The marginal social cost of service reliability in public transit

ITEA Conference
Toulouse – 6 June 2014

Vincent Benezech, Nicolas Coulombel
Laboratoire Ville Mobilité Transport
With kind support from Réseau Ferré de France
1. Motivation and background

2. Modelling framework

3. Equilibrium conditions in the general case

4. Equilibrium solution in a simplified case

5. Conclusion
Motivation

As congestion increases, transport systems become less and less reliable:

- OECD (2010), Benezech (2013) for public transit

In PT, service reliability has 2 main impacts:

- Waiting time
- Comfort

Research questions: for heavily congested systems, should the operator improve service frequency or service reliability?
Background research

Value of reliability & scheduling models

- Car users: substantial literature
- Transit users: fewer works, based on vehicle timetables
- Benezech, Coulombel (2013) : the value of service frequency and reliability for PT with high frequency

Common assumption: **exogenous congestion**

Bottleneck models

- Car traffic case with travel timel variability : Coulombel & de Palma (2014)
- Little research into the PT case
Aim of the paper

Adapt the bottleneck model to public transport

– Bottleneck model with discrete vehicle departure times
– High frequency \Rightarrow frequency-based services
– Similar to Monchambert, Lindsey, de Palma (ITEA 2014), but irregularity in headways

Research objectives

– What is the impact of service frequency and service reliability on:
 • Departure time profile
 • Equilibrium cost
Modelling framework – Transport supply

Direct transit service between A and B

Headway-based services
 – Passengers cannot adapt to departure times
 – Travel time T_V is assumed constant
 – Headways H and waiting time W are random variables

Relation between H and W

$$\varphi_W(x) = \frac{1 - \Phi_H(x)}{\mu_H}$$

φ_W distribution of W
Φ_H cumulative distribution function of H
Modelling framework – Travel demand

\(P \) passengers with preferred arrival time \(t^* \)

Scheduling preferences

- \((\alpha, \beta, \gamma)\) preferences
- Distinction between waiting time and in-vehicle time
- Congestion penalty linear with (stochastic) vehicle load \(N \)

\[
C(t) = \alpha_W W + \alpha_V (1 + kN)T_V + \beta SDE + \gamma SDL
\]

Schedule delay penalties

- Schedule Delay Early \((t^* - t - W - T_V)^+\)
- Schedule Delay Late \((t + W + T_V - t^*)^+\)
Modelling framework – Travel demand

Headstart (or safety margin)

\[m = t^* - t - T_V \]

– Relates to waiting time, not in-vehicle travel time:

• If \(W \leq m \), the passenger is early
• If \(W \geq m \), the passenger is late

Minimisation of the expected cost

\[\Gamma(m) = E[C(m)] = \alpha_w \mu_w + \alpha_v (1 + kE[N])T_V \]

\[+ \beta \int_0^m (m - u) \phi_w(u)du + \gamma \int_m^{+\infty} (u - m) \phi_w(u)du \]
Equilibrium conditions (1)

User equilibrium with regards to the expected cost

Passenger departure rate $n(t)$ such that

i. For all t such that $n(t) > 0$, $\Gamma(t)$ is constant. Let Γ_n be this value.

ii. For all t such that $n(t) = 0$, $\Gamma(t) \geq \Gamma_n$.

iii. The total number of passengers satisfies $\int n(t) \, dt = P$.

iv. If \tilde{n} is another function satisfying i, ii and iii, then $\Gamma_{\tilde{n}} > \Gamma_n$.
Equilibrium conditions (2)

Exploration of the first condition

– Equivalent to: for all \(t \) such that \(n(t) > 0 \), \(\Gamma'(t) = 0 \).

– Information about the expected passenger load:

\[
\frac{d \mathbb{E}[N]}{d m} = \frac{\gamma (1 - \Phi_w(m)) - \beta \Phi_w(m)}{k \alpha_v T_v}
\]

<table>
<thead>
<tr>
<th>(m)</th>
<th>(-\infty)</th>
<th>0</th>
<th>(m^*)</th>
<th>(+\infty)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\frac{d \mathbb{E}[N]}{d m})</td>
<td>(\frac{\gamma}{k \alpha_v T_v})</td>
<td>(\uparrow)</td>
<td>0</td>
<td>(\downarrow)</td>
</tr>
<tr>
<td>(\mathbb{E}[N])</td>
<td>0</td>
<td>(\uparrow)</td>
<td>(\downarrow)</td>
<td>0</td>
</tr>
</tbody>
</table>

