048***</td>
</tr>
<tr>
<td>Origin population</td>
<td>-0.043***</td>
<td>0.001.</td>
</tr>
<tr>
<td>Dest. population</td>
<td>0.031***</td>
<td>-0.003.</td>
</tr>
<tr>
<td>Origin income</td>
<td>0.007</td>
<td>0.401***</td>
</tr>
<tr>
<td>Dest. income</td>
<td>0.085</td>
<td>0.094.</td>
</tr>
<tr>
<td>Market sales</td>
<td>0.016</td>
<td>-0.112***</td>
</tr>
<tr>
<td>Origin sales</td>
<td>-0.011</td>
<td>0.056***</td>
</tr>
<tr>
<td>Dest. sales</td>
<td>-0.005</td>
<td>0.076***</td>
</tr>
<tr>
<td>Origin connections</td>
<td>-0.031</td>
<td>0.054***</td>
</tr>
<tr>
<td>Dest. connections</td>
<td>-0.032</td>
<td>0.006.</td>
</tr>
<tr>
<td>Cons</td>
<td>4.215***</td>
<td>-5.308***</td>
</tr>
</tbody>
</table>
Results

- Positive alliance effect on prices of 6.6%, or about 25 USD for the average ticket of 400 USD
Results

- Positive alliance effect on prices of 6.6%, or about 25 USD for the average ticket of 400 USD

Further analysis with ex-ante asymmetry in players and with Beta distributed costs (prices bounded from below) under way.
Results

- Positive alliance effect on prices of 6.6%, or about 25 USD for the average ticket of 400 USD
- Positive alliance effect on variance indicates an increase in the ability to price discriminate
Results

- Positive alliance effect on prices of 6.6%, or about 25 USD for the average ticket of 400 USD
- Positive alliance effect on variance indicates an increase in the ability to price discriminate
- Further analysis with ex-ante asymmetry in players and with Beta distributed costs (prices bounded from below) under way