– Since \(\mathbb{E}[N] \) is positive and scheduling costs go to \(+\infty\) as |\(m \)| goes to \(+\infty\), the set of \(t \) such that \(n(t) > 0 \) is necessarily bounded.
Equilibrium conditions (3)

Expected passenger load

– Found by integrating over all possible values of headways and time elapsed since last departure (*age* in renewal theory A)

\[
\mathbb{E}[N] = \int_0^{+\infty} \left[\int_0^{x_w} n(t + u)du \right] \varphi_w(x_w)dx_w + \int_0^{+\infty} \left[\int_0^{x_a} n(t - u)du \right] \varphi_a(x_a)dx_a
\]

– Direct derivation gives the derivative in an operational way, as the convolution of \(n \) with

\[
\psi(x) = \begin{cases}
\varphi_a(x) & \text{pour } x > 0 \\
-\varphi_w(-x) & \text{pour } x < 0
\end{cases}
\]
Equilibrium conditions (4)

Equilibrium conditions

i. For all t such that $n(t) > 0$

$$ (n \ast \psi)(t) = \frac{\gamma(1 - \Phi_w(t^* - T_v - t)) - \beta \Phi_w(t^* - T_v - t)}{k\alpha_v T_v} $$

ii. For all t such that $n(t) = 0$, $\Gamma(t) \geq \Gamma_n$.

iii. The total number of passengers satisfies $\int n(t) \, dt = P$.

Comments

– The conditions on the boundary is an inequality, which makes things complex (what is $E[N]$ when $n(t) = 0$?)

– We hope/think that there is only one viable solution so condition 4 (minimality) does not need to be verified.
Simplification

Assumption: during a headway, variations of \(n(t) \) are negligible

\[
E[N] = n(t)E[H_u] = n(t)\mu_H \left(1 + \frac{\sigma_H^2}{\mu_H^2}\right)
\]

This gives the derivative of \(n \)

\[
n'(t) = \frac{\beta \Phi_w(t^*-T_v-t) - \gamma (1 - \Phi_w(t^*-T_v-t))}{k\alpha_v T_v \left(1 + \frac{\sigma_H^2}{\mu_H^2}\right)}
\]

<table>
<thead>
<tr>
<th>(n'(t))</th>
<th>(-\infty)</th>
<th>(+)</th>
<th>0</th>
<th>(-)</th>
<th>(+\infty)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\Phi_w)</td>
<td>(\frac{\beta}{k\alpha_v T_v})</td>
<td>+</td>
<td>0</td>
<td>-</td>
<td>(- \frac{\gamma}{k\alpha_v T_v})</td>
</tr>
</tbody>
</table>

- Similar to the standard bottleneck model
- Easy to integrate if \(\Phi_w \) is known.
Applied case - Exponentially distributed headways

Assumption: shifted exponential distribution of headway

\[
\begin{align*}
\phi_h(x) &= e^{-(x+1)} \\
\Phi_h(x) &= 1 - e^{-(x+1)}
\end{align*}
\] \quad \text{for } x \geq -1

Very good fit of empirical data:
Applied case – Equilibrium solution

Parameters

- $P = 1000$
- $\mu_H = 2 \text{ min}$
- $\alpha_V = 10\text{€/h}$
- $\alpha_W = 20\text{€/h}$
- $\beta = 10\text{€/h}$
- $\gamma = 30\text{€/h}$
- $T_V = 0.5 \text{ h}$
Applied case – Equilibrium cost

Parameters

- $P = 1000$
- $\alpha_V = 10\,€/h$
- $\alpha_W = 20\,€/h$
- $\beta = 10\,€/h$
- $\gamma = 30\,€/h$
- $T_V = 0.5\,h$

![Graph showing User Cost (€) vs. σ (min) with lines for μH=2 and μH=10.](image-url)
Applied case –
Marginal social cost of service reliability

Parameters

- $P = 1000$
- $\alpha_V = 10€/h$
- $\alpha_W = 20€/h$
- $\beta = 10€/h$
- $\gamma = 30€/h$
- $T_V = 0.5\ h$
Conclusion

Intermediate results

– When service reliability decreases, departures are more spread over the rush hour \Rightarrow vehicles are less crowded
– This equilibrium mechanism mitigates the cost of TTV \Rightarrow the exogenous congestion assumption leads to overestimating the cost of TTV
– The marginal social cost of service reliability strongly depends on service frequency (and vice-versa)

Still ongoing work

– Derivation of the marginal social cost of service frequency and service reliability in the general case?
– Push the economic analysis further: optimal levels of service frequency and reliability, pricing,